Skip to main content
Log in

In situ and simultaneous nanostructural and spectroscopic studies of ZnO nanoparticle and Zn-HDS formations from hydrolysis of ethanolic zinc acetate solutions induced by water

  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

The simultaneous formation of nanometer sized zinc oxide (ZnO), and acetate zinc hydroxide double salt (Zn-HDS) is described. These phases, obtained using the sol-gel synthesis route based on zinc acetate salt in alcoholic media, were identified by direct characterization of the reaction products in solution using complementary techniques: nephelometry, in situ Small-Angle X-ray Scattering (SAXS), UV-Vis spectroscopy and Extended X-ray Absorption Fine Structures (EXAFS). In particular, the hydrolytic pathway of ethanolic zinc acetate precursor solutions promoted by addition of water with the molar ratio N=[H2O]/[Zn2+] = 0.05 was investigated in this paper. The aim was to understand the formation mechanism of ZnO colloidal suspension and to reveal the factors responsible for the formation of Zn-HDS in the final precipitates. The growth mechanism of ZnO nanoparticles is based on primary particle (radius ≈ 1.5 nm) rotation inside the primary aggregate (radius <3.5 nm) giving rise to an epitaxial attachment of particles and then subsequent coalescence. The growth of second ZnO aggregates is not associated with the Otswald ripening, and could be associated with changes in equilibrium between solute species induced by the superficial etching of Zn-HDS particles at the advanced stage of kinetic.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Wang J, Cao J, Fang B, Lu P, Deng S, Wang H (2005) Mater. Lett. 59:1405

    Article  CAS  Google Scholar 

  2. Cohen ML (2000) Annu. Rev. Mater. Sci. 30:1

    Article  CAS  Google Scholar 

  3. Brus LE (1996) J Phys Chem 90:2555

    Article  Google Scholar 

  4. Clarke DR (1999) J Am Ceram Soc 82:485

    Article  CAS  Google Scholar 

  5. Paneva R, Gotchev D (1999) Sensor Actuator A: Phys. 72:79

    Article  Google Scholar 

  6. Granqvist CG (2003) Adv. Mater. 15:1789

    Article  CAS  Google Scholar 

  7. Ni J, Yan H, Wang A, Yang Y, Stern CL, Metz AW, Jin S, Wang L, Marks TJ, Ireland JR, Kannewurf CR (2005) J Am Ceram Soc 127:5613

    CAS  Google Scholar 

  8. Spanhel L, Anderson MA (1991) J Am Chem Soc 113:2826

    Article  CAS  Google Scholar 

  9. Meulenkamp EA (1998) J Phys Chem B 102:5566;5566; ibdem 7764

    Google Scholar 

  10. Wong EM, Bonevich JE, Searson PC (1998) J Phys Chem B 102:7770

    Google Scholar 

  11. Hu Z, Oskam G, Searson PC (2003) J Colloid Interface Sc 263:454

    Article  CAS  Google Scholar 

  12. Hu Z, Oskam G, Lee Penn R, Pesika N, Searson PC (2003) J Phys Chem B 107:3124

    Google Scholar 

  13. Tokumoto M, Briois V, Santilli CV, Pulcinelli SH (2003) J Sol-Gel Sc Tech 26:547

    Article  CAS  Google Scholar 

  14. Livage J, Henry M, Sanchez C (1988) Prog Solid State Chem 18:259

    Article  CAS  Google Scholar 

  15. Tokumoto MS, Pulcinelli SH, Santilli CV, Briois V (2003) J Phys Chem B 107:568

    Google Scholar 

  16. Liang C, Shimizu Y, Masuda M, Sasaki T, Koshizaki N (2004) Chem Mater 16:963

    Article  CAS  Google Scholar 

  17. Meyn M, Beneke K, Lagaly G (1993) Inorg Chem 32:1209

    Article  CAS  Google Scholar 

  18. Morioka H, Tagaya H, Karasu M, Kadokawa J, Chiba K (1999) Inorg Chem 38:4211

    Article  CAS  Google Scholar 

  19. Poul L, Jouini N, Fievet F (2000) Chem Mater 12:3123

    Article  CAS  Google Scholar 

  20. Villain F, Briois V, Castro I, Helary C, Verdaguer M (1993) Anal Chem 65:2545

    CAS  Google Scholar 

  21. Briois V, Belin S, Villain F, Bouamrane F, Lucas H, Lescouëzec R, Julve M, Verdarguer M, Tokumoto MS, Santilli CV, Pulcinelli SH, Carrier X, Krafft JM, Jubin C, Che M (2005) Physica Scripta T115:38

