Skip to main content

Comparative Genomics of Cochliobolus Phytopathogens

  • Chapter
  • First Online:
Genomics of Plant-Associated Fungi: Monocot Pathogens

Abstract

Cochliobolus is a young genus, in the class Dothideomycetes, which includes closely related plant pathogenic and saprophytic fungal species. In this review, genome similarities and differences among sequenced Cochliobolus pathogens that cause different diseases on different hosts are detailed. Gene content and genome organization are highly similar within the group and pathogens of the same host are not more similar to each other than those with different hosts. Instead, overarching genetic patterns follow phylogenetic lines. Classical and functional genetic research using Cochliobolus species has identified genes for secondary metabolism, management of iron and oxidative stress, and signaling as being involved in virulence. The genomic inventories and phylogenetic contexts of these genes, as well as of genes encoding protein effectors and cytochrome P450s, are compared across the genus, providing new insights into the evolution of host-specific virulence. Categorization of genes for secondary metabolism, according to distribution throughout the genus, is particularly revealing with unique genes tending to encode enzymes that biosynthesize metabolites involved in virulence. Additionally, genomic analysis identified many genes that encode unique small, secreted proteins, which could act as effectors in the plant host. Finally, new avenues for research paved by genomic analysis are highlighted.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Arie T, Christiansen SK, Yoder OC, Turgeon BG (1997) Efficient cloning of ascomycete mating type genes by PCR amplification of the conserved MAT HMG box. Fungal Genet Biol 21(1):118–130

    Article  CAS  PubMed  Google Scholar 

  • Blatzer M, Barker BM, Willger SD, Beckmann N, Blosser SJ, Cornish EJ, Mazurie A, Grahl N, Haas H, Cramer RA (2011) SREBP coordinates iron and ergosterol homeostasis to mediate triazole drug and hypoxia responses in the human fungal pathogen Aspergillus fumigatus. PLoS Genet 7(12):e1002374

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Bushley KE, Turgeon BG (2010) Phylogenomics reveals subfamilies of fungal nonribosomal peptide synthetases and their evolutionary relationships. BMC Evol Biol 10:26

    Google Scholar 

  • Catlett N, Lee B-N, Yoder O, Turgeon B (2003a) Split-marker recombination for efficient targeted deletion of fungal genes. Fungal Genet Newsl 50:9–11

    Google Scholar 

  • Catlett NL, Yoder OC, Turgeon BG (2003b) Whole-genome analysis of two-component signal transduction genes in fungal pathogens. Eukaryot Cell 2(6):1151–1161

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Christiansen SK, Wirsel S, Yoder OC, Turgeon BG (1998) The two Cochliobolus mating type genes are conserved among species but one of them is missing in C. victoriae. Mycol Res 102:919–929

    Article  CAS  Google Scholar 

  • Ciuffetti LM, Tuori RP, Gaventa JM (1998) Cloning and expression of the ToxA gene in Pyrenophora triticirepentis. In: Kohmoto K, Yoder OC (eds) Molecular genetics of host-specific toxins in plant disease, vol 13. Kluwer, Dordrecht, pp 167–175

    Chapter  Google Scholar 

  • Condon BJ, Leng Y, Wu D, Bushley KE, Ohm RA, Otillar R, Martin J, Schackwitz W, Grimwood J, Mohdzainudin N, Xue C, Wang R, Manning VA, Dhillon B, Tu ZJ, Steffenson BJ, Salamov A, Sun H, Lowry S, Labutti K, Han J, Copeland A, Lindquist E, Barry K, Schmutz J, Baker SE, Ciuffetti LM, Grigoriev IV, Zhong S, Turgeon BG (2013) Comparative genome structure, secondary metabolite, and effector coding capacity across Cochliobolus pathogens. PLoS Genet 9(1):e1003233

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Dasgupta MK (1984) The Bengal famine, 1943 and the brown spot of rice–an inquiry into their relations. Hist Agric 2(3):1–18

