Neurohumors and Neurohormones: Definitions and Terminology

  • Berta Scharrer


Neurohumors and neurohormones are physiologically active substances produced by the nervous systems of vertebrates and invertebrates. They have certain features in common and differ in others. Both are chemical messengers that are intermittently released from nerve cells to act on neuronal or non-neuronal effector cells. Significant characteristics of the regulatory mechanisms controlled by these two classes of neurochemical mediators concern the spatial relationship between site of origin of mediator and effector cell; the duration of the signal; the chemical nature of the active principles involved; and the ultrastructural features of their intracellular storage sites.
  1. (1)

    Neurohumors: In “chemical synaptic transmission” the messenger substance elicits strictly localized postsynaptic responses of very short duration in effector cells that are contiguous with the respective presynaptic terminals. The active principles (e. g., acetylcholine, noradrenaline) lack several essential attributes of endocrine substances and are, therefore, more appropriately classified as “chemical transmitters”, “neurotransmitters”, or “neurohumors” in contradistinction to “neurohormones”. Electron micrographs of cholinergic neurons show small electron-lucent vesicles that are especially abundant in presynaptic areas. There is circumstantial evidence that these “synaptic vesicles” are intracellular storage sites of acetylcholine. Adrenergic axons and terminals (with deposits of noradrenaline as demonstrated by fluorescence microscopy) contain varying amounts of dense-core vesicles which seem to harbor some of this catecholamine.

  2. (2)

    Neurohormones: Aside from synaptic transmission, neurons communicate with effector cells by means of hormonal mediators. However, this activity is restricted to specialized cell groups within the nervous system which possess glandular attributes above and beyond those of conventional neurons and which, because of their dual nature, are called “neurosecretory cells”. Their product (“neurosecretory material”) contains active principles capable of regulating multiple and diverse “target” cells (by bridging considerable distances via vascular channels) and of acting for sustained periods of time. These attributes parallel those of non-neuronal endocrine factors and serve to classify neurosecretory mediators as “neurohormones”. Typical examples are polypeptides (e. g., vasopressin, oxytocin) bound to carrier proteins (neurophysins). Under the light microscope, the identification of classical neurosecretory neurons depends on selective staining and histochemical properties. Ultrastructurally, neurosecretory materials appear as membrane-bounded granules of several size ranges and of varying, but usually high, electron density.

That the borderline between these two classes of neural mediators is not as sharp as might be concluded from the preceding characterization, is illustrated by the following statements:
  1. a)

    There is evidence for the existence of a class of neurohormones that differs from the classical by its non-proteinaceous, i. e., catecholamine nature and a somewhat different mode of operation.

  2. b)

    In certain cases, where neurosecretory neurons appear to control endocrine effector cells by means of “neurosecretomotor junctions”, the chemical mediator cannot be classified as a neurohormone.