    Article  CAS  Google Scholar 

  22. Briois V, Lützenkircken-Hecht D, Villain F, Fonda E, Belin S, Griesebock B, Frahm R (2005) J Phys Chem A 109:320

    Article  CAS  Google Scholar 

  23. Brus LE (1992) Nanostructured Materials 1:71

    Article  CAS  Google Scholar 

  24. Hale PS, Maddox LM, Shapter JG, Voelcker NH, Ford MJ, Waclawik ZR (2005) J Chem Educ 82:775

    CAS  Google Scholar 

  25. Nedelijkovic JM, Patel R, Kaufman P, Joyce-Pruden C, O’Leary N (1993) J Chem Educ 70:342

    Article  Google Scholar 

  26. Nielsen JA (1993) Diffraction, refraction and absorption of X-ray and neutrons: A comparative exposition. (Springer Verlag & Les Editions de Physique, Paris, France, 1993), Chap. 1

    Google Scholar 

  27. Porod G, Kratky O, Glatter O (eds) (1982) Small angle X-ray scattering. Academic Press, London, pp 17–51

    Google Scholar 

  28. Guinier A (1964) Théorie et Technique de la Radiocristallographie. Dunod, Paris, France

    Google Scholar 

  29. Svergun DI, Semeenyuk AV (1993) In: Svergun DI, Semeenyuk AV, Feigin LA, (ed) Program package GNOM: Small angle scattering data processing by means of regularization technique, Version E 4.2., Acta Cryst. A 44, 244 (1988)

  30. Baudelet F, Dartyge E, Fontaine A, Brouder C, Krill G, Kappler JP, Piecuch M (1991) Phys. Rev. B 43:5857

    Google Scholar 

  31. Michalowicz A (1991) EXAFS pour le Mac, Logiciels pour la Chimie. Société Française de Chimie, Paris, p 102

    Google Scholar 

  32. Lorentz C, Emmerling A, Fricke J, Schmidt T, Hilgendorff M, Spahnel L (1998) J Non Cryst Solids 238:1

    Article  Google Scholar 

  33. Briois V, Giorgetti C, Baudelet F, Flank AM, Tokumoto MS, Pulcinelli SH, Santilli CV (2004) In: Faulques E, Perry D, Yeremenko A, (ed) Nato Sciences series; Nato ARW “Spectroscopy of Emerging Materials”, Kluwer Academic Publishers, pp 15–30

  34. Wood A, Giersig M, Hilgendorff M, Vilas-Campos A, Liz-Marzan LM, Mulvaney P (2003) Aust J Chem 56:1051

    Article  CAS  Google Scholar 

  35. Hilgendorff M, Spahnel L, Rothenhausler C, Müller G (1998) J Electrochem Soc 145:3632

    Article  CAS  Google Scholar 

  36. Tokumoto MS, Pulcinelli SH, Santilli CV (1999) Adv Sci Technol 14:73

    CAS  Google Scholar 

  37. Haase M, Weller H, Henglein A (1988) J Phys Chem 92:482

    Article  CAS  Google Scholar 

  38. Lifshitz LM, Slyozov VV (1961) J Phys Chem Solids 19: 35 C. Wagner (1961) Z. Elektrochem. 65:581

    Google Scholar 

  39. Hu Z, Herrera Santos JF, Oskam G, Searson PC (2005) J Colloid Interface Sci 288:313

    Article  CAS  Google Scholar 

  40. Meakin P, Family F (1989) J Phys A Math Gen 22:L225

    Article  Google Scholar 

  41. Penn RL, Banfield JF (1998) Science 281: 969 Banfield JF, Welch SA, Zhang H, Ebert TT, Penn RL, (2000), Science 289:751

  42. Leite ER, Giraldi TR, Pontes FM, Longo E, Beltran A Andrés J (2003) Appl Phys Lett 83:1566

    Article  CAS  Google Scholar 

  43. Moldovan D, Yamakov V, Wolf D, Phillpot SR (2002) Phys. Rev. Lett. 89:206101-1

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Valerie Briois.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Briois, V., Giorgetti, C., Dartyge, E. et al. In situ and simultaneous nanostructural and spectroscopic studies of ZnO nanoparticle and Zn-HDS formations from hydrolysis of ethanolic zinc acetate solutions induced by water. J Sol-Gel Sci Technol 39, 25–36 (2006). https://doi.org/10.1007/s10971-006-6973-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10971-006-6973-2

Keywords

Navigation