    CAS  PubMed  Google Scholar 

  • Debuchy R, Turgeon BG (2006) Mating-type structure, evolution and function in Euascomycetes. In: Kües U, Fischer R (eds) The Mycota, vol 1., Growth, Differentiation and SexualitySpringer, Berlin, pp 293–324

    Google Scholar 

  • Degani O, Maor R, Hadar R, Sharon A, Horwitz BA (2004) Host physiology and pathogenic variation of Cochliobolus heterostrophus strains with mutations in the G protein alpha subunit, CGA1. Appl Environ Microbiol 70(8):5005–5009

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • DeZwaan TM, Carroll AM, Valent B, Sweigard JA (1999) Magnaporthe grisea Pth11p is a novel plasma membrane protein that mediates appressorium differentiation in response to inductive substrate cues. Plant Cell 11(10):2013–2030

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Drechsler C (1925) Leafspot of maize caused by Ophiobolus heterostrophus n. sp., the ascigerous stage of a Helminthosporium exhibiting bipolar germination. J Agr Res 31:701–726

    Google Scholar 

  • Fedorova ND, Khaldi N, Joardar VS, Maiti R, Amedeo P, Anderson MJ, Crabtree J, Silva JC, Badger JH, Albarraq A, Angiuoli S, Bussey H, Bowyer P, Cotty PJ, Dyer PS, Egan A, Galens K, Fraser-Liggett CM, Haas BJ, Inman JM, Kent R, Lemieux S, Malavazi I, Orvis J, Roemer T, Ronning CM, Sundaram JP, Sutton G, Turner G, Venter JC, White OR, Whitty BR, Youngman P, Wolfe KH, Goldman GH, Wortman JR, Jiang B, Denning DW, Nierman WC (2008) Genomic islands in the pathogenic filamentous fungus Aspergillus fumigatus. PLoS Genet 4(4):e1000046

    Article  PubMed Central  PubMed  Google Scholar 

  • Fenton HJH (1894) The oxidation of tartaric acid in presence of iron. J Chem Soc Proc 10:157–158

    Google Scholar 

  • Friesen TL, Faris JD, Solomon PS, Oliver RP (2008) Host-specific toxins: effectors of necrotrophic pathogenicity. Cell Microbiol 10(7):1421–1428

    Article  CAS  PubMed  Google Scholar 

  • Goodwin SB, Ben M’Barek S, Dhillon B, Wittenberg AHJ, Crane CF, Hane JK, Foster AJ, Van der Lee TAJ, Grimwood J, Aerts A, Antoniw J, Bailey A, Bluhm B, Bowler J, Bristow J, van der Burgt A, Canto-Canche B, Churchill ACL, Conde-Ferraez L, Cools HJ, Coutinho PM, Csukai M, Dehal P, De Wit P, Donzelli B, van de Geest HC, Van Ham RCHJ, Hammond-Kosack KE, Henrissat B, Kilian A, Kobayashi AK, Koopmann E, Kourmpetis Y, Kuzniar A, Lindquist E, Lombard V, Maliepaard C, Martins N, Mehrabi R, Nap JPH, Ponomarenko A, Rudd JJ, Salamov A, Schmutz J, Schouten HJ, Shapiro H, Stergiopoulos I, Torriani SFF, Tu H, de Vries RP, Waalwijk C, Ware SB, Wiebenga A, Zwiers LH, Oliver RP, Grigoriev IV, Kema GHJ (2011) Finished genome of the fungal wheat pathogen Mycosphaerella graminicola reveals dispensome structure, chromosome plasticity, and stealth pathogenesis. PLoS Genetics 7(6):e1002070

    Google Scholar 

  • Grahl N, Cramer RA Jr (2010) Regulation of hypoxia adaptation: an overlooked virulence attribute of pathogenic fungi? Med Mycol 48(1):1–15

    Article  PubMed Central  PubMed  Google Scholar 

  • Guo M, Chen Y, Du Y, Dong YH, Guo W, Zhai S, Zhang HF, Dong SM, Zhang ZG, Wang YC, Wang P, Zheng XB (2011) The bZIP transcription factor MoAP1 mediates the oxidative stress response and is critical for pathogenicity of the Rice Blast Fungus Magnaporthe oryzae. PLoS Pathogens 7(2):e1001302