Synaptic Vesicle Biogenic Amine Median Eminence Neurosecretory Cell Chemical Mediator 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Aghajanian, G. K. and F. E. Bloom: Electron-microscopic autoradiography of rat hypothalamus after intraventricular H3-norepinephrine. Science 153, 308–310 (1966).PubMedCrossRefGoogle Scholar
  2. Austin, L., I. W. Chubb, and B. G. Livett: The subcellular localization of catecholamines in nerve terminals in smooth muscle tissue. J. Neurochem. 14, 473478 (1967).Google Scholar
  3. Bajusz, E., ed.: An Introduction to Clinical Neuroendocrinology. 573 pp. Basel and New York: Karger, 1967.Google Scholar
  4. Bajusz, E., and G. Jasmin, eds.: Major Problems in Neuroendocrinology. Basel and New York: Karger, 1964.Google Scholar
  5. Bak, I. J.: The ultrastructure of the substantia nigra and caudate nucleus of the mouse and the cellular localization of catecholamines. Exp. Brain Res. 3, 40–57 (1967).PubMedCrossRefGoogle Scholar
  6. Barer, R: Speculations on the storage and release of hormones and transmitter substances. Symp. electr. Activ. Innerv. Blood Vessels, Cambridge 1966. Bibl. anat. 8, 72–75. Basel and New York: Karger, 1967.Google Scholar
  7. Bargmann, W.: Neurosecretion. International Review of Cytology 19, 183201 (1966).Google Scholar
  8. Borgmann, W., E. Lindner, and K. H. Andres: Über Synapsen an endokrinen Epithelzellen und die Definition sekretorischer Neurone. Untersuchungen am Zwischenlappen der Katzenhypophyse. Zschr. Zellforsch. 77, 282–298 (1967).CrossRefGoogle Scholar
  9. Baumgarten, H. G., and H. Brack: Catecholamine im Hypothalamus vom Goldfisch (Carassius auratus). Zschr. Zellforsch. 80, 246–263 (1967).PubMedCrossRefGoogle Scholar
  10. Beaulaton, J.: Sur la localisation ultrastructurale d’une activité cholinestérasique dans le corps cardiaque de Rhodnius prolixus Stal. (Hétéroptère, Reduvidae) aux quatrième et cinquième stades larvaires. J. Microscopie 6, 65–80 (1967).Google Scholar
  11. Bern, H. A.: On the production of hormones by neurones and the role of neurosecretion in neuroendocrine mechanisms. Symp. Soc. Exp. Biol. 20, 325–344 (1966).PubMedGoogle Scholar
  12. Bern, H. A., and I. R. Hagadorn: Neurosecretion. In: Structure and Function in the Nervous Systems of Invertebrates, by T. H. Bullock and G. A. Horridge. pp. 353–429. San Francisco and London: W. H. Freeman and Co. 1965.Google Scholar
  13. Bern, H. A., and F. G. W. Knowles: Neurosecretion. In: Neuroendocrinology, Martini, L., and W. F. Ganong, eds. Vol. I, pp. 139–186. New York and London: Academic Press, 1966a.Google Scholar
  14. Bern, H. A., R. S. Nishioka, L. R. Mewaldt, and D. S. Earner: Photoperiodic and osmotic influences on the ultrastructure of the hypothalamic neurosecretory system of the white-crowned sparrow, Zonotrichia leucophrys gambelii. Zschr. Zellforsch. 69, 198–227 (1966b).PubMedCrossRefGoogle Scholar
  15. Bianchi, S.: The amine secreting neurons in the central nervous system of the earthworm (Octolasium cornplanatum) and their possible neurosecretory role. Gen. comp. Endocrinol. 9, 343–348 (1967).Google Scholar
  16. Bindler, E., F. S. LaBella, and M. Sanwal: Isolated nerve endings (neurosecretosomes) from the posterior pituitary. Partial separation of vasopressin and oxytocin and the isolation of microvesicles. J. Cell Biol. 34, 185–205 (1967).PubMedCrossRefGoogle Scholar
  17. Bodian, D.: Electron microscopy: two major synaptic types on spinal moto-neurons. Science 151, 1093–1094 (1966).PubMedCrossRefGoogle Scholar
