Skip to main content

XAFS for Characterization of Nanomaterials

  • Chapter
  • First Online:
X-ray and Neutron Techniques for Nanomaterials Characterization

Abstract

X-ray absorption fine structure (XAFS) spectroscopy studies the modification of the X-ray absorption coefficient, above the absorption edge of a specific element, due to the presence of neighboring atoms and delivers information on materials nano- and electronic structure. The long-range translational symmetry is not a prerequisite, as in the case of diffraction-based techniques, which, along with the atom-specific character of XAFS, renders it a powerful tool for the study of nanomaterials.

In the following the principles of XAFS spectroscopy will be discussed. A brief introduction of the theoretical basis of the spectroscopy will be presented, the emphasis being on the phenomena that affect the spectrum at energies below, near, and far above the absorption edge. In addition to that, the main experimental setups used for the acquisition of the XAFS spectra in the soft and hard X-ray regimes will also be presented. Furthermore, the analysis procedure of the extended part of the XAFS (called extended XAFS, acronym EXAFS) spectrum and the related parameters, as well as methodologies followed in the analyses of the near-edge part of the spectrum (called X-ray absorption near-edge structure or near-edge X-ray absorption fine structure, the corresponding acronyms being XANES and NEXAFS, respectively), will be described. Finally, recently published representative applications of XAFS spectroscopy for the study of various types of nanomaterials, for example, nanocatalysts, carbon-based nanomaterials, semiconductor quantum dots, etc., will be reviewed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. http://xdb.lbl.gov/

  2. Ravel B, Newville M (2005) ATHENA, ARTEMIS, HEPHAESTUS: data analysis for x-ray absorption spectroscopy using IFEFFIT. J Synchrotron Radiat 12:537–541

    Article  Google Scholar 

  3. Berger MJ, Hubbell JH, Seltzer SM, Chang J, Coursey JS, Sukumar R, Zucker DS, Olsen K Data obtained from the NIST Standard Reference Database XCOM

    Google Scholar 

  4. Barth Τ (1925) Die Kristallstruktur von Perowskit und verwandter Verbindungen. Nor Geol Tidsskr 8:201–216

    Google Scholar 

  5. Sevillano E, Meuth H, Rehr JJ (1979) Extended x-ray absorption fine structure Debye-Waller factors. I. Monatomic crystals. Phys Rev B 20(12):4908–4911

    Article  Google Scholar 

  6. Dalba G, Fornasini P, Grisenti R, Purans J (1999) Sensitivity of extended x-ray absorption fine structure to thermal expansion. Phys Rev Lett 82(21):4240–4243

    Article  Google Scholar 

  7. Bunker G (1983) Application of the ratio method of EXAFS analysis to disordered systems. Nucl Inst Methods B 207(3):437–444

    Article  Google Scholar 

  8. Bunker G (2010) Introduction to XAFS: a practical guide to x-ray absorption fine structure spectroscopy. Cambridge University Press, Cambridge

    Book  Google Scholar 

  9. Schnohr CS, Ridgway MC (eds) (2015) X-ray absorption spectroscopy of semiconductors. Springer Verlag, Berlin/Heidelberg

    Google Scholar 

  10. Teo B (1986) EXAFS: basic principles and data analysis. Springer Verlag, Berlin

    Book  Google Scholar 

  11. Koningsberger DC, Prins R (1988) X-ray absorption: principles, applications, techniques of EXAFS, SEXAFS and XANES. Wiley, New York

    Google Scholar 

  12. Rehr JJ, Albers RC (2000) Theoretical approaches to x-ray absorption fine structure. Rev Mod Phys 72(3):621–654

    Article  Google Scholar 

  13. Stöhr J (1992) NEXAFS spectroscopy. Springer, Heidelberg

    Book  Google Scholar 

  14. Chen JG (1997) NEXAFS investigations of transition metal oxides, nitrides, carbides, sulfides and other interstitial compounds. Surf Sci Rep 30(1–3):1–152

    Article  Google Scholar 

  15. Rehr JJ, Ankudinov AL (2005) Progress in the theory and interpretation of XANES. Coord Chem Rev 249(1–2):131–140

    Article  Google Scholar 

  16. de Groot FMF (1994) X-ray absorption and dichroism of transition metals and their compounds. J Electron Spectrosc Relat Phenom 67(4):529–622

    Article  Google Scholar 

  17. Fuggle JC, Inglesfield JE (eds) (1992) Unoccupied electronic states. Springer Verlag, Berlin/Heidelberg

    Google Scholar 

  18. Rehr JJ, Albers RC (1990) Scattering-matrix formulation of curved-wave multiple-scattering theory: application to x-ray absorption fine structure. Phys Rev B 41(12):8139–8149

    Article  Google Scholar 

  19. Ankudinov AL, Ravel B, Rehr JJ, Conradson SD (1998) Real-space multiple-scattering calculation and interpretation of x-ray-absorption near-edge structure. Phys Rev B 58(12):7565–7576

    Article  Google Scholar 

  20. Kaznatcheev KV, Karunakaran C, Lanke UD, Urquhart SG, Obst M, Hitchcock AP (2007) Soft x-ray spectromicroscopy beamline at the CLS: commissioning results. Nucl Inst Methods A 582(1):96–99

    Article  Google Scholar 

  21. Wiedemann H (2003) Synchrotron radiation. Springer, Berlin/Heidelberg

    Google Scholar 

  22. Mills DM (2002) Third-generation hard x-ray synchrotron radiation sources. Wiley, New York

    Google Scholar 

  23. Mills DM (ed) (2002) X-ray microbeam and microscopy techniques with hard x-rays in third-generation hard x-ray synchrotron radiation sources. Willey, New York

    Google Scholar 

  24. Lu K, Stern EA (1983) Size effect of powdered sample on EXAFS amplitude. Nucl Inst Methods 212(1–3):475–478

    Article  Google Scholar 

  25. Tröger L, Arvanitis D, Baberschke K, Michaelis H, Grimm U, Zschech E (1992) Full correction of the self-absorption in soft-fluorescence extended x-ray absorption fine structure. Phys Rev B 46(6):3283–3288

    Article  Google Scholar 

  26. Janssens KHA, Adams FCV, Rindby A (eds) (2000) Microscopic x-ray fluorescence analysis. Wiley, Chichester

    Google Scholar 

  27. Ertl G, Küppers J (1974) Low-energy electrons and surface chemistry. In: Monographs in modern chemistry, vol 4. Verlag Chemie, Weinheim

    Google Scholar 

  28. Krause MO (1979) Atomic radiative and radiationless yields for K and L shells. J Phys Chem Ref Data 8(2):307–327

    Article  Google Scholar 

  29. Dent AJ (2002) Development of time-resolved XAFS instrumentation for quick EXAFS and energy-dispersive EXAFS measurements on catalyst systems. Top Catal 18(1–2):27–35

    Article  Google Scholar 

  30. Pascarelli S, Mathon O (2010) Advances in high brilliance energy dispersive x-ray absorption spectroscopy. Phys Chem Chem Phys 12(21):5535–5546

    Article  Google Scholar 

  31. Grunwaldt J-D, Caravati M, Hannemann S, Beiker A (2004) X-ray absorption spectroscopy under reaction conditions: suitability of different reaction cells for combined catalyst characterization and time-resolved studies. Phys Chem Chem Phys 6(11):3037–3047

    Article  Google Scholar 

  32. Webatoms Database, http://cars9.uchicago.edu/cgi-bin/atoms/atoms.cgi

  33. American Mineralogist Crystal Structure Database, http://rruff.geo.arizona.edu/AMS/amcsd.php

  34. The Landolt-Börnstein Database, http://www.springermaterials.com/

  35. Crystallography Open Database, www.crystallography.net

  36. Wyckoff RWG (1963) Crystal structures, vol 1, 2nd edn. Wiley, New York; Wyckoff RWG (1964) Crystal structures: inorganic compounds RXn, RnMX2, RnMX3, vol 2, 2nd edn. Interscience Publishers, New York; Wyckoff RWG (1965) Crystal structures: Rx(MX4)y, Rx(MnXp)y, hydrates and ammoniates, vol 3, 2nd edn. Interscience Publishers, New York; Wyckoff RWG (1968) Crystal structures: miscellaneous inorganic compounds, silicates, and basic structural information, vol 4, 2nd edn. Wiley Interscience, Chichester, New York

    Google Scholar 

  37. Tomić S, Searle BG, Wander A, Harrison NM, Dent AJ, Mosselmans JFW, Inglesfield JE (2004) New tools for the analysis of EXAFS: the DL_EXCURV package. Council for the Central Laboratory of the Research Councils, CCLRC technical report DL-TR-2005-001, pp 1–12

    Google Scholar 

  38. Binsted N, Cook SL, Evans J, Neville Greaves G, Price RJ (1987) EXAFS and near-edge structure in the cobalt K-edge absorption spectra of metal carbonyl complexes. J Am Chem Soc 109(12):3669–3676