    Google Scholar 

  • Haas H (2003) Molecular genetics of fungal siderophore biosynthesis and uptake: the role of siderophores in iron uptake and storage. Appl Microbiol Biotechnol 62(4):316–330

    Article  CAS  PubMed  Google Scholar 

  • Han JW, Ahn SH, Park SH, Wang SY, Bae GU, Seo DW, Kwon HK, Hong S, Lee HY, Lee YW, Lee HW (2000) Apicidin, a histone deacetylase inhibitor, inhibits proliferation of tumor cells via induction of p21(WAF1/Cip1) and gelsolin. Cancer Res 60(21):6068–6074

    CAS  PubMed  Google Scholar 

  • Hane JK, Rouxel T, Howlett BJ, Kema GH, Goodwin SB, Oliver RP (2011) A novel mode of chromosomal evolution peculiar to filamentous Ascomycete fungi. Genome Biol 12(5):R45

    Google Scholar 

  • Horwitz BA, Sharon A, Lu SW, Ritter V, Sandrock TM, Yoder OC, Turgeon BG (1999) A G protein alpha subunit from Cochliobolus heterostrophus involved in mating and appressorium formation. Fungal Genet Biol 26(1):19–32

    Article  CAS  PubMed  Google Scholar 

  • Inderbitzin P, Harkness J, Turgeon BG, Berbee ML (2005) Lateral transfer of mating system in Stemphylium. Proc Natl Acad Sci U S A 102(32):11390–11395

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Jin JM, Lee S, Lee J, Baek SR, Kim JC, Yun SH, Park SY, Kang SC, Lee YW (2010) Functional characterization and manipulation of the apicidin biosynthetic pathway in Fusarium semitectum. Molec Microbiol 76(2):456–466

    Article  CAS  Google Scholar 

  • Johal GS, Briggs SP (1992) Reductase activity encoded by the HM1 disease resistance gene in maize. Science 258(5084):985–987

    Article  CAS  PubMed  Google Scholar 

  • Kall L, Krogh A, Sonnhammer EL (2007) Advantages of combined transmembrane topology and signal peptide prediction–the Phobius web server. Nucl Acids Res 35(Web Server issue):W429–W432

    Google Scholar 

  • Kelly DE, Kraševec N, Mullins J, Nelson DR (2009) The CYPome (cytochrome P450 complement) of Aspergillus nidulans. Fungal Genet Biol 46:S53–S61

    Article  CAS  PubMed  Google Scholar 

  • Kim H, Ridenour JB, Dunkle LD, Bluhm BH (2011a) Regulation of pathogenesis by light in Cercospora zeae-maydis: An updated perspective. Plant Pathol J 27(2):103–109

    Article  Google Scholar 

  • Kim H, Wright SJ, Park G, Ouyang SQ, Krystofova S, Borkovich KA (2012) Roles for Receptors, pheromones, G proteins, and mating type genes during sexual reproduction in Neurospora crassa. Genetics 190(4):1389–1404

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kim KH, Willger SD, Park SW, Puttikamonkul S, Grahl N, Cho Y, Mukhopadhyay B, Cramer RA, Lawrence CB (2009) TmpL, a transmembrane protein required for intracellular redox homeostasis and virulence in a plant and an animal fungal pathogen. Plos Pathogens 5(11):e1000653

    Google Scholar 

  • Kim S, Singh P, Park J, Park S, Friedman A, Zheng T, Lee YH, Lee K (2011b) Genetic and molecular characterization of a blue light photoreceptor MGWC-1 in Magnaportha oryzae. Fungal Genet Biol 48(4):400–407

    Article  CAS  PubMed  Google Scholar 

  • Kodama M, Rose MS, Yang G, Yun SH, Yoder OC, Turgeon BG (1999) The translocation-associated Tox1 locus of Cochliobolus heterostrophus is two genetic elements on two different chromosomes. Genetics 151(2):585–596