  18. Bondareff, W.: Submicroscopic morphology of granular vesicles in sympathetic nerves of rat pineal body. Zschr. Zellforsch. 67, 211–218 (1965).PubMedCrossRefGoogle Scholar
  19. Bowers, B., and B. Johnson: An electron microscope study of the corpora cardiaca and secretory neurons in the aphid, Myzus persicae Sulz. Gen. comp. Endocrinol. 6, 213–230 (1966).Google Scholar
  20. Brady, J., and S. H. P. Maddrell: Neurohaemal organs in the medial nervous system of insects. Zschr. Zellforsch. 76, 389–404 (1967).PubMedCrossRefGoogle Scholar
  21. Brown, B. E.: Neuromuscular transmitter substance in insect visceral muscle. Science 155, 595–597 (1967).PubMedCrossRefGoogle Scholar
  22. Burn, J. H.: Release of noradrenaline from the sympathetic postganglionic fibre. Brit. med. T. 1967, 2, 197–201 (1967).CrossRefGoogle Scholar
  23. Csillik, B., and P. Kdsa: Localization of acetylcholinesterase in the guinea pig cerebellar cortex. Acta neuroveget. Wien 29, 289–296 (1967).Google Scholar
  24. Dale, H.: Pharmacology and nerve-endings. Proc. Roy. Soc. Med., London, 28, 319–332 (1935).Google Scholar
  25. De Robertis, E.: Histophysiology of Synapses and Neurosecretion. pp. 1–244, Oxford: Pergamon Press, 1964.Google Scholar
  26. De Robertis, E.: Ultrastructure and cytochemistry of the synaptic region. Science 156, 907–914 (1967).PubMedCrossRefGoogle Scholar
  27. Dixit, B. N., and J. P. Buckley: Circadian changes in brain 5-hydroxytryptamine and plasma corticosterone in the rat. Life Sci. 6 (No. 7), 755–758 (1967).PubMedCrossRefGoogle Scholar
  28. Douglas, W. W.: Calcium-dependent links in stimulus-secretion coupling in the adrenal medulla and neurohypophysis. In: Mechanisms of release of biogenic amines. U. S. von Euler, S. Rosell and B. Uvnäs, eds. 267–290, Oxford: Pergamon Press, 1966.Google Scholar
  29. Douglas, W. W.: Mechanism of release of catecholamines in adrenal medulla. Neurosciences Res. Prog. Bull. 5, 45–47 (1967).Google Scholar
  30. Douglas, W. W., and A. M. Poisner: Stimulus-secretion coupling in a neurosecretory organ: the role of calcium in the release of vasopressin from the neurohypophysis. J. Physiol. 172, 1–18 (1964).PubMedGoogle Scholar
  31. Duffy, P. E., V. M. Tennyson, and M. Brzin: Cholinesterase in adult and embryonic hypothalamus. A combined cytochemical electron microscopic study. Arch. Neurol. 16, 385–403 (1967).PubMedCrossRefGoogle Scholar
  32. Elfvin, L. G.: The development of the secretory granules in the rat adrenal medulla. J. Ultrastr. Res. 17, 45–62 (1967).CrossRefGoogle Scholar
  33. Elofsson, R., T. Kauri, S. O. Nielsen, and J. O. Stromberg: Localization of monoaminergic neurons in the central nervous system of Astacus astacus Linné (Crustacea). Zschr. Zellforsch. 74, 464–473 (1966).PubMedCrossRefGoogle Scholar
  34. Eneström, S., and C. Svalander: Liquid formaldehyde in catecholamine studies. A new approach to the morphological localization of monoamines in the adrenal medulla and the supraoptic nucleus of the rat. Histochemie 8, 155–163 (1967).PubMedCrossRefGoogle Scholar
  35. Eränkö, O.: Histochemistry of nervous tissues: catecholamines and cholinesterases. Ann. Rev. Pharmacol. 7, 203–222 (1967).PubMedCrossRefGoogle Scholar
  36. Euler, U. S. von, S. Roseli, and B. Uvnäs, eds.: Mechanisms of Release of Bio-genic Amines. Wenner-Gren Center International Symposia Series. Vol. 5, 482 pp. Oxford: Pergamon Press, 1966.Google Scholar