    Article  Google Scholar 

  39. Ankudinov AL, Rehr JJ (1997) Relativistic spin-dependent x-ray absorption theory. Phys Rev B 56(4):R1712–R1715

    Article  Google Scholar 

  40. Di Cicco A (ed) (2009) GNXAS. Extended suite of programs for advanced X-ray absorption data-analysis: methodology and practice. Task, Gdansk

    Google Scholar 

  41. Filipponi A, Di Cicco A, Natoli CR (1995) X-ray-absorption spectroscopy and n-body distribution functions in condensed matter. I. Theory. Phys Rev B 52(21):15122–15134

    Article  Google Scholar 

  42. de Groot F (2005) Multiplet effects in x-ray spectroscopy. Coord Chem Rev 249(1–2):31–63

    Article  Google Scholar 

  43. Benfatto M, Della Longa S, Natoli CR (2003) The MXAN procedure: a new method for analysing the XANES spectra of metallo-proteins to obtain structural quantitative information. J Synchrotron Radiat 10(Pt. 1):51–57

    Article  Google Scholar 

  44. Greegor RB, Lylte FW (1980) Morphology of supported metal clusters: determination by EXAFS and chemisorption. J Catal 63(2):476–486

    Article  Google Scholar 

  45. de Panfilis S, d’Acapito F, Haas V, Konrad H, Weissüller J, Boscherini F (1995) Local structure and size effects in nanophase palladium: an X-ray absorption study. Phys Lett A 201(6):397–403

    Article  Google Scholar 

  46. Borowski M (1997) Size determination of small Cu-clusters by EXAFS. J Phys IV France 7(C2):259–260

    Google Scholar 

  47. Traverse A (1998) X-ray absorption spectroscopy to study metallic clusters. New J Chem 22(7):677–683

    Article  Google Scholar 

  48. Frenkel AI, Yevick A, Cooper C, Vasic R (2011) Modeling the structure and composition of nanoparticles by extended x-ray absorption fine-structure spectroscopy. Annu Rev Anal Chem 4:23–39

    Article  Google Scholar 

  49. Kuzmin A, Chaboy J (2014) EXAFS and XANES analysis of oxides at the nanoscale. Int Union Crystallogr J 1(Pt. 6):571–589

    Article  Google Scholar 

  50. Brice-Profeta S, Arrio M-A, Tronc E, Menguy N, Letard I, Cartier dit Moulin C, Nogués M, Chanéac C, Jolivet J-P, Sainctavit P (2005) Magnetic order in γ-Fe2O3 nanoparticles: a XMCD study. J Magn Magn Mater 288:354–365

    Article  Google Scholar 

  51. Katsikini M, Paloura EC, Moustakas TD (1998) Experimental determination of the N-p-partial density of states in the conduction band of GaN: determination of the polytype fractions in mixed phase samples. J Appl Phys 83(3):1437–1445

    Article  Google Scholar 

  52. Sobczak JW, Sobczak E, Drelinkiewicz A, Hasik M, Wenda E (2004) Local structure of a Pd-doped polymer investigated using a linear combination of XANES spectra. J Alloys Compd 362(1–2):162–166

    Article  Google Scholar 

  53. McNeill CR, Ade H (2013) Soft X-ray characterisation of organic semiconductor films. J Mater Chem C 1(2):187–201

    Article  Google Scholar 

  54. Parratt LG (1959) Electronic band structure of solids by X-ray spectroscopy. Rev Mod Phys 31(3):616–645

    Article  Google Scholar 

  55. Pinakidou F, Katsikini M, Paloura EC (2007) On the thermal stability of vitrified industrial wastes using microscale synchrotron radiation based techniques. J Appl Phys 102(11):113512.1–113512.11

    Article  Google Scholar 

  56. Westre TE, Kennepohl P, DeWitt JG, Hedman B, Hodgson KO, Solomon EI (1997) A multiplet analysis of Fe K-Edge 1s → 3d pre-edge features of iron complexes. J Am Chem Soc 119(27):6297–6314

    Article  Google Scholar 

  57. Wilke M, Frarges F, Petit P-E, Brown GE, Martin F (2001) Oxidation state and coordination of Fe in minerals: an Fe-XANES spectroscopic study. Am Mineral 86(5–6):714–730

    Article  Google Scholar 

  58. Chalmin E, Farges F, Brown GE Jr (2009) A pre-edge analysis of Mn K-edge XANES spectra to help determine the speciation of manganese in minerals and glasses. Contrib Mineral Petrol 157(1):111–126

    Article  Google Scholar 

  59. Katsikini M, Pinakidou F, Paloura EC, Wendler E, Wesch W, Manzke R (2009) N–K edge NEXAFS study of the defects induced by indium implantation in GaN. J Phys Conf Ser 190(1):012065.1–012065.4

    Google Scholar 

  60. Waychunas GA, Fuller CC, Davis JA, Rehr JJ (2003) Surface complexation and precipitate geometry for aqueous Zn(II) sorption on ferrihydrite: II. XANES analysis and simulation. Geochim Cosmochim Acta 67(5):1031–1043

    Article  Google Scholar 

  61. Katsikini M, Pinakidou F, Paloura EC, Boscherini F (2007) Modification of the N bonding environment in GaN after high-dose Si implantation: an x-ray absorption study. J Appl Phys 101(8):083510.1–083510.9

    Article  Google Scholar 

  62. Qi B, Perez I, Ansari PH, Lu F, Croft M (1987) L2 and L3 measurements of transition metal 5d orbital occupancy, spin-orbit effects, and chemical bonding. Phys Rev B 36(5):R2972–R2975

    Article  Google Scholar 

  63. Bare SR, Ressler T (2009) Chapter 6: characterization of catalysts in reactive atmospheres by X-ray absorption spectroscopy. In: Gates BC, Knözinger H (eds) Advances in Catalysis, vol 52. Academic, Amsterdam, pp 339–465

    Google Scholar 

  64. Gross E, Dean Toste F, Somorjai GA (2015) Polymer-encapsulated metallic nanoparticles as a bridge between homogeneous and heterogeneous catalysis. Catal Lett 145(1):126–138

    Article  Google Scholar 

  65. Witkowska A, Greco G, Dsoke S, Marassi R, Di Cicco A (2014) Structural change of carbon supported Pt nanocatalyst subjected to a step-like potential cycling in PEM FC. J Non Cryst Solids 401:169–174

    Article  Google Scholar 

  66. Witkowska A, Di Cicco A, Principi E (2007) Local ordering of nanostructured Pt probed by multiple-scattering XAFS. Phys Rev B 76(10):104110.1–104110.12

    Article  Google Scholar 

  67. Shishido T, Nasu H, Deng L, Teramrua K, Tanaka T (2013) Study of formation process of metal nanoparticles on metal oxides by in-situ XAFS technique. J Phys Conf Ser 430:012060.1–012060.4

    Article  Google Scholar 

  68. Asakura H, Teramura K, Shishido T, Tanaka T, Yan N, Xiao C, Yao S, Kou Y (2012) In situ time-resolved DXAFS study of Rh nanoparticle formation mechanism in ethylene glycol at elevated temperature. Phys Chem Chem Phys 14(9):2983–2990

    Article  Google Scholar 

  69. Nishimura S, Takagaki A, Maenosono S, Ebitani K (2010) In situ time-resolved XAFS study on the formation mechanism of Cu nanoparticles using poly(N-vinyl-2-pyrrolidone) as a capping agent. Langmuir 26(6):4473–4479

    Article  Google Scholar 

  70. Harada M, Inada Y (2009) In situ time-resolved XAFS studies of metal particle formation by photoreduction in polymer solutions. Langmuir 25(11):6049–6061

    Article  Google Scholar 

  71. Shimizu K, Ohshima K, Tai Y, Tamura M, Satsuma A (2012) Size- and support-dependent selective amine cross-coupling with platinum nanocluster catalysts. Catal Sci Technol 2(4):730–738

    Article  Google Scholar 

  72. Shimizu K-i, Sugino K, Sawabe K, Satsuma A (2009) Oxidant-free dehydrogenation of alcohols heterogeneously catalyzed by cooperation of silver clusters and acid–base sites on alumina. Chem Eur J 15(10):2341–2351

    Article  Google Scholar 

  73. Kuroda Y, Mori T, Sugiyama H, Uozumi Y, Ikeda K, Itadani A, Nagao M (2009) On the possibility of AgZSM-5 zeolite being a partial oxidation catalyst for methane. J Colloid Interface Sci 333(1):294–299

    Article  Google Scholar 

  74. Miller JT, Kropf AJ, Zhac Y, Regalbuto JR, Delannoy L, Louis C, Bus E, van Bokhoven JA (2006) The effect of gold particle size on Au–Au bond length and reactivity toward oxygen in supported catalysts. J Catal 240(2):222–234

    Article  Google Scholar 

  75. Kroner AB, Newton MA, Tromp M, Russell AE, Dent AJ, Evans J (2013) Structural characterization of alumina-supported Rh catalysts: effects of ceriation and zirconiation by using metal–organic precursors. ChemPhysChem 14(15):3606–3617