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kroken S, Glass NL, Taylor JW, Yoder OC, Turgeon BG (2003) Phylogenomic analysis of type I polyketide synthase genes in pathogenic and saprobic ascomycetes. Proc Natl Acad Sci U S A 100(26):15670–15675

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kulkarni RD, Kelkar HS, Dean RA (2003) An eight-cysteine-containing CFEM domain unique to a group of fungal membrane proteins. Trends in Biochem Sci 28(3):118–121

    Article  CAS  Google Scholar 

  • Kurtz S, Phillippy A, Delcher AL, Smoot M, Shumway M, Antonescu C, Salzberg SL (2004) Versatile and open software for comparing large genomes. Genome Biol 5(2):R12

    Google Scholar 

  • Lafon A, Han KH, Seo JA, Yu JH, d’Enfert C (2006) G-protein and cAMP-mediated signaling in aspergilli: a genomic perspective. Fungal Genet Biol 43(7):490–502

    Article  CAS  PubMed  Google Scholar 

  • Leach J, Lang BR, Yoder OC (1982) Methods for selection of mutants and in vitro culture of Cochliobolus heterostrophus. J Gen Microbiol 128:1719–1729

    Article  Google Scholar 

  • Lee BN, Kroken S, Chou DYT, Robbertse B, Yoder OC, Turgeon BG (2005) Functional analysis of all nonribosomal peptide synthetases in Cochliobolus heterostrophus reveals a factor, NPS6, involved in virulence and resistance to oxidative stress. Eukaryot Cell 4(3):545–555

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Lee K, Singh P, Chung W, Ash J, Kim T, Hang L, Park S (2006a) Disease-suppressing roles of light in pathogenic interactions between Magnaporthe oryzae-Oryza sativa. Phytopathology 96(6):S66–S66

    Google Scholar 

  • Lee K, Singh P, Chung WC, Ash J, Kim TS, Hang L, Park S (2006b) Light regulation of asexual development in the rice blast fungus, Magnaporthe oryzae. Fungal Genet Biol 43(10):694–706

    Article  CAS  PubMed  Google Scholar 

  • Lesuisse E, Labbe P (1994) Reductive iron assimilation in Saccharomyces cerevisiae. In: Winge DR, Winkelmann G (eds) In metal ions in fungi. Marcell Dekker, New York, pp 149–178

    Google Scholar 

  • Lev S, Hadar R, Amedeo P, Baker SE, Yoder OC, Horwitz BA (2005) Activation of an AP1-like transcription factor of the maize pathogen Cochliobolus heterostrophus in response to oxidative stress and plant signals. Eukaryot Cell 4(2):443–454

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Lev S, Horwitz BA (2003) A mitogen-activated protein kinase pathway modulates the expression of two cellulase genes in Cochliobolus heterostrophus during plant infection. Plant Cell 15(4):835–844

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Lev S, Tal H, Rose MS, Horwitz BA (2009) Signaling by the pathogenicity-related MAP kinase of Cochliobolus heterostrophus correlates with its local accumulation rather than phosphorylation. Mol Plant Microbe Interact 22(9):1093–1103

    Article  CAS  PubMed  Google Scholar 

  • Lin CH, Yang SL, Chung KR (2009) The YAP1 homolog-mediated oxidative stress tolerance is crucial for pathogenicity of the necrotrophic fungus Alternaria alternata in citrus. Mol Plant Microbe Interact 22(8):942–952

    Article  CAS  PubMed  Google Scholar 

  • Litzenberger SC (1949) Nature of susceptibility to Helminthosporium victoriae and resistance to Puccinia coronata in Victoria oats. Phytopathology 39:300–318

    CAS  Google Scholar 

  • Lorang J, Kidarsa T, Bradford CS, Gilbert B, Curtis M, Tzeng SC, Maier CS, Wolpert TJ (2012) Tricking the guard: exploiting plant defense for disease susceptibility. Science 338(6107):659–662

