Skip to main content

Advertisement

Log in

Effects of radial shock waves therapy on osteoblasts activities

  • Original Article
  • Published:
MUSCULOSKELETAL SURGERY Aims and scope Submit manuscript

Abstract

Radial shock waves therapy (RSWT) differs from extracorporeal shock waves therapy (ESWT) in that it produces a non-focused wave that is dissipated radially at the skin. Few studies have yet explored the effects of RSWT on bone tissue. Osteoblasts in culture flasks were studied by polymerase chain reaction after treatment with RSW (500 impulses, 0.05 mJ/mm2). An inhibited osteoblastogenesis was observed, with a statistically significant reduction in type 1 collagen, osterix, bone sialoprotein and receptor activator NF kappa ligand expression at 24 and 48 h, of osteocalcin at 24, 48 and 72 h, and osteopontin at 48 and 72 h. These findings show that RSWT is not indicated for treatment of delayed fracture union, pseudoarthrosis, and complex regional pain syndrome. The observed reduction in the receptor activator of nuclear factor-kB ligand/osteoprotegerin ratio suggests that it has an inhibiting effect on osteoclastogenesis, which could make it a useful tool for applications in proliferative diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

RW:

Extracorporeal radial pressure waves

PCR:

Polymerase Chain Reaction

ESWT, SWT:

Extracorporeal shock wave therapy

OBs:

Osteoblasts

BMSCs:

Bone Mesenchymal Stem Cells

Cbfa1/Runx2:

Core binding factor A1/Runt-related transcription factor 2

COLL I:

Collagen type I

OSTC:

Osteocalcin

OPN:

Osteopontin

BSPII:

Bone sialoprotein II

RANK:

Receptor activator of nuclear factor-kB

RANKL:

RANK ligand

BMSCs:

Bone marrow stromal cells

OPG:

Osteoprotegerin

PBS:

Phosphate-buffered saline

α-MEM:

α-Minimal essential medium

FBS:

Fetal bovine serum

PTH:

Parathyroid hormone

EFD:

Energy Flux Density

TGF-ß1:

Transforming growth factor-beta 1

IL-10:

Interleukin 10

TNF-alpha:

Tumor Necrosis Factor-alpha

VEGF:

Vascular endothelial growth factor

References

  1. Haupt G, Diesch R, Straub T, Penninger E, Frolich T, Scholl J (2002) Radial shock wave therapy in heel spurs. Der Nieder Gelassene Chirurg 6:1–6

    Google Scholar 

  2. Cleveland RO, Chitnis PV, McClure SR (2007) Acoustic field of a ballistic shock wave therapy device. Ultrasound Med Biol 33(8):1327–1335

    Article  PubMed  Google Scholar 

  3. Gerdesmeyer L, Gollwitzer H, Diehl P, Wagner K (2004) Radial extracorporeal shock wave therapy in orthopaedics. J Miner Stoffwechs 11:36–39

    Google Scholar 

  4. Straub T, Penninger E, Frolich T, Lohrer H, Scholl J, Diesch R (1999) Successful therapy of painful fasciitis plantar by radial shock wave: a prospective, multi-centric and placebo-controlled study. Int J Sports Med 20:21–23

    Google Scholar 

  5. Lohrer H, Schoell J, Arentz S, Froelich T, Straub T, Penninger E, Diesch R., Haupt G (2001) Effectiveness of radial shock wave therapy (RSWT) on tennis elbow and plantar fasciitis. Annual Simposium of Canadian Academy of Sport Medicine, Alberta, Canada, July 4–7

  6. Jayakumar P, Di Silvio L (2010) Osteoblasts in bone tissue engineering. Proc Inst Mech Eng H 224(12):1415–1440

    Article  PubMed  CAS  Google Scholar 

  7. Camozzi V, Vescini F, Luisetto G, Moro L (2010) Bone organic matrix components: their roles in skeletal physiology. J Endocrinol Invest 33(7 Suppl):13–15

    PubMed  CAS  Google Scholar 

  8. Yasuda H, Shima N, Nakagawa N, Yamaguchi K, Kinosaki M, Mochizuki S et al (1998) Osteoclast differentiation factor is a ligand for osteoprotegerin/osteoclastogenesis-inhibitory factor and is identical to TRANCE/RANKL. Proc Natl Acad Sci USA 95:3597–3602

    Article  PubMed  CAS  Google Scholar 

  9. Simonet WS, Lacey DL, Dunstan CR, Kelley M, Chang MS, Lüthy R et al (1997) Osteoprotegerin: a novel secreted protein involved in the regulation of bone density. Cell 89:309–319

    Article  PubMed  CAS  Google Scholar 

  10. Pfaffl MW (2001) A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Res 29(9):e45

    Article  PubMed  CAS  Google Scholar 

  11. Karsenty G (2001) Minireview: transcriptional control of osteoblast differentiation. Endocrinology 142(7):2731–2733

    Article  PubMed  CAS  Google Scholar 

  12. Cao Y, Zhou Z, de Crombrugghe B, Nakashima K, Guan H, Duan X et al (2005) Osterix, a transcription factor for osteoblast differentiation, mediates antitumor activity in murine osteosarcoma. Cancer Res 65(4):1124–1128