    Article  Google Scholar 

  76. Einaga H, Kawarada J, Kimura K, Teraoka Y (2014) Preparation of platinum nanoparticles on TiO2 from DNA-protected particles. Colloids Surf A 455:179–184

    Article  Google Scholar 

  77. Yancey DF, Chill ST, Zhang L, Frenkel AI, Henkelman G, Crooks RM (2013) A theoretical and experimental examination of systematic ligand-induced disorder in Au dendrimer-encapsulated nanoparticles. Chem Sci 4(7):2912–2921

    Article  Google Scholar 

  78. Roscioni OM, Zonias N, Price SWT, Russell AE, Comaschi T, Skylaris C-K (2011) Computational prediction of L3 EXAFS spectra of gold nanoparticles from classical molecular dynamics simulations. Phys Rev B 83(11):115409.1–115409.18

    Article  Google Scholar 

  79. Price SWT, Zonias N, Skylaris C-K, Hyde TI, Ravel B, Russell AE (2012) Fitting EXAFS data using molecular dynamics outputs and a histogram approach. Phys Rev B 85(7):075439.1–075439.14

    Article  Google Scholar 

  80. Christensen ST, Feng H, Libera JL, Guo N, Miller JT, Stair PC, Elam JW (2010) Supported Ru–Pt bimetallic nanoparticle catalysts prepared by atomic layer deposition. Nano Lett 10(8):3047–3051

    Article  Google Scholar 

  81. Wang H, Miller JT, Shakouri M, Xi C, Wu T, Zhao H, Cem Akatay M (2013) XANES and EXAFS studies on metal nanoparticle growth and bimetallic interaction of Ni-based catalysts for CO2 reforming of CH4. Catal Today 207:3–12

    Article  Google Scholar 

  82. de Graaf J, van Dillen AJ, de Jong KP, Koningsberger DC (2001) Preparation of highly dispersed Pt particles in zeolite Y with a narrow particle size distribution: characterization by hydrogen chemisorption, TEM, EXAFS spectroscopy, and particle modelling. J Catal 203(2):307–321

    Article  Google Scholar 

  83. Kitagawa H, Ichikuni N, Okuno H, Hara T, Shimazu S (2014) XAFS and HAADF STEM combined characterization for size regulated Ni nanocluster catalyst and its unique size dependence for water gas shift reaction. Appl Catal A 478:66–70

    Article  Google Scholar 

  84. Thole BT, Carra P, Sette F, van der Laan G (1992) X-ray circular dichroism as a probe of orbital magnetization. Phys Rev Lett 68(12):1943–1946

    Article  Google Scholar 

  85. Carra P, Thole BT, Altarelli M, Wang X (1993) X-ray circular dichroism and local magnetic fields. Phys Rev Lett 70(5):695–697

    Article  Google Scholar 

  86. Stöhr J, König H (1995) Determination of spin- and orbital-moment anisotropies in transition metals by angle-dependent x-ray magnetic circular dichroism. Phys Rev Lett 75(20):3748–3751

    Article  Google Scholar 

  87. Torchio R, Meneghini C, Mobilio S, Capellini G, Garcia Prieto A, Alonso J, Fdez-Gubieda ML, Turco Liveri V, Longo A, Ruggirello AM, Neisius T (2010) Microstructure and magnetic properties of colloidal cobalt nano-clusters. J Magn Magn Mater 322(21):3565–3571

    Article  Google Scholar 

  88. Dupuis V, Blanc N, Diaz-Sanchez LE, Hillion A, Tamion A, Tournus F, Pastor GM, Rogalev A, Wilhelm F (2013) Finite size effects on structure and magnetism in mass-selected CoPt nanoparticles. Eur Phys J D 67(2):1–4

    Article  Google Scholar 

  89. Han L, Wiedwald U, Biskupek J, Fauth K, Kaiser U, Ziemann P (2011) Nanoscaled alloy formation from self-assembled elemental Co nanoparticles on top of Pt films. Beilstein J Nanotechnol 2:473–485

    Article  Google Scholar 

  90. Alba Venero D, Fernández Barquín L, Alonso J, Fdez-Gubieda ML, Rodríguez Fernández L, Boada R, Chaboy J (2013) Magnetic disorder in diluted FexM100−x granular thin films (M = Au, Ag, Cu; x < 10 at.%). J Phys Condens Matter 25(27):276001.1–276001.10

    Google Scholar 

  91. Schmitz-Antoniak C (2013) Characterisation of FePt nanomagnets by x-ray absorption spectroscopy. Phys Status Solidi A 210(7):1298–1304

    Article  Google Scholar 

  92. Chang S-J, Yang C-Y, Ma H-C, Tseng Y-C (2013) Complex magnetic interactions and charge transfer effects in highly ordered NixFe1−x nano-wires. J Magn Magn Mater 332:21–27

    Article  Google Scholar 

  93. Barthem VMTS, Rogalev A, Wilhelm F, Sant’ Anna MM, Mello SLA, Zhang Y, Bayle-Guillemaud P, Givord D (2012) Spin fluctuations of paramagnetic Rh clusters revealed by x-ray magnetic circular dichroism. Phys Rev Lett 109(19):197204.1–197204.5

    Article  Google Scholar 

  94. Selenska-Pobell S, Reitz T, Schönemann R, Herrmansdörfer T, Merroun M, Geißler A, Bartolomé J, Bartolomé F, García LM, Wilhelm F, Rogalev A (2011) Magnetic Au nanoparticles on archaeal S-layer ghosts as templates. Nanomater Nanotechnol 1(2):8–16

    Google Scholar 

  95. Suturin M, Fedorov VV, Banshchikov AG, Baranov DA, Koshmak KV, Torelli P, Fujii J, Panaccione G, Amemiya K, Sakamaki M, Nakamura T, Tabuchi M, Pasquali L, Sokolov NS (2013) Proximity effects and exchange bias in Co/MnF2(111) heterostructures studied by X-ray magnetic circular dichroism. J Phys Condens Matter 25(4):046002.1–046002.9

    Article  Google Scholar 

  96. Gridneva L, Persson A, Niño MÁ, Camarero J, de Miguel JJ, Miranda R, Hofer C, Teichert C, Bobek T, Locatelli A, Heun S, Carlsson S, Arvanitis D (2008) Experimental investigation of the spin reorientation of Co∕Au based magnetic nanodot arrays. Phys Rev B 77(10):104425.1–104425.9

    Article  Google Scholar 

  97. Harada M, Inada Y, Nomura M (2009) In situ time-resolved XAFS analysis of silver particle formation by photoreduction in polymer solutions. J Colloid Interface Sci 337(2):427–438

    Article  Google Scholar 

  98. Ma J, Zou Y, Jiang Z, Huang W, Li J, Wu G, Huang Y, Xu H (2013) An in situ XAFS study – the formation mechanism of gold nanoparticles from X-ray-irradiated ionic liquid. Phys Chem Chem Phys 15(28):11904–11908

    Article  Google Scholar 

  99. Haug J, Dubiel M, Kruth H, Hofmeister H (2009) Structural characterization of bimetallic Ag–Au nanoparticles in glass. J Phys Conf Ser 190(1):012124.1–0.12124.4

    Google Scholar 

  100. Chen HM, Liu RS, Jang L-Y, Lee J-F, Hu SF (2006) Characterization of core–shell type and alloy Ag/Au bimetallic clusters by using extended x-ray absorption fine structure spectroscopy. Chem Phys Lett 421(1–3):118–123

    Article  Google Scholar 

  101. Padovani S, Puzzovio D, Sada C, Mazzoldi P, Borgia I, Sgamellotti A, Brunetti BG, Cartechini L, D’ Acapito F, Maurizio C, Shokoui F, Oliaiy P, Rahighi J, Lamehi-Rachti M, Pantos E (2006) XAFS study of copper and silver nanoparticles in glazes of medieval middle-east lusterware (10th–13th century). Appl Phys A 83(4):521–528

    Article  Google Scholar 

  102. Smith AD, Pradell T, Roqué J, Molera J, Vendrell-Saz M, Dent AJ, Pantos E (2006) Color variations in 13th century hispanic lustre – an EXAFS study. J Non Cryst Solids 352(50–51):5353–5361

    Article  Google Scholar 

  103. Karatutlu A, Little WR, Sapelkin AV, Dent A, Mosselmans F, Cibin G, Taylor R (2013) OD-XAS and EXAFS: structure and luminescence in Ge quantum dots. J Phys Conf Ser 430(012026):1–6

    Google Scholar 

  104. Erenburg SB, Trubina SV, Bausk NV, Nikiforov AI, Dvurechenskii AV, Mansurov VG, Zhuravlev KS, Nikitenko SG (2011) The microstructure of vertically coupled quantum dots ensembles by EXAFS spectroscopy. J Surf Invest 5(5):856–862

    Article  Google Scholar 

  105. Piskorska-Hommel E, Holý V, Caha O, Wolska A, Gust A, Kruse C, Kröncke H, Falta J, Hommel D (2012) Complementary information on CdSe/ZnSe quantum dot local structure from extended x-ray absorption fine structure and diffraction anomalous fine structure measurements. J Alloys Compd 523:155–160