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Lorang JM, Carkaci-Salli N, Wolpert TJ (2004) Identification and characterization of victorin sensitivity in Arabidopsis thaliana. Mol Plant Microbe Interact 17(6):577–582

    Article  CAS  PubMed  Google Scholar 

  • Lorang JM, Sweat TA, Wolpert TJ (2007) Plant disease susceptibility conferred by a “resistance” gene. Proc Natl Acad Sci U S A 104(37):14861–14866

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Lu SW, Yun SH, Lee T, Turgeon BG (2011) Altering sexual reproductive mode by interspecific exchange of MAT loci. Fungal Genet Biol 48(7):714–724

    Article  CAS  PubMed  Google Scholar 

  • Manamgoda DS, Cai L, Bahkali AH, Chukeatirote E, Hyde KD (2011) Cochliobolus: an overview and current status of species. Fungal Divers 51(1):3–42

    Article  Google Scholar 

  • Manamgoda DS, Cai L, McKenzie EHC, Crous PW, Madrid H, Chukeatirote E, Shivas RG, Tan YP, Hyde KD (2012) A phylogenetic and taxonomic re-evaluation of the BipolarisCochliobolusCurvularia Complex. Fungal Divers 56(1):131–144

    Article  Google Scholar 

  • Manning VA, Pandelova I, Dhillon B, Wilhelm LJ, Goodwin SB, Berlin AM, Figueroa M, Freitag M, Hane JK, Henrissat B, Holman WH, Kodira CD, Martin J, Oliver RP, Robbertse B, Schackwitz W, Schwartz DC, Spatafora JW, Turgeon BG, Yandava C, Young S, Zhou S, Zeng Q, Grigoriev IV, Ma LJ, Ciuffetti LM (2013) Comparative genomics of a plant-pathogenic fungus, Pyrenophora tritici-repentis, reveals transduplication and the impact of repeat elements on pathogenicity and population divergence. G3 (Bethesda) 3(1):41–63

    Google Scholar 

  • Mathre DE (1997) Compendium of barley diseases, 2nd edn. APS Press, St. Paul

    Google Scholar 

  • McNeil J, Barrie FR, Buck WR, Demoulin V, Greuter W, Hawkworth DL, Herendeen PS, Knapp S, Marhold K, Prado J, Prud’homme Van Reine WF, Smith GF, Wiersema JH, Turland NJ (2012) International code of nomenclature for algae, fungi, and plants (Melbourne Code). Regnum Vegetabile 154:232

    Google Scholar 

  • Multani DS, Meeley RB, Paterson AH, Gray J, Briggs SP, Johal GS (1998) Plant-pathogen microevolution: molecular basis for the origin of a fungal disease in maize. Proc Natl Acad Sci U S A 95(4):1686–1691

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Neilands JB, Leong SA (1986) Siderophores in relation to plant growth and disease. Annual Rev Plant Physiol Plant Mol Biol 37:187–208

    Article  CAS  Google Scholar 

  • Neubauer U, Nowack B, Furrer G, Schulin R (2000) Heavy metal sorption on clay minerals affected by the siderophore Desferrioxamine B. Environ Sci Technol 34(13):2749–2755

    Article  CAS  Google Scholar 

  • Newsome AW, Nelson D, Corran A, Kelly SL, Kelly DE (2013) The cytochrome P450 complement (CYPome) of Mycosphaerella graminicola. Biotechnol Appl Biochem 60(1):52–64

    Article  CAS  PubMed  Google Scholar 

  • Ohm RA, Feau N, Henrissat B, Schoch CL, Horwitz BA, Barry KW, Condon BJ, Copeland AC, Dhillon B, Glaser F, Hesse CN, Kosti I, Labutti K, Lindquist EA, Lucas S, Salamov AA, Bradshaw RE, Ciuffetti L, Hamelin RC, Kema GH, Lawrence C, Scott JA, Spatafora JW, Turgeon BG, de Wit PJ, Zhong S, Goodwin SB, Grigoriev IV (2012) Diverse lifestyles and strategies of plant pathogenesis encoded in the genomes of eighteen dothideomycetes fungi. PLoS Pathog 8(12):e1003037