  37. Ferry, C. B.: The autonomic nervous system. Ann. Rev. Pharmacol. 7, 185202 (1967).Google Scholar
  38. Fridberg, G., and R. S. Nishioka: Secretion into the cerebrospinal fluid by caudal neurosecretory neurons. Science 152, 90–91 (1966).CrossRefGoogle Scholar
  39. Frontali, N., and K.-A. Norberg: Catecholamine containing neurons in the cockroach brain. Acta physiol. Scand. 66, 243–244 (1966).Google Scholar
  40. Fuxe, K., T. Hökfelt, and O. Nilsson: A fluorescence and electron microscopic study on certain brain regions rich in monoamine terminals. Amer. J. Anat. 117, 33–46 (1965).PubMedCrossRefGoogle Scholar
  41. Fuxe, K., T. Hökfelt, O. Nilsson, and S. Reinius: A fluorescence and electron microscopic study on central monoamine nerve cells. Anat. Rec. 155, 33–40 (1966).PubMedCrossRefGoogle Scholar
  42. Gabe, M.: Neurosecretion. Internat. Ser. Monogr. Biol. Vol. 28, 872 pp. Oxford, London, New York: Pergamon Press, 1966.Google Scholar
  43. Gerschenfeld, H. M.: Chemical transmitters in invertebrate nervous systems. In: Nervous and Hormonal Mechanisms of Integration. Symp. Soc. Exp. Biol. 20, 299–323 (1966).Google Scholar
  44. Green, J. D.: Microanatomical aspects of the formation of neurohypophysial hormones and neurosecretion. In: The Pituitary Gland. G. W. Harris and B. T. Donovan, eds. Vol. 3, 240–268. Berkeley and Los Angeles: University of California Press, 1966.Google Scholar
  45. Guillemin, R., R. Burgos, E. Sakiz, and D. N. Ward: Nouvelles données sur la purification de l’hormone hypothalamique TSH-hypophysiotrope, TRF. C. R. Acad. Sc. Paris, Série D, 262, 2278–2280 (1966).Google Scholar
  46. Halaris, A., E. Rüther, and N. Matussek: Effect of a benzoquinolizine (R041284) on granulated vesicles of the rat brain. Zschr. Zellforsch. 76, 100–107 (1967).PubMedCrossRefGoogle Scholar
  47. Haller, E. W., H. Sachs, N. Sperelakis, and L. Share: Release of vasopressin from isolated guinea pig posterior pituitaries. Amer. J. Physiol. 209, 79–83 (1965).PubMedGoogle Scholar
  48. Hillarp, N. A., K. Fuxe, and A. Dahlström: Central monoamine neurons. In: Mechanisms of release of biogenic amines. U. S. von Euler, S. Roseli and B. Uvnäs, eds. 31–57, Oxford: Pergamon Press, 1966.Google Scholar
  49. Hinks, C. F.: Relationship between serotonin and the circadian rhythm in some nocturnal moths. Nature 214, 386–387 (1967).PubMedCrossRefGoogle Scholar
  50. Hodgkin, A. L., and R. D. Keynes: Movements of labelled calcium in squid giant axons. J. Physiol. 138, 253–281 (1957).PubMedGoogle Scholar
  51. Hökfelt, T.: On the ultrastructural localization of noradrenaline in the central nervous system of the rat. Zschr. Zellforsch. 79, 110–117 (1967).PubMedCrossRefGoogle Scholar
  52. Ishii, T. and R. L. Friede: Distribution of a catecholamine-binding mechanism in rat brain. Histochemie 9, 126–135 (1967).PubMedCrossRefGoogle Scholar
  53. Kapeller, K., and D. Mayor: The accumulation of noradrenaline in constricted sympathetic nerves as studied by fluorescence and electron microscopy. Proc. Roy. Soc. London, Biol. Sc. 167, 282–292 (1967).CrossRefGoogle Scholar
  54. Kelly, D. E.: Fine structure of cell contact and the synapse. Anesthesiology 28, 6–30 (1967).PubMedCrossRefGoogle Scholar
  55. Kety, S. S., and F. E. Samson, eds.: Neural properties of the biogenic amines. Neurosciences Res. Prog. Bull. 5, No. 1, 1967.Google Scholar
  56. Klotz, H. P., ed.: Symposium international sur la neuroendocrinologie. Probi. act. d’endocrinol. et de nutrition. Expansion Scient. Française, Paris. 1966.Google Scholar