    Article  Google Scholar 

  106. Demchenko IN, Chernyshova M, He X, Minikayev R, Syryanyy Y, Derkachova A, Derkachov G, Stolte WC, Piskorska-Hommel E, Reszka A, Liang H (2013) XANES: observation of quantum confinement in the conduction band of colloidal PbS quantum dots. J Phys Conf Ser 430(1):012030.1–012030.5

    Google Scholar 

  107. Wright JT, Meulenberg RW (2012) Modification of the conduction band edge energy via hybridization in quantum dots. Appl Phys Lett 101(19):193104.1–193104.3

    Article  Google Scholar 

  108. Lee JRI, Meulenberg RW, Hanif KM, Mattoussi H, Klepeis JE, Terminello LJ, van Buuren T (2007) Experimental observation of quantum confinement in the conduction band of CdSe quantum dots. Phys Rev Lett 98(14):146803.1–146803.4

    Article  Google Scholar 

  109. Wright JT, Meulenberg RW (2013) Effects of dopants on the band structure of quantum dots: a theoretical and experimental study. Phys Rev B 88(4):045432.1–045432.8

    Article  Google Scholar 

  110. Chen L-Y, Chen C-H, Tseng C-H, Laia F-L, Hwang B-J (2011) Synthesis CdSexS1−x core/shell type quantum dots via one injection methods. Chem Commun 47(5):1592–1594

    Article  Google Scholar 

  111. Chen L-Y, Yang P-A, Tseng C-H, Hwang B-J, Chen C-H (2012) Internal structure of tunable ternary CdSexS1-x quantum dots unravelled by x-ray absorption spectroscopy. Appl Phys Lett 100(16):163113.1–163113.3

    Google Scholar 

  112. Limpijumnong S, Jutimoosik J, Palakawong N, Klysubun W, Nukeaw J, Du M-H, Rujirawat S (2011) Determination of miscibility in MgO-ZnO nanocrystal alloys by x-ray absorption spectroscopy. Appl Phys Lett 99(26):126014.1–126014.1

    Article  Google Scholar 

  113. Murphy MW, Zhou XT, Ko JYP, Zhou JG, Heigl F, Shamd TK (2009) Optical emission of biaxial ZnO–ZnS nanoribbon heterostructures. J Phys 130(8):084707.1–084707.8

    Google Scholar 

  114. Rammutla KE, Chadwick AV, Harding J, Sayle DC, Erasmus RM (2010) EXAFS and Raman scattering studies of Y and Zr doped nano-crystalline tin oxide. J Phys Conf Ser 249(1):012054.1–012054.5

    Google Scholar 

  115. Segura-Ruiz J, Martínez-Criado G, Denker C, Malindretos J, Rizzi A (2014) Phase separation in single InxGa1–xN nanowires revealed through a hard X-ray synchrotron nanoprobe. Nano Lett 14(3):1300–1305

    Article  Google Scholar 

  116. Martínez-Criado G, Segura-Ruiz J, Chu M-H, Tucoulou R, López I, Nogales E, Mendez B, Piqueras J (2014) Crossed Ga2O3/SnO2 multiwire architecture: a local structure study with nanometer resolution. Nano Lett 14(10):5479–5487

    Article  Google Scholar 

  117. Wang SL, Chen L, Meng KK, Xu PF, Meng HJ, Lu J, Yan WS, Zhao JH (2010) Origin of ferromagnetism in self-assembled Ga1-xMnxAs quantum dots grown on Si. Appl Phys Lett 97(24):242505).11–3242505).1

    Google Scholar 

  118. Kim HS, Cho YJ, Kong KJ, Kim CH, Chung GB, Park J, Kim J-Y, Yoon J, Jung M-H, Jo Y, Kim B, Ahn J-P (2009) Room-temperature ferromagnetic Ga1−xMnxAs (x ≤ 0.05) nanowires: dependence of electronic structures and magnetic properties on Mn content. Chem Mater 21(6):1137–1143

    Article  Google Scholar 

  119. Seong H-K, Kim U, Kim M-H, Lee H-H, Lee D-R, Kim J-Y, Choi H-J (2009) Structural and chemical characterization of Mn doped GaN nanowires by X-ray absorption spectroscopy. J Nanosci Nanotechnol 9(11):6772–6776

    Article  Google Scholar 

  120. Hegde M, Farvid SS, Hosein ID, Radovanovic PV (2011) Tuning manganese dopant spin interactions in single GaN nanowires at room temperature. ACS Nano 5(8):6365–6373

    Article  Google Scholar 

  121. Zheng W, Singh K, Wang Z, Wright JT, van Tol J, Dalal NS, Meulenberg RW, Strouse GF (2012) Evidence of a ZnCr2Se4 spinel inclusion at the core of a Cr-Doped ZnSe quantum dot. J Am Chem Soc 134(12):5577–5585

    Article  Google Scholar 

  122. Kumar S, Kim YJ, Koo BH, Sharma SK, Vargas JM, Knobel M, Gautam S, Chae KH, Kim DK, Kim YK, Lee CG (2009) Structural and magnetic properties of chemically synthesized Fe doped ZnO. J Appl Phys 105(7):07C520.1–07C520.3

    Google Scholar 

  123. Gautam S, Kumar S, Thakur P, Chae KH, Kumar R, Koo BH, Lee CG (2009) Electronic structure studies of Fe-doped ZnO nanorods by x-ray absorption fine structure. J Phys D Appl Phys 42(17):175406.1–175406.7

    Article  Google Scholar 

  124. Segura-Ruiz J, Martínez-Criado G, Chu MH, Geburt S, Ronning C (2011) Nano-X-ray absorption spectroscopy of single Co-implanted ZnO nanowires. Nano Lett 11(12):5322–5326

    Article  Google Scholar 

  125. Guglieri C, Laguna-Marco MA, García MA, Carmona N, Céspedes E, García-Hernández M, Espinosa A, Chaboy J (2012) XMCD proof of ferromagnetic behavior in ZnO nanoparticles. J Phys Chem C 116(11):6608–6614

    Article  Google Scholar 

  126. Ueno N, Nakanishi K, Ohta T, Egashira Y, Nishiyama N (2012) Low-temperature synthesis of ZnO nanorods using organic–inorganic composite as a seed layer. Thin Solid Films 520(14–15):4291–4296

    Article  Google Scholar 

  127. Briois V, Giorgetti C, Dartyge E, Baudelet F, Tokumoto MS, Pulcinelli SH, Santilli CV (2006) In situ and simultaneous nanostructural and spectroscopic studies of ZnO nanoparticle and Zn-HDS formations from hydrolysis of ethanolic zinc acetate solutions induced by water. J Sol-Gel Sci Technol 39(1):25–36

    Article  Google Scholar 

  128. Caetano BL, Santillia CV, Pulcinellia SH, Briois V (2011) SAXS and UV-vis combined to Quick-XAFS monitoring of ZnO nanoparticles formation and growth. Phase Transit 84(8):714–725

    Article  Google Scholar 

  129. Song J, Zhang J, Xie Z, Wei S, Pan Z, Hub T, Xie Y (2010) In situ XAFS studies on the growth of ZnSe quantum dots. Nucl Inst Methods A 619(1–3):280–282

    Article  Google Scholar 

  130. Fellowes JW, Pattrick RAD, Lloyd JR, Charnock JM, Coker VS, Mosselmans JFW, Weng T-C, Pearce CI (2013) Ex situ formation of metal selenide quantum dots using bacterially derived selenide precursors. Nanotechnology 24(14):145603.1–145603.10

    Article  Google Scholar 

  131. Lu P, Zhang H, Satoh T, Ohkubo T, Yamazaki A, Takano K, Kamiya T, Zhu L, Huang Y, Jiang Z, Zheng Y, Yang M, Mi Y, Ren Q, Shen H (2011) Investigation on the stability of water-soluble ZnO quantum dots in KB cells by X-ray fluorescence and absorption methods. Nucl Inst Methods B 269:1940–1943

    Article  Google Scholar 

  132. Protesescu L, Rossini AJ, Kriegner D, Valla M, de Kergommeaux A, Walter M, Kravchyk KV, Nachtegaal M, Stangl J, Malaman B, Reiss P, Lesage A, Emsley L, Copéret C, Kovalenko MV (2014) Unraveling the core_shell structure of ligand-capped Sn/SnOx nanoparticles by surface-enhanced nuclear magnetic resonance, Mössbauer, and x-ray absorption spectroscopies. ACS Nano 8(3):2639–2648

    Google Scholar 

  133. Chen CH, Hwang BJ, Do JS, Weng JH, Venkateswarlu M, Cheng MY, Santhanam R, Ragavendran K, Lee JF, Chen JM, Liu DG (2010) An understanding of anomalous capacity of nano-sized CoO anode materials for advanced Li-ion battery. Electrochem Commun 12:496–498

    Article  Google Scholar 

  134. Zhong K, Zhang B, Luo S, Wen W, Li H, Huang X, Chen L (2011) Investigation on porous MnO microsphere anode for lithium ion batteries. J Power Sources 196(16):6802–6808