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Oide S, Krasnoff SB, Gibson DM, Turgeon BG (2007) Intracellular siderophores are essential for ascomycete sexual development in heterothallic Cochliobolus heterostrophus and homothallic Gibberella zeae. Eukaryot Cell 6:1337–1353

    Google Scholar 

  • Oide S, Liu J, Yun SH, Wu D, Michev A, Choi MY, Horwitz BA, Turgeon BG (2010) Histidine kinase two-component response regulator proteins regulate reproductive development, virulence, and stress responses of the fungal cereal pathogens Cochliobolus heterostrophus and Gibberella zeae. Eukaryot Cell 9(12):1867–1880

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Oide S, Moeder W, Krasnoff S, Gibson D, Haas H, Yoshioka K, Turgeon BG (2006) NPS6, encoding a nonribosomal peptide synthetase involved in siderophore-mediated iron metabolism, is a conserved virulence determinant of plant pathogenic ascomycetes. Plant Cell 18(10):2836–2853

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Omann MR, Lehner S, Escobar Rodriguez C, Brunner K, Zeilinger S (2012) The seven-transmembrane receptor Gpr1 governs processes relevant for the antagonistic interaction of Trichoderma atroviride with its host. Microbiology 158(Pt 1):107–118

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Ransom RF, Walton JD (1997) Histone hyperacetylation in maize in response to treatment with HC-toxin or infection by the filamentous fungus Cochliobolus carbonum. Plant Physiol 115(3):1021–1027

    CAS  PubMed Central  PubMed  Google Scholar 

  • Rouxel T, Grandaubert J, Hane JK, Hoede C, van de Wouw AP, Couloux A, Dominguez V, Anthouard V, Bally P, Bourras S, Cozijnsen AJ, Ciuffetti LM, Degrave A, Dilmaghani A, Duret L, Fudal I, Goodwin SB, Gout L, Glaser N, Linglin J, Kema GH, Lapalu N, Lawrence CB, May K, Meyer M, Ollivier B, Poulain J, Schoch CL, Simon A, Spatafora JW, Stachowiak A, Turgeon BG, Tyler BM, Vincent D, Weissenbach J, Amselem J, Quesneville H, Oliver RP, Wincker P, Balesdent MH, Howlett BJ (2011) Effector diversification within compartments of the Leptosphaeria maculans genome affected by repeat-induced point mutations. Nat Commun 2:202

    Article  PubMed Central  PubMed  Google Scholar 

  • Rozman D, Hennebert GL, Kunej T, Decock C, Komel R (1996) Steroid biotransforming strains designated Cochliobolus lunatus m118 and Curvularia lunata AT46 are both Curvularia lunata var. lunata. Mycotaxon 59:489–498

    Google Scholar 

  • Scheffer RP, Nelson RR, Ullstrup AJ (1967) Inheritance of toxin production and pathogenicity in Cochliobolus carbonum and Cochliobolus victoriae. Phytopathology 57:1288–1291

    Google Scholar 

  • Schrettl M, Bignell E, Kragl C, Joechl C, Rogers T, Arst HN Jr, Haynes K, Haas H (2004) Siderophore biosynthesis but not reductive iron assimilation is essential for Aspergillus fumigatus virulence. J Exp Med 200(9):1213–1219

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Sharon A, Yamaguchi K, Christiansen S, Horwitz BA, Yoder OC, Turgeon BG (1996) An asexual fungus has the potential for sexual development. Mol Gen Genet 251(1):60–68

    Article  CAS  PubMed  Google Scholar 

  • Sivanesan A (1987) Graminicolous species of Bipolaris, Curvularia, Drechslera, exserohilum and their teleomorphs. C. A. B. International, Wallingford

    Google Scholar 

  • Temme N, Tudzynski P (2009) Does Botrytis cinerea ignore H2O2-induced oxidative stress during infection? Characterization of Botrytis Activator Protein 1. Mol Plant Microbe Interact 22(8):987–998