  57. Knowles, F:. Neuroendocrine correlations at the level of ultrastructure. Arch. d’Anat. Micr. 54, 343–357 (1965).Google Scholar
  58. Knowles, F., and H. A. Bern: The function of neurosecretion in endocrine regulation. Nature 210, 271–272 (1966).PubMedCrossRefGoogle Scholar
  59. Knowles, F., L. Vollrath and R. S. Nishioka: Dual neurosecretory innervation of the adenohypophysis of Hippocampus, the sea-horse. Nature 214, 309 (1967).PubMedCrossRefGoogle Scholar
  60. Koelle, G. B.: A proposed dual neurohumoral role of acetylcholine: its functions at the pre-and post-synaptic sites. Nature 190, 208–211 (1961).PubMedCrossRefGoogle Scholar
  61. LaBella, F. S., S. Vivian, and E. Bindler: Amino acid composition of neurohypophysial secretory granules and van Dyke protein. Biochem. Pharmacol. 16, 1126–1130 (1967).PubMedCrossRefGoogle Scholar
  62. Laduron, P., W. De Potter, and F. Belpaire: Storage of labeled noradrenaline in lysosomes. Life Sci. 5, 2085–2094 (1966).CrossRefGoogle Scholar
  63. Landon, D. N.: Electron microscopy of muscle spindles. In: Control and Innervation of Skeletal Muscle. B. L. Andrew, ed., 91–111, Dundee, Scotland: D. C. Thomson, Ltd., 1966.Google Scholar
  64. Larramendi, L. M. H., L. Fickenscher, and N. Lemkey-Johnston: Synaptic vesicles of inhibitory and excitatory terminals in the cerebellum. Science 156, 967969 (1967).Google Scholar
  65. Lenn, N. J.: Localization of uptake of tritiated norepinephrine by rat brain in vivo and in vitro using electron microscopic autoradiography. Amer. J. Anat. 120, 377–389 (1967).CrossRefGoogle Scholar
  66. Lentz, T. L.: Fine structure of nerve cells in a planarian. J. Morph. 121, 323338 (1967).Google Scholar
  67. Leonhardt, H., and E. Lindner: Marklose Nervenfasern im III. und IV. Ventrikel des Kaninchen-und Katzengehirns. Zschr. Zellforsch. 78, 1–18 (1967).PubMedCrossRefGoogle Scholar
  68. Lever, J. D., J. D. P. Graham, and T. L. B. Spriggs: Electron microscopy of nerves in relation to the arteriolar wall. Symp. electr. Activ. Innerv. Blood Vessels, Cambridge 1966; Bibl. anat. 8, 51–55. Basel and New York: Karger, 1967.Google Scholar
  69. Malamed, S., A. M. Poisner, and M. Trifaro: Recovery of electron-translucent granules from homogenates of catecholamine-depleted adrenal medullae of cats. Anat. Rec. 157, 282–283 (1967).Google Scholar
  70. Malamed, S., A. M. Poisner, J. M. Trifaro, and W. W. Douglas: The fate of the chromaffin granule during catecholamine release from the adrenal medulla-III. Recovery of a purified fraction of electron-translucent structures. Biochem. Pharmacol. 17, 241–246 (1968).PubMedCrossRefGoogle Scholar
  71. Martini, L., and W. F. Ganong, eds.: Neuroendocrinology. Vol. 1. New York and London: Academic Press, 1966.Google Scholar
  72. Matsui, T., and H. Kobayashi: Histochemical demonstration of monoamine oxidase in the hypothalamo-hypophysial system of the tree sparrow and the rat. Zschr. Zellforsch. 68, 172–182 (1965).PubMedCrossRefGoogle Scholar
  73. Nishioka, R. S., and H. A. Bern: Fine structure of the neurohemal areas associated with the hypophysis in the hagfish, Polistotrema stoutii. Gen. comp. Endocrinol. 7, 457–462 (1966).PubMedCrossRefGoogle Scholar
  74. Normann, T. C.: The neurosecretory system of the adult Calliphora erythrocephala. I. The fine structure of he corpus cardiacum with some observations on adjacent organs. Zschr. Zellforsch. 67, 461–501 (1965).PubMedCrossRefGoogle Scholar