    Article  Google Scholar 

  135. Frey K, Iablokov V, Sáfrán G, Osán J, Sajó I, Szukiewicz R, Chenakin S, Kruse N (2012) Nanostructured MnOx as highly active catalyst for CO oxidation. J Catal 287:30–36

    Article  Google Scholar 

  136. Ma S-B, Nam K-W, Yoon W-S, Yang X-Q, Ahn K-Y, Oh K-H, Kim K-B (2008) Electrochemical properties of manganese oxide coated onto carbon nanotubes for energy-storage applications. J Power Sources 178(1):483–489

    Article  Google Scholar 

  137. Ha H-W, Hwang S-J (2010) Improvement of electrochemical performance of tin dioxide negative electrode materials upon cobalt substitution. Electrochim Acta 55(6):2841–2847

    Article  Google Scholar 

  138. Choi A, Palanisamy K, Kim Y, Yoon J, Park J-H, Lee SW, Yoon W-S, Kim K-B (2014) Microwave-assisted hydrothermal synthesis of electrochemically active nano-sized Li2MnO3 dispersed on carbon nanotube network for lithium ion batteries. J Alloys Compd 591:356–361

    Article  Google Scholar 

  139. Kim CH, Jung YS, Lee KT, Ku JH, Oh SM (2009) The role of in situ generated nano-sized metal particles on the coulombic efficiency of MGeO3 (M═Cu, Fe, and Co) electrodes. Electrochim Acta 54(18):4371–4377

    Article  Google Scholar 

  140. Woo MA, Kim TW, Kim IY, Hwang S-J (2011) Synthesis and lithium electrode application of ZnO–ZnFe2O4 nanocomposites and porously assembled ZnFe2O4 nanoparticles. Solid State Ion 182(1):91–97

    Article  Google Scholar 

  141. Koziej D, Rossell MD, Ludi B, Hintennach A, Novák P, Grunwaldt J-D, Niederberger M (2011) Interplay between size and crystal structure of molybdenum dioxide nanoparticles – synthesis, growth mechanism, and electrochemical performance. Small 7(3):377–387

    Article  Google Scholar 

  142. Mao Y, Kong Q, Guo B, Shen L, Wang Z, Chen L (2013) Polypyrrole–NiO composite as high-performance lithium storage material. Electrochim Acta 105:162–169

    Article  Google Scholar 

  143. Zhou JG, Fang HT, Maley JM, Murphy MW, Peter Ko JY, Cutler JN, Sammynaiken R, Sham TK, Liue M, Li F (2009) Electronic structure of TiO2 nanotube arrays from x-ray absorption near edge structure studies. J Mater Chem 19:6804–6809

    Article  Google Scholar 

  144. Akgul G, Aksoy Akgul F, Attenkofer K, Winterer M (2013) Structural properties of zinc oxide and titanium dioxide nanoparticles prepared by chemical vapor synthesis. J Alloys Compd 554:177–181

    Article  Google Scholar 

  145. Yu Liao C, Wang S-T, Chang F-C, Wang HP, Lin H-P (2014) Preparation of TiO2 hollow spheres for DSSC photoanodes. J Phys Chem Solids 75(1):38–41

    Article  Google Scholar 

  146. Kityakarn S, Worayingyong A, Suramitr A, Smith MF (2013) Ce-doped nanoparticles of TiO2: rutile-to-brookite phase transition and evolution of Ce local-structure studied with XRD and XANES. Mater Chem Phys 139(2–3):543–549

    Article  Google Scholar 

  147. Doong R-a, Chang S-m, Tsai C-w (2013) Enhanced photoactivity of Cu-deposited titanate nanotubes for removal of bisphenol A. Appl Catal B 129:48–55

    Article  Google Scholar 

  148. Mourão HAJL, Avansi Junior W, Ribeiro C (2012) Hydrothermal synthesis of Ti oxide nanostructures and TiO2:SnO2 heterostructures applied to the photodegradation of rhodamine B. Mater Chem Phys 135(2–3):524–532

    Article  Google Scholar 

  149. Suwanchawalit C, Wongnawa S, Sriprang P, Meanha P (2012) Enhancement of the photocatalytic performance of Ag-modified TiO2 photocatalyst under visible light. Ceram Int 38(6):5201–5207

    Article  Google Scholar 

  150. He R, Hocking RK, Tsuzuki T (2012) Co-doped ZnO nanopowders: location of cobalt and reduction in photocatalytic activity. Mater Chem Phys 132(2–3):1035–1040

    Article  Google Scholar 

  151. Bergmann A, Zaharieva I, Dau H, Strasser P (2013) Electrochemical water splitting by layered and 3D crosslinked manganese oxides: correlating structural motifs and catalytic activity. Energy Environ Sci 6(9):2745–2755

    Article  Google Scholar 

  152. Acuña LM, Muñoz FF, Cabezas MD, Lamas DG, Leyva AG, Fantini MCA, Baker RT, Fuentes RO (2010) Improvement in the reduction behavior of novel ZrO2-CeO2 solid solutions with a tubular nanostructure by incorporation of Pd. J Phys Chem C 114(46):19687–19696

    Article  Google Scholar 

  153. Park J-H, Kim B, Shin C-H, Seo G, Kim SH, Hong SB (2009) Methane combustion over Pd catalysts loaded on medium and large pore zeolite’s. Top Catal 52(1–2):27–34

    Article  Google Scholar 

  154. Johnston-Peck AC, Senanayake SD, Plata JJ, Kundu S, Xu W, Barrio L, Graciani J, Fdez Sanz J, Navarro RM, Fierro JG, Stach EA, Rodriguez JA (2013) Nature of the mixed-oxide interface in ceria–titania catalysts: clusters, chains, and nanoparticles. J Phys Chem C 117(28):14463–14471

    Article  Google Scholar 

  155. Masuda T, Fukumitsu H, Fugane K, Togasaki H, Matsumura D, Tamura K, Nishihata Y, Yoshikawa H, Kobayashi K, Mori T, Uosaki K (2012) Role of cerium oxide in the enhancement of activity for the oxygen reduction reaction at Pt–CeOx nanocomposite electrocatalyst – An in situ electrochemical x-ray absorption fine structure study. J Phys Chem C 116(18):10098–10102

    Article  Google Scholar 

  156. Nishimura S, Shishido T, Ohyama J, Teramura K, Takagaki A, Tanaka T, Ebitania K (2012) In situ observation of the dynamic behavior of Cu–Al–Ox catalysts for water gas shift reaction during daily start-up and shut-down (DSS)-like operation. Catal Sci Technol 2(8):1685–1693

    Article  Google Scholar 

  157. Rodriguez JA, Hanson JC, Stacchiola D, Senanayake SD (2013) In situ/operando studies for the production of hydrogen through the water-gas shift on metal oxide catalysts. Phys Chem Chem Phys 15(29):12004–12025

    Article  Google Scholar 

  158. Corrias A, Mountjoy G, Loche D, Puntes V, Falqui A, Zanella M, Parak WJ, Casula MF (2009) Identifying spinel phases in nearly monodisperse iron oxide colloidal nanocrystal. J Phys Chem C 113(43):18667–18675

    Article  Google Scholar 

  159. Menard MC, Marschilok AC, Takeuchia KJ, Takeuchi ES (2013) Variation in the iron oxidation states of magnetite nanocrystals as a function of crystallite size: the impact on electrochemical capacity. Electrochim Acta 94:320–326

    Article  Google Scholar 

  160. Mendoza Zélis P, Muraca D, Gonzalez JS, Pasquevich GA, Alvarez VA, Pirota KR, Sánchez FH (2013) Magnetic properties study of iron-oxide nanoparticles/PVA ferrogels with potential biomedical applications. J Nanopart Res 15(5):1613.1–1613.12

    Article  Google Scholar 

  161. Piquer C, Laguna-Marco MA, Roca AG, Boada R, Guglieri C, Chaboy J (2014) Fe-K-edge X-ray absorption spectroscopy study of nanosized nominal magnetite. J Phys Chem C 118(2):1332–1346

    Article  Google Scholar 

  162. Filippousi M, Angelakeris M, Katsikini M, Paloura E, Efthimiopoulos I, Wang Y, Zamboulis D, Van Tendeloo G (2014) Surfactant effects on the structural and magnetic properties of iron oxide nanoparticles. J Phys Chem C 118(29):16209–16217

    Article  Google Scholar 

  163. Bora DK, Braun A, Erat S, Safonova O, Graule T, Constable EC (2012) Evolution of structural properties of iron oxide nano particles during temperature treatment from 250 °C–900 °C: X-ray diffraction and Fe K-shell pre-edge x-ray absorption study. Curr Appl Phys 12(3):817–825

    Google Scholar 

  164. Desautels RD, Skoropata E, Chen Y-Y, Ouyang H, Freeland JW, van Lierop J (2012) Increased surface spin stability in γ-Fe2O3 nanoparticles with a Cu shell. J Phys Condens Matter 24(14):146001.1–146001.11