    Article  PubMed  CAS  Google Scholar 

  13. Camarda AJ, Butler WT, Finkelman RD, Nanci A (1987) Immunocytochemical localization of gamma-carboxyglutamic acid-containing proteins (osteocalcin) in rat bone and dentin. Calcif Tissue Int 40(6):349–355

    Article  PubMed  CAS  Google Scholar 

  14. Kern B, Shen J, Starbuck M, Karsenty G (2001) Cbfa1 contributes to the osteoblast-specific expression of type I collagen genes. Biol Chem 276(10):7101–7107

    Article  CAS  Google Scholar 

  15. Störk S, Störk C, Angerer P, Kothny W, Schmitt P, Wehr U et al (2000) Bone sialoprotein is a specific biochemical marker of bone metabolism in postmenopausal women: a randomized 1-year study. Osteoporos Int 11(9):790–796

    Article  PubMed  Google Scholar 

  16. Rogers A, Eastell R (2005) Circulating osteoprotegerin and receptor activator for nuclear factor kappaB ligand: clinical utility in metabolic bone disease assessment. J Clin Endocrinol Metab 90(11):6323–6331

    Article  PubMed  CAS  Google Scholar 

  17. Greve JM, Grecco MV, Santos-Silva PR (2009) Comparison of radial shockwaves and conventional physiotherapy for treating plantar fasciitis. Clinics 64(2):97–103

    Article  PubMed  Google Scholar 

  18. Silva PR (2009) Comparison of radial shockwaves and conventional physiotherapy for treating plantar fasciitis. Clinics (Sao Paulo) 64(2):97–103

    Article  Google Scholar 

  19. Cacchio A, Paoloni M, Barile A, Don R, de Paulis F, Calvisi V et al (2006) Effectiveness of radial shock-wave therapy for calcific tendinitis of the shoulder: single-blind, randomized clinical study. Phys Ther 86(5):672–682

    PubMed  Google Scholar 

  20. Da Costa Gómez TM, Radtke CL, Kalscheur VL, Swain CA, Scollay MC, Edwards RB et al (2004) Effect of focused and radial extracorporeal shock wave therapy on equine bone microdamage. Vet Surg 33(1):49–55

    Article  PubMed  Google Scholar 

  21. Byron C, Stewart A, Benson B, Tennent-Brown B, Foreman J (2009) Effects of radial extracorporeal shock wave therapy on radiographic and scintigraphic outcomes in horses with palmar heel pain. Vet Comp Orthop Traumatol 22(2):113–118

    PubMed  CAS  Google Scholar 

  22. Pauwels FE, McClure SR, Amin V, Van Sickle D, Evans RB (2004) Effects of extracorporeal shock wave therapy and radial pressure wave therapy on elasticity and microstructure of equine cortical bone. Am J Vet Res 65(2):207–212

    Article  PubMed  Google Scholar 

  23. Brown KE, Nickels FA, Caron JP, Mullineaux DR, Clayton HM (2005) Investigation of the immediate analgesic effects of extracorporeal shock wave therapy for treatment of navicular disease in horses. Vet Surg 34(6):554–558

    Article  PubMed  Google Scholar 

  24. McClure SR, Sonea IM, Evans RB, Yaeger MJ (2005) Evaluation of analgesia resulting from extracorporeal shock wave therapy and radial pressure wave therapy in the limbs of horses and sheep. Am J Vet Res 66(10):1702–1708

    Article  PubMed  Google Scholar 

  25. Murata R, Nakagawa K, Ohtori S, Ochiai N, Arai M, Saisu T et al (2007) The effects of radial shock waves on gene transfer in rabbit chondrocytes in vitro. Osteoarthritis Cartilage 15(11):1275–1282

    Article  PubMed  CAS  Google Scholar 

  26. Benson BM, Byron CR, Pondenis H, Stewart AA (2007) The effects of radial shock waves on the metabolism of equine cartilage explants in vitro. N Z Vet J 5(1):40–44

    Google Scholar 

  27. Yamashita M, Yamauchi K, Suzuki M, Eguchi Y, Orita S, Endo M et al (2009) Transfection of rat cells with proopiomeranocortin gene, precursor of endogenous endorphin, using radial shock waves suppresses inflammatory pain. Spine 34(21):2270–2277

    Article  PubMed  Google Scholar 

  28. Sugioka K, Nakagawa K, Murata R, Ochiai N, Sasho T, Arai M et al (2010) Radial shock waves effectively introduced NF-kappa B decoy into rat achilles tendon cells in vitro. J Orthop Res 28(8):1078–1083

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

Radial pressure wave device for this trial was supplied by Zimmer MedizinSysteme GmbH. No funding was received in relation to this paper. This Company has no influence on design, process, analysis, results, or interpretation of the study data. BM is the guarantor for this article and takes responsibility for the integrity of the work as a whole. The authors thank Ms. MV Pragnell, B.A., for the language revision.

Conflict of interest

The authors declare that they have no competing interests.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Angela Notarnicola.

Additional information

Angela Notarnicola and Roberto Tamma contributed equally to the work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Notarnicola, A., Tamma, R., Moretti, L. et al. Effects of radial shock waves therapy on osteoblasts activities. Musculoskelet Surg 96, 183–189 (2012). https://doi.org/10.1007/s12306-012-0213-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12306-012-0213-4

Keywords

Navigation