  75. Oosaki, T.: Observations on the ultrastructure of nerve cells in the brain of the earthworm, Eisenia foetida, with special reference to neurosecretion. Zschr. Zellforsch. 72, 534–542 (1966).CrossRefGoogle Scholar
  76. Oota, Y.: On the synaptic vesicles in the neurosecretory organs of the carp, bullfrog, pigeon and mouse. Annotnes. zool. jap. 36, 167–172 (1963a).Google Scholar
  77. Oota, Y.: Fine structure of the median eminence and the pars nervosa of the turtle, Clemmys japonica. J. Fac. Sci. Tokyo Univ., Sec. IV, 10, 170–179 (1963b).Google Scholar
  78. Oota, Y., and H. Kobayashi: On the synaptic vesicle-like structures in the neurosecretory axon of the mouse neural lobe. Annotnes. zool. jap. 39, 193–201 (1966).Google Scholar
  79. Palay. S.: Classification of vesicles according to size and stored chemical. Neurosciences Res. Prog. Bull. 5, 9–10 (1967).Google Scholar
  80. Pappas, G. D., and M. V. L. Bennett: The fine structure of vesicles associated with excitatory and inhibitory junctions. Biol. Bull. 131, 381 (1966).Google Scholar
  81. Quay, W. B.: Twenty-four-hour rhythms in cerebral and brainstem contents of 5-hydroxytryptamine in a turtle, Pseudemys scripta elegans. Comp. Biochem. Physiol. 20, 217–221 (1967).CrossRefGoogle Scholar
  82. Raabe, M.: Etude des phénomènes de neurosécrétion au niveau de la chaîne nerveuse ventrale des phasmides. Bull. Soc. zool. France 90, 631–654 (1966).Google Scholar
  83. Rinne, U. K., and A. U. Arstila: Ultrastructure of the neurovascular link between the hypothalamus and anterior pituitary gland in the median eminence of the rat. Neuroendocrinol. 1, 214–227 (1965–66).Google Scholar
  84. Robertson, D. R.: The ultimobranchial body in Rana pipiens. III. Sympathetic innervation of the secretory parenchyma. Zschr. Zellforsch. 78, 328–340 (1967).PubMedCrossRefGoogle Scholar
  85. Sachs, H.: Neurosecretion in the mammalian hypothalamo-neurohypophysial complex. In: Protides of the Biological Fluids. H. Peeters ed., 181–192. Amsterdam: Elsevier Publishing Company, 1966.Google Scholar
  86. Sachs, H.: Biosynthesis and release of vasopressin. Amer. J. Med. 42, 687–700 (1967).PubMedCrossRefGoogle Scholar
  87. Sano, Y., G. Odake, and S. Taketomo: Fluorescence microscopic and electron microscopic observations on the tuberohypophyseal tract. Neuroendocrinology 2, 30–42 (1967).CrossRefGoogle Scholar
  88. Scharrer, B.: Neurosecretion. XIII. The ultrastructure of the corpus cardiacum of the insect Leucophaea maderae. Zschr. Zellforsch. 60, 761–796 (1963).PubMedCrossRefGoogle Scholar
  89. Scharrer, B.: Histophysiological studies on the corpus allatum of Leucophaea maderae. IV. Ultrastructure during normal activity cycle. Zschr. Zellforsch. 62, 125–148 (1964a).PubMedGoogle Scholar
  90. Scharrer, B.: The fine structure of the blattarian prothoracic glands. Zschr. Zellforsch. 64, 301–326 (1964b).PubMedCrossRefGoogle Scholar
  91. Scharrer, B.: The stromal element in endocrine organs of insects. Proc. VIIIth Internat. Congr. Anat., Wiesbaden, p. 107. Stuttgart: Thieme, 1965.Google Scholar
  92. Scharrer, B.: The neurosecretory neuron in neuroendocrine regulatory mechanisms. Amer Zool. 7, 161–169 (1967).Google Scholar
  93. Scharrer, B.: Neurosecretion. XIV. Ultrastructural study of sites of release of neurosecretory material in blattarian insects. Zschr. Zellforsch. 89, 1–16 (1968).CrossRefGoogle Scholar
  94. Scharrer, E.: The general significance of the neurosecretory cell. Scientia 46, 177–183 (1952).Google Scholar