    Article  Google Scholar 

  165. Aldea N, Turcu R, Nan A, Craciunescu I, Pana O, Yaning X, Wu Z, Bica D, Vekas L, Matei F (2009) Investigation of nanostructured Fe3O4 polypyrrole core-shell composites by X-ray absorption spectroscopy and X-ray diffraction using synchrotron radiation. J Nanopart Res 11(6):1429–1439

    Article  Google Scholar 

  166. Gilbert B, Katz JE, Denlinger JD, Yin Y, Falcone R, Waychunas GA (2010) Soft X-ray spectroscopy study of the electronic structure of oxidized and partially oxidized magnetite nanoparticles. J Phys Chem C 114(50):21994–22001

    Article  Google Scholar 

  167. Ding J, Fan T, Zhang D, Saito K, Guo Q (2011) Structural and optical properties of porous iron oxide. Solid State Commun 151(10):802–805

    Article  Google Scholar 

  168. Rinaldi-Montes N, Gorria P, Martínez-Blanco D, Fuertes AB, Fernández Barquín L, Rodríguez Fernández J, de Pedro I, Fdez-Gubieda ML, Alonso J, Olivi L, Aquilanti G, Blanco JA (2014) Interplay between microstructure and magnetism in NiO nanoparticles: breakdown of the antiferromagnetic order. Nanoscale 6(1):457–465

    Article  Google Scholar 

  169. Anspoks A, Kalinko A, Kalendarev R, Kuzmin A (2012) Atomic structure relaxation in nanocrystalline NiO studied by EXAFS spectroscopy: role of Ni vacancies. Phys Rev B 86(17):174114.1–174114.11

    Article  Google Scholar 

  170. Anspoks A, Kuzmin A, Kalinko A, Timoshenko J (2010) Probing NiO nanocrystals by EXAFS spectroscopy. Solid State Commun 150(45–46):2270–2274

    Article  Google Scholar 

  171. Schultz-Sikma EA, Joshi HM, Ma Q, MacRenaris KW, Eckermann AL, Dravid VP, Meade TJ (2011) Probing the chemical stability of mixed ferrites: implications for magnetic resonance contrast agent design. Chem Mater 23(10):2657–2664

    Article  Google Scholar 

  172. Fantechi E, Campo G, Carta D, Corrias A, de Julián Fernández C, Gatteschi D, Innocenti C, Pineider F, Rugi F, Sangregorio C (2012) Exploring the effect of Co doping in fine maghemite nanoparticles. J Phys Chem C 116(14):8261–8270

    Article  Google Scholar 

  173. Carta D, Casula MF, Floris P, Falqui A, Mountjoy G, Boni A, Sangregorio C, Corrias A (2010) Synthesis and microstructure of manganese ferrite colloidal nanocrystals. Phys Chem Chem Phys 12(19):5074–5083

    Article  Google Scholar 

  174. Vamvakidis K, Katsikini M, Sakellari D, Paloura EC, Kalogirou O, Dendrinou-Samara C (2014) Reducing the inversion degree of MnFe2O4 nanoparticles through synthesis to enhance magnetization: evaluation of their 1H NMR relaxation and heating efficiency. Dalton Trans 43(33):12754–12765

    Article  Google Scholar 

  175. Nordhei C, Lund Ramstad A, Nicholson DG (2008) Nanophase cobalt, nickel and zinc ferrites: synchrotron XAS study on the crystallite size dependence of meta distribution. Phys Chem Chem Phys 10(7):1053–1066

    Article  Google Scholar 

  176. Hellner Nilsen M, Nordhei C, Lund Ramstad A, Nicholson DG, Poliakoff M, Cabañas A (2007) XAS (XANES and EXAFS) investigations of nanoparticulate ferrites synthesized continuously in near critical and supercritical water. J Phys Chem C 111(17):6252–6262

    Article  Google Scholar 

  177. Fábregas IO, Lamas DG (2011) Parametric study of the gel-combustion synthesis of nanocrystalline ZrO2-based powders. Powder Technol 214(2):218–228

    Article  Google Scholar 

  178. He P, Liu T, Möslang A, Lindau R, Ziegler R, Hoffmann J, Kurinskiy P, Commin L, Vladimirov P, Nikitenko S, Silveir M (2012) XAFS and TEM studies of the structural evolution of yttrium-enriched oxides in nanostructured ferritic alloys fabricated by a powder metallurgy process. Mater Chem Phys 136:990–998

    Article  Google Scholar 

  179. Staab TEM, Klobes B, Kohlbach I, Korff B, Haaks M, Dudzik E, Maier K (2011) Atomic structure of pre-Guinier-Preston and Guinier-Preston-Bagaryatsky zones in Al-alloys. J Phys Conf Ser 265(1):012018.1–012018.15

    Google Scholar 

  180. Furlan A, Lu J, Hultman L, Jansson U, Magnuson M (2014) Crystallization characteristics and chemical bonding properties of nickel carbide thin film nanocomposites. J Phys Condens Matter 26(41):415501:1–415501:11

    Article  Google Scholar 

  181. Furlan A, Jansson U, Lu J, Hultman L, Magnuson M (2015) Structure and bonding in amorphous iron carbide thin films. J Phys Condens Matter 27(4):045002.1–045002.9

    Article  Google Scholar 

  182. Endrino JL, Abad MD, Gago R, Horwat D, Jiménez I, Sánchez-López JC (2010) Extended x-ray absorption fine structure (EXAFS) investigations of Ti bonding environment in sputter-deposited nanocomposite TiBC/a-C thin films. IOP Conf Ser Mater Sci Eng 12(1):012012.1–012012.4

    Google Scholar 

  183. Pinakidou F, Katsikini M, Paloura EC, Akbari A, Riviere JP (2011) Nanostructural characterization of TiN-Ni films: a XAFS study. Mater Sci Eng B 176(6):473–476

    Article  Google Scholar 

  184. Pinakidou F, Katsikini M, Patsalas P, Abadias G, Paloura EC (2009) On the nanostructure of Cu in TixCu1-x and TiN/Cu films: a XAFS study. J Nano Res 6:43–50

    Article  Google Scholar 

  185. Wepasnick KA, Smith BA, Bitter JL, Fairbrother DH (2010) Chemical and structural characterization of carbon nanotube surfaces. Anal Bioanal Chem 396(3):1003–1014

    Article  Google Scholar 

  186. Brzhezinskaya MM, Vinogradov NA, Muradyan VE, Yu M, Shul’ga VP, Vinogradov AS (2008) Characterization of fluorinated multiwalled carbon nanotubes by X-ray absorption spectroscopy. Phys Solid State 50(3):587–594

    Article  Google Scholar 

  187. Fleming L, Ulrich MD, Efimenko K, Genzer J, Chan ASY, Madey TE, Oh S-J, Zhou O, Rowe JE (2004) Near-edge absorption fine structure and UV photoemission spectroscopy studies of aligned single-walled carbon nanotubes on Si(100) substrates. J Vac Sci Technol B 22(4):2000–2004

    Article  Google Scholar 

  188. Li Z, Zhang L, Resasco DE, Mun BS, Requejo FG (2007) Angle-resolved x-ray absorption near edge structure study of vertically aligned single-walled carbon nanotubes. Appl Phys Lett 90(10):103115.1–103115.3

    Google Scholar 

  189. Schiessling J, Kjeldgaard L, Rohmund F, Falk LKL, Campbell EEB, Nordgren J, Bruhwiler PA (2003) Synchrotron radiation study of the electronic structure of multiwalled carbon nanotubes. J Phys Condens Matter 15:6563–6579

    Article  Google Scholar 

  190. Hemraj-Benny T, Banerjee S, Sambasivan S, Balasubramanian M, Fischer DA, Eres G, Puretzky AA, Geohegan DB, Lowndes DH, Han W, Misewich JA, Wong SS (2006) Near-edge X-ray absorption fine structure spectroscopy as a tool for investigating nanomaterials. Small 2(1):26–35

    Article  Google Scholar 

  191. Mittal V (ed) (2011) Surface modification of nanotube fillers. Wiley, Weinheim

    Google Scholar 

  192. Wang X, Li N, Webb JA, Pfefferle LD, Haller GL (2010) Effect of surface oxygen containing groups on the catalytic activity of multi-walled carbon nanotube supported Pt catalyst. Appl Catal B 101(1–2):21–30

    Article  Google Scholar 

  193. Brzhezinskaya MM, Muradyan VE, Vinogradov NA, Preobrajenski AB, Gudat W, Vinogradov AS (2009) Electronic structure of fluorinated multiwalled carbon nanotubes studied using x-ray absorption and photoelectron spectroscopy. Phys Rev B 79(15):155439.1–155439.12

    Article  Google Scholar 

  194. Nikitin A, Ogasawara H, Mann D, Denecke R, Zhang Z, Dai H, Cho K, Nilsson A (2005) Hydrogenation of single-walled carbon nanotubes. Phys Rev Lett 95(22):225507.1–225507.4