    Article  CAS  PubMed  Google Scholar 

  • Thakur RP, Reddy BVS, Indira S, Rao VP, Navi SS, Yang XB, Ramesh S (2006) Sorghum grain mold. Inf Bull 72:1–28

    Google Scholar 

  • Turgeon B, Debuchy R (eds) (2007) Cochliobolus and Podospora: mechanisms of sex determination and the evolution of reproductive lifestyle. Sex in fungi: molecular determination and evolutionary implications. ASM, Washington, DC

    Google Scholar 

  • Turgeon BG, Baker SE (2007) Genetic and genomic dissection of the Cochliobolus heterostrophus Tox1 locus controlling biosynthesis of the polyketide virulence factor T-toxin. Adv Genet 57:219–261

    Article  CAS  PubMed  Google Scholar 

  • Turgeon BG, Bohlmann H, Ciuffetti LM, Christiansen SK, Yang G, Schafer W, Yoder OC (1993) Cloning and analysis of the mating type genes from Cochliobolus heterostrophus. Mol Gen Genet 238(1–2):270–284

    CAS  PubMed  Google Scholar 

  • Turgeon BG, Condon B, Liu J, Zhang N (2010) Protoplast transformation of filamentous fungi. Methods Mol Biol 638:3–19

    Article  CAS  PubMed  Google Scholar 

  • Turgeon BG, Lu S-W (2000) Evolution of host specific virulence in Cochliobolus heterostrophus. In: Kronstad JW (ed) Fungal pathology. Kluwer, Dordrecht, pp 93–126

    Chapter  Google Scholar 

  • Turgeon BG, Oide S, Bushley K (2008) Creating and screening Cochliobolus heterostrophus non-ribosomal peptide synthetase mutants. MycologRes 112:200–206

    CAS  Google Scholar 

  • Tzeng TH, Lyngholm LK, Ford CF, Bronson CR (1992) A restriction fragment length polymorphism map and electrophoretic karyotype of the fungal maize pathogen Cochliobolus heterostrophus. Genetics 130(1):81–96

    CAS  PubMed Central  PubMed  Google Scholar 

  • Ullstrup AJ (1970) History of southern corn leaf blight. Plant Dis Reptr 54:1100–1102

    Google Scholar 

  • Valjavec-Gratian M, Steffenson B (1997) Pathotypes of Cochliobolus sativus on barley. Plant Dis 81:1275–1278

    Article  Google Scholar 

  • Valjavec Gratian M, Steffenson BJ (1997) Genetics of virulence in Cochliobolus sativus and resistance in barley. Phytopathology 87(11):1140–1143

    Article  CAS  PubMed  Google Scholar 

  • Vitalini MW, de Paula RM, Goldsmith CS, Jones CA, Borkovich KA, Bell-Pedersen D (2007) Circadian rhythmicity mediated by temporal regulation of the activity of p38 MAPK. Proc Natl Acad Sci U S A 104(46):18223–18228

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Vitas M, Rozman D, Komel R, Kelly SL (1995) P450-mediated progesterone hydroxylation in Cochliobolus lunatus. J Biotechnol 42(2):145–150

    Article  CAS  Google Scholar 

  • Vitas M, Smith K, Rozman D, Komel R (1994) Progesterone metabolism by the filamentous fungus Cochliobolus lunatus. J Steroid Biochem Molec Biol 49(1):87–92

    Article  CAS  Google Scholar 

  • Walton JD (1987) Two enzymes involved in biosynthesis of the host-selective phytotoxin HC-toxin. Proc Natl Acad Sci 84:8444–8447

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Walton JD (1996) Host-selective toxins: agents of compatibility. Plant Cell 8(10):1723–1733

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Walton JD (2006) HC-toxin. Phytochemistry 67(14):1406–1413