  95. Scharrer, E.: The final common path in neuroendocrine integration. Arch. d’Anat. micr. 54, 359–370 (1965a).Google Scholar
  96. Scharrer, E.: On Terminology. Bibliogr. Neuroendocrinol. 2, Nr. 2, IV—VI (1965b).Google Scholar
  97. Scharrer, E.: Principles of neuroendocrine integration. In: Endocrines and the Central Nervous System. Res. Publ. A. Nerv. & Ment. Dis. 43, 1–35 (1966).Google Scholar
  98. Scharrer, E., and B. Scharrer: Neuroendocrinology. 289 pp. New York: Columbia University Press, 1963.Google Scholar
  99. Smith, U., and D. S. Smith: Observations on the secretory processes in the corpus cardiacum of the stick insect, Carausius morosus. J. Cell Sci. 1, 59–66 (1966).PubMedGoogle Scholar
  100. Smoller, C. G.: Ultrastructural studies on the developing neurohypophysis of the Pacific tree frog, Hyla regilla. Gen. comp. Endocrinol. 7, 44–73 (1966).Google Scholar
  101. Steg, G.: Effects on a-and -t-efferents of drugs influencing neostriatal monoaminergic and acetylcholinergic transmission. In: Control and Innervation of Skeletal Muscle. B. L. Andrew, ed., 139–149. Dundee, Scotland: D. C. Thomson, Ltd., 1966.Google Scholar
  102. Sterba, G., and J. Weiss: Beiträge zur Hydrencephalokrinie: I. Hypothalamische Hydrencephalokrinie der Bachforelle (Salmo trutta fario). Journ. Hirnforsch. 9, 359–371 (1967).Google Scholar
  103. Streefkerk, J. G.: Functional changes in the morphological appearance of the hypothalamo-hypophyseal neurosecretory and catecholaminergic neural system, and in the adenhypophysis of the rat. A light, fluorescence and electron microscopic study. Med. Thesis, 110 pp., Amsterdam: G. Van Soest N. V., 1967.Google Scholar
  104. Takeichi, M.: The fine structure of ependymal cells. Part II: An electron microscopic study of the soft-shelled turtle paraventricular organ, with special reference to the fine structure of ependymal cells and so-called albuminous substance. Zschr. Zellforsch. 76, 471–485 (1967).PubMedCrossRefGoogle Scholar
  105. Tranzei, J. P., and H. Thoenen: Significance of “empty vesicles” in postganglionic sympathetic nerve terminals. Experientia 23, 123–124 (1967).CrossRefGoogle Scholar
  106. Verity, M. A., and J. A. Bevan: A morphopharmacologic study of vascular smooth muscle innervation. Symp. electr. Activ. Innerv. Blood Vessels, Cambridge 1966. Bibl. anat. 8, 60–65. Basel and New York: Karger, 1967.Google Scholar
  107. Vogt, M.: The concentration of sympathin in different parts of the central nervous system under normal conditions and after the administration of drugs. J. Physiol. 123, 451–481 (1954).PubMedGoogle Scholar
  108. Vollrath, L.: Über die neurosekretorische Innervation der Adenohypophyse von Teleostiern, insbesondere von Hippocampus cuda und Tinca tinca. Zschr. Zell-forsch. 78, 234–260 (1967).CrossRefGoogle Scholar
  109. Weitzman, M., ed.: Bibliographia Neuroendocrinologica. Vols. 1–6. Albert Einstein College of Medicine, New York, 1964–69.Google Scholar
  110. Welsh, J. H.: Neuroendocrine substances. In: Comparative Endocrinology. A. Gorbman ed., 121–133. New York: John Wiley & Sons, 1959.Google Scholar
  111. Wood, J. G.: Electron microscopic localization of amines in central nervous tissue. Nature 209, 1131–1133 (1966).PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Wien 1969

Authors and Affiliations

  • Berta Scharrer
    • 1
  1. 1.Department of AnatomyAlbert Einstein College of MedicineBronxUSA

Personalised recommendations