    Article  Google Scholar 

  195. Dettlaff-Weglikowska U, Skákalová V, Graupner R, Jhang SH, Kim BH, Lee HJ, Ley L, Park YW, Berber SA, Tománek D, Roth S (2005) Effect of SOCl2 treatment on electrical and mechanical properties of single-wall carbon nanotube networks. J Am Chem Soc 127(14):5125–5131

    Article  Google Scholar 

  196. Chen Y, Wang J, Liu H, Norouzi Banis M, Li R, Sun X, Sham T-K, Ye S, Knights S (2011) Nitrogen doping effects on carbon nanotubes and the origin of the enhanced electrocatalytic activity of supported Pt for proton-exchange membrane fuel cells. J Phys Chem C 115(9):3769–3776

    Article  Google Scholar 

  197. Abbas G, Papakonstantinou P, Iyer GRS, Kirkman IW, Chen LC (2007) Substitutional nitrogen incorporation through rf glow discharge treatment and subsequent oxygen uptake on vertically aligned carbon nanotubes. Phys Rev B 75(19):195429.1–195429.9

    Article  Google Scholar 

  198. Schulte K, Swarbrick JC, Smith NA, Bondino F, Magnano E, Khlobystov AN (2007) Assembly of cobalt phthalocyanine stacks inside carbon nanotubes. Adv Mater 19(20):3312–3316

    Article  Google Scholar 

  199. Zhou JG, Fang HT, Hu YF, Sham TK, Wu CX, Liu M, Li F (2009) Immobilization of RuO2 on carbon nanotube: an X-ray absorption near-edge structure study. J Phys Chem C 113(24):10747–10750

    Article  Google Scholar 

  200. Felten A, Bittencourt C, Pireaux J-J, Reichelt M, Mayer J, Hernandez-Cruz D, Hitchcock AP (2007) Individual multiwall carbon nanotubes, individual multiwall spectroscopy by scanning transmission x-ray microscopy. Nano Lett 7(8):2435–2440

    Article  Google Scholar 

  201. Felten A, Hody H, Bittencourt C, Pireaux J-J, Hernández Cruz D, Hitchcock AP (2006) Scanning transmission X-ray microscopy of isolated multiwall carbon nanotubes. Appl Phys Lett 89(9):09312.1–09312.3

    Article  Google Scholar 

  202. Felten A, Gillon X, Gulas M, Pireaux J-J, Ke X, Van Tendeloo G, Bittencourt C, Najafi E, Hitchcock AP (2010) Measuring point defect density in individual carbon nanotubes using polarization-dependent x-ray microscopy. ACS Nano 4(8):4431–4436

    Article  Google Scholar 

  203. Zhang L, Guo J, Zhu J (2015) Band mapping of graphene studied by resonant inelastic x-ray scattering. Fullerenes Nanotubes Carbon Nanostruct 23(5):471–475

    Article  Google Scholar 

  204. Lee V, Park C, Jaye C, Fischer DA, Yu Q, Wu W, Liu Z, Bao J, Pei S-S, Smith C, Lysaght P, Banerjee S (2010) Substrate hybridization and rippling of graphene evidenced by near-edge X-ray absorption fine structure spectroscopy. J Phys Chem Lett 1(8):1247–1253

    Article  Google Scholar 

  205. Zhang W, Nefedov A, Naboka M, Cao L, Wöll C (2012) Molecular orientation of terephthalic acid assembly on epitaxial graphene: NEXAFS and XPS study. Phys Chem Chem Phys 14:10125–10131

    Article  Google Scholar 

  206. Weser M, Rehder Y, Horn K, Sicot M, Fonin M, Preobrajenski AB, Voloshina EN, Goering E, Dedkov YS (2010) Induced magnetism of carbon atoms at the graphene/Ni(111) interface. Appl Phys Lett 96(1):012505.1–012505.3

    Article  Google Scholar 

  207. Weser M, Voloshin EN, Horna K, Dedkov YS (2011) Electronic structure and magnetic properties of the graphene/Fe/Ni(111) intercalation-like system. Phys Chem Chem Phys 13(16):7534–7539

    Article  Google Scholar 

  208. Generalov AV, Voloshina EN, Dedkova YS (2013) Structural and electronic properties of graphene-based junctions for spin-filtering: the graphene/Al/Ni(111) intercalation-like system. Appl Surf Sci 267:8–11

    Article  Google Scholar 

  209. Voloshina E, Ovcharenko R, Shulakov A, Dedkov Y (2013) Theoretical description of X-ray absorption spectroscopy of the graphene-metal interfaces. J Chem Phys 138(15):154706.1–154706.8

    Article  Google Scholar 

  210. Schultz BJ, Lee V, Price J, Jaye C, Lysaght PS, Fischer DA, Prendergast D, Banerjee S (2012) Near-edge X-ray absorption fine structure spectroscopy studies of charge distribution at graphene/dielectric interfaces. J Vac Sci Technol B 30(4):041205.1–041205.6

    Article  Google Scholar 

  211. Usachov D, Vilkov O, Grüneis A, Haberer D, Fedorov A, Adamchuk VK, Preobrajenski AB, Dudin P, Barinov A, Oehzelt M, Laubschat C, Vyalikh DV (2011) Nitrogen-doped graphene: efficient growth, structure, and electronic properties. Nano Lett 11(12):5401–5407

    Article  Google Scholar 

  212. Zhao L, He R, Rim KT, Schiros T, Kim KS, Zhou H, Gutiérrez C, Chockalingam SP, Arguello CJ, Pálová L, Nordlund D, Hybertsen MS, Reichman DR, Heinz TF, Kim P, Pinczuk A, Flynn GW, Pasupathy AN (2011) Visualizing individual nitrogen dopants in monolayer graphene. Science 333(6045):999–1003

    Article  Google Scholar 

  213. Vinogradov NA, Simonov KA, Generalov AV, Vinogradov AS, Vyalikh DV, Laubschat C, Mårtensson N, Preobrajenski AB (2012) Controllable p-doping of graphene on Ir(111) by chlorination with FeCl3. J Phys Condens Matter 24(31):314202.1–314202.8

    Article  Google Scholar 

  214. Haberer D, Petaccia L, Farjam M, Taioli S, Jafari SA, Nefedov A, Zhang W, Calliari L, Scarduelli G, Dora B, Vyalikh DV, Pichler T, Wöll C, Alfè D, Simonucci S, Dresselhaus MS, Knupfer M, Büchner B, Grüneis A (2011) Direct observation of a dispersionless impurity band in hydrogenated graphene. Phys Rev B 83(16):165433.1–165433.6

    Article  Google Scholar 

  215. Ehlert C, Unger WES, Saalfrank P (2014) C K-edge NEXAFS spectra of graphene with physical and chemical defects: a study based on density functional theory. Phys Chem Chem Phys 16(27):14083–14095

    Article  Google Scholar 

  216. Kim K-j, Choi J, Lee H, Lee H-K, Kang T-H, Han Y-H, Lee B-C, Kim S, Kim B (2008) Effects of 1 MeV electron beam irradiation on multilayer graphene grown on 6H-SiC(0001). J Phys Chem C 112(34):13062–13064

    Article  Google Scholar 

  217. Liu Z, Tang J, Kang C, Zou C, Yan W, Xu P (2012) Effect of substrate temperature on few-layer graphene grown on Al2O3 (0001) via direct carbon atoms deposition. Solid State Commun 152(11):960–963

    Article  Google Scholar 

  218. Tang J, Kang CY, Li LM, Yan WS, Wei SQ, Xu PS (2011) Graphene films grown on Si substrate via direct deposition of solid-state carbon atoms. Phys E 43(8):1415–1418

    Article  Google Scholar 

  219. Bittencourt C, Hitchock AP, Ke X, Van Tendeloo G, Ewels CP, Guttmann P (2012) X-ray absorption spectroscopy by full-field x-ray microscopy of a thin graphite flake: imaging and electronic structure via the carbon K-edge. Beilstein J Nanotechnol 3:345–350

    Article  Google Scholar 

  220. Schultz BJ, Patridge CJ, Lee V, Jaye C, Lysaght PS, Smith C, Barnett J, Fischer DA, Prendergast D, Banerjee S (2011) Imaging local electronic corrugations and doped regions in graphene. Nat Commun 2(372):1–7

    Google Scholar 

  221. Pacilé D, Papagno M, Fraile Rodríguez A, Grioni M, Papagno L, Girit ÇÖ, Meyer JC, Begtrup GE, Zettl A (2008) Near-edge x-ray absorption fine-structure investigation of graphene. Phys Rev Lett 101(6):066806.1–066806.4

    Article  Google Scholar 

  222. Gandhiraman RP, Nordlund D, Javier C, Koehne JE, Chen B, Meyyappan M (2014) X-ray absorption study of graphene oxide and transition metal oxide nanocomposites. J Phys Chem C 118(32):18706–18712

    Article  Google Scholar 

  223. Liang Y, Wang H, Zhou J, Li Y, Wang J, Regier T, Dai H (2012) Covalent hybrid of spinel manganese-cobalt oxide and graphene as advanced oxygen reduction electrocatalysts. J Am Chem Soc 134(7):3517–3523