    Article  CAS  PubMed  Google Scholar 

  • Weise MV (1987) Compendium of wheat diseases, 2nd edn. APS Press, St. Paul

    Google Scholar 

  • Willger SD, Cornish EJ, Chung D, Fleming BA, Lehmann MM, Puttikamonkul S, Cramer RA (2012) Dsc orthologs are required for hypoxia adaptation, triazole drug responses, and fungal virulence in Aspergillus fumigatus. Eukaryot Cell 11(12):1557–1567

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Winkelmann G (1991) Importance of siderophores in fungal growth, sporulation and spore germination. In: Hawksworth DL (ed) Frontiers in mycology. C. A. B. International, Wallingford, pp 49–65

    Google Scholar 

  • Wirsel S, Turgeon BG, Yoder OC (1996) Deletion of the Cochliobolus heterostrophus mating type (MAT) locus promotes function of MAT transgenes. Curr Genet 29(3):241–249

    CAS  PubMed  Google Scholar 

  • Wistrand M, Kall L, Sonnhammer ELL (2006) A general model of G protein-coupled receptor sequences and its application to detect remote homologs. Protein Sci 15(3):509–521

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Wolpert T, Shiraishi T, Collmer A, Akimitsu K, Glazebrook J (eds) (2011) Cochliobolus heterostrophus and maize: a model for genome-wide integration of iron homeostasis, oxidative stress management, and virulence. Genome-enabled analysis of plant-pathogen interactions. The American Phytopathological Society, St. Paul

    Google Scholar 

  • Wu DL, Oide S, Zhang N, Choi MY, Turgeon BG (2012) ChLae1 and ChVel1 regulate T-toxin production, virulence, oxidative stress response, and development of the maize pathogen Cochliobolus heterostrophus. PLoS Pathogens 8(2):e1002542

    Google Scholar 

  • Xue C, Hsueh YP, Heitman J (2008) Magnificent seven: roles of G protein-coupled receptors in extracellular sensing in fungi. FEMS Microbiol Rev 32(6):1010–1032

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Yoder OC (1980) Toxins in pathogenesis. Ann Rev Phytopathol 18:103–129

    Article  CAS  Google Scholar 

  • Yoder OC (1988) Cochliobolus heterostrophus, cause of southern corn leaf blight. In: Sidhu GS (ed) Genetics of plant pathogenic fungi, vol 6. Academic Press, San Diego, pp 93–112

    Chapter  Google Scholar 

  • Yun SH, Berbee ML, Yoder OC, Turgeon BG (1999) Evolution of the fungal self-fertile reproductive life style from self-sterile ancestors. Proc Natl Acad Sci U S A 96(10):5592–5597

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Zhong S, Steffenson BJ, Martinez JP, Ciuffetti LM (2002) A molecular genetic map and electrophoretic karyotype of the plant pathogenic fungus Cochliobolus sativus. Mol Plant Microbe Interact 15(5):481–492

    Article  CAS  PubMed  Google Scholar 

  • Robbertse B, Yoder OC, Nguyen A, Schoch C, Turgeon BG (2003) Deletion of all monofunctional catalase-encoding genes of Cochliobolus heterostrophus enhances oxidative stress sensitivity but does not affect virulence. Molec Plant Micr Inter 16:1013–1021

    Google Scholar 

Download references

Acknowledgments

We gratefully acknowledge the contribution of Igor Grigoriev and colleagues at the JGI for sequencing the genomes and for their consistent interest in Cochliobolus and the Dothideomycete class this fascinating genus belongs to. Work in our labs including some unpublished data shown here was supported by the Agriculture and Food Research Initiative of USDA’s National Institute of Food and Agriculture (BGT), the US-Israel Binational Agricultural Research and Development Fund (BARD) (BH, BGT), the National Science Foundation (BGT), and the Slovenian Research Agency (NK).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. Gillian Turgeon .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Condon, B.J., Wu, D., Kraševec, N., Horwitz, B.A., Turgeon, B.G. (2014). Comparative Genomics of Cochliobolus Phytopathogens. In: Dean, R., Lichens-Park, A., Kole, C. (eds) Genomics of Plant-Associated Fungi: Monocot Pathogens. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-44053-7_2

Download citation

Publish with us

Policies and ethics