    Article  Google Scholar 

  224. Feng X, Song M-K, Stolte WC, Gardenghi D, Zhang D, Sun X, Zhu J, Cairns EJ, Guo J (2014) Understanding the degradation mechanism of rechargeable lithium/sulfur cells: a comprehensive study of the sulfur–graphene oxide cathode after discharge–charge cycling. Phys Chem Chem Phys 16(32):16931–16940

    Article  Google Scholar 

  225. Chuang C-H, Wang Y-F, Shao Y-C, Yeh Y-C, Wang D-Y, Chen C-W, Chiou JW, Ray SC, Pong WF, Zhang L, Zhu JF, Guo JH (2014) The effect of thermal reduction on the photoluminescence and electronic structures of graphene oxides. Sci Rep 4(4525):1–7

    Google Scholar 

  226. Zhong J, Deng J-J, Mao B-H, Xie T, Sun X-H, Mou Z-G, Hong C-H, Yang P, Wang S-D (2012) Probing solid state N-doping in graphene by X-ray absorption near-edge structure spectroscopy. Carbon 50(1):321–341

    Article  Google Scholar 

  227. Hunt A, Dikin DA, Kurmaev EZ, Boyko TD, Bazylewski P, Chang GS, Moewes A (2012) Epoxide speciation and functional group distribution in graphene oxide paper-like materials. Adv Funct Mater 22(18):3950–3957

    Article  Google Scholar 

  228. Dennis RV, Schultz BJ, Jaye C, Wang X, Fischer DA, Cartwright AN, Banerjee S (2013) Near-edge X-ray absorption fine structure spectroscopy study of nitrogen incorporation in chemically reduced graphene oxide. J Vac Sci Technol B 31(4):041204.1–041204.4

    Article  Google Scholar 

  229. Zhou JG, Wang J, Sun CL, Maley JM, Sammynaiken R, Sham TK, Pong WF (2011) Nano-scale chemical imaging of a single sheet of reduced graphene oxide. J Mater Chem 21(38):14622–14630

    Article  Google Scholar 

  230. Lv J, Zhang S, Luo L, Han W, Zhang J, Yang K, Christie P (2012) Dissolution and microstructural transformation of ZnO nanoparticles under the influence of phosphate. Environ Sci Technol 46(13):7215–7221

    Article  Google Scholar 

  231. Zhang P, Ma Y, Zhang Z, He X, Zhang J, Guo Z, Tai R, Zhao Y, Chai Z (2012) Biotransformation of ceria nanoparticles in cucumber plants. ACS Nano 6(11):9943–9950

    Article  Google Scholar 

  232. Hernandez-Viezcas JA, Castillo-Michel H, Andrews JC, Cotte M, Rico C, Peralta-Videa JR, Ge Y, Priester JH, Holden PA, Gardea-Torresdey JL (2013) In situ synchrotron X-ray fluorescence mapping and speciation of CeO2 and ZnO nanoparticles in soil cultivated soybean (Glycine max). ACS Nano 7(2):1415–1423

    Article  Google Scholar 

  233. Zhao L, Peralta-Videa JR, Varela-Ramirez A, Castillo-Michel H, Li C, Zhang J, Aguilera RJ, Keller AA, Gardea-Torresdey JL (2012) Effect of surface coating and organic matter on the uptake of CeO2 NPs by corn plants grown in soil: insight into the uptake mechanism. J Hazard Mater 225–226:131–138

    Article  Google Scholar 

  234. Larue C, Laurette J, Herlin-Boime N, Khodja H, Fayard B, Flank A-M, Brisset F, Carriere M (2012) Accumulation, translocation and impact of TiO2 nanoparticles in wheat (Triticum aestivum spp.): influence of diameter and crystal phase. Sci Total Environ 431:197–208

    Article  Google Scholar 

  235. Veronesi G, Brun E, Fayard B, Cotte M, Carriére M (2012) Structural properties of rutile TiO2 nanoparticles accumulated in a model of gastrointestinal epithelium elucidated by micro-beam x-ray absorption fine structure spectroscopy. Appl Phys Lett 100(21):214101.1–214101.4

    Article  Google Scholar 

  236. Auffan M, Rose J, Orsiere T, De Meo M, Thill A, Zeyons O, Proux O, Masion A, Chaurand P, Spalla O, Botte A, Wiesner MR, Bottero J-T (2009) CeO2 nanoparticles induce DNA damage towards human dermal fibroblasts in vitro. Nanotoxicology 3(2):161–171

    Article  Google Scholar 

  237. Fendorf S, Eick MJ, Grossl P, Sparks DL (1997) Arsenate and chromate retention mechanisms on goethite. 1. Surface structure. Environ Sci Technol 31(2):315–320

    Article  Google Scholar 

  238. Tresintsi S, Simeonidis K, Katsikini M, Paloura EC, Bantsis G, Mitrakas M (2014) A novel approach for arsenic adsorbents regeneration using MgO. J Hazard Mater 265:217–225

    Article  Google Scholar 

  239. Jegadeesan G, Al-Abed SR, Sundaram V, Choi H, Scheckel KG, Dionysiou DD (2010) Arsenic sorption on TiO2 nanoparticles: size and crystallinity effects. Water Res 44(3):965–973

    Article  Google Scholar 

  240. Li W, Harrington R, Tang Y, Kubicki JD, Aryanpour M, Reeder RJ, Parise JB, Phillips BL (2011) Differential pair distribution function study of the structure of arsenate adsorbed on nanocrystalline γ-alumina. Environ Sci Technol 45(22):9687–9692

    Article  Google Scholar 

  241. Wang Y, Morin G, Ona-Nguema G, Juillot F, Calas G, Brown GE Jr (2011) Distinctive arsenic(V) trapping modes by magnetite nanoparticles induced by different sorption processes. Environ Sci Technol 45(17):7258–7266

    Article  Google Scholar 

  242. Wang Y, Morin G, Ona-Nguema G, Juillot F, Guyot F, Calas G, Brown GE Jr (2010) Evidence for different surface speciation of arsenite and arsenate on green rust: an EXAFS and XANES study. Environ Sci Technol 44(1):109–115

    Article  Google Scholar 

  243. Zhang M, Pan G, Zhao D, He G (2011) XAFS study of starch-stabilized magnetite nanoparticles and surface speciation of arsenate. Environ Pollut 159(12):3509–3514

    Article  Google Scholar 

  244. Ona-Nguema G, Morin G, Wang Y, Foster AL, Juillot F, Alas G, Brown GE Jr (2010) XANES evidence for rapid arsenic(III) oxidation at magnetite and ferrihydrite surfaces by dissolved O2 via Fe2+-mediated reactions. Environ Sci Technol 44(14):5416–5422

    Article  Google Scholar 

  245. Tresintsi S, Simeonidis K, Estradé S, Martinez-Boubeta C, Vourlias G, Pinakidou F, Katsikini M, Paloura EC, Stavropoulos G, Mitrakas M (2013) Tetravalent manganese feroxyhyte: a novel nanoadsorbent equally selective for As(III) and As(V) removal from drinking water. Environ Sci Technol 47(17):9699–9705

    Article  Google Scholar 

  246. Zhang G, Liu F, Liu H, Qu J, Liu R (2014) Respective role of Fe and Mn oxide contents for arsenic sorption in iron and manganese binary oxide: an x-ray absorption spectroscopy investigation. Environ Sci Technol 48(17):10316–10322

    Article  Google Scholar 

  247. Silva GC, Almeida FS, Ferreira AM, Ciminelli VST (2012) Preparation and application of a magnetic composite (Mn3O4/Fe3O4) for removal of As(III) from aqueous solutions. Mater Res 15(3):403–408

    Article  Google Scholar 

  248. Wang X, He M, Lin C, Gao Y, Zheng L (2012) Antimony(III) oxidation and antimony(V) adsorption reactions on synthetic manganite. Chem der Erde 72(S4):41–47

    Article  Google Scholar 

  249. Jordan N, Ritter A, Foerstendorf H, Scheinost AC, Weiß S, Heim K, Grenzer J, Mücklich A, Reuther H (2013) Adsorption mechanism of selenium(VI) onto maghemite. Geochim Cosmochim Acta 103:63–75

    Article  Google Scholar 

  250. Luo L, Ma C, Ma Y, Zhang S, Lv J, Cui M (2011) New insights into the sorption mechanism of cadmium on red mud. Environ Pollut 159(5):1108–1113

    Article  Google Scholar 

  251. Sheng G, Yea L, Li Y, Dong H, Li H, Gao X, Huang Y (2014) EXAFS study of the interfacial interaction of nickel(II) on titanate nanotubes: role of contact time, pH and humic substances. Chem Eng J 248:71–78

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maria Katsikini .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Katsikini, M., Paloura, E.C. (2016). XAFS for Characterization of Nanomaterials. In: Kumar, C. (eds) X-ray and Neutron Techniques for Nanomaterials Characterization. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-48606-1_4

Download citation

Publish with us

Policies and ethics