Skip to main content
Log in

The ultrastructure of the substantia nigra and caudate nucleus of the mouse and the cellular localization of catecholamines

  • Published:
Experimental Brain Research Aims and scope Submit manuscript

Summary

The fine structure of the substantia nigra and caudate nucleus of the mouse is studied by electron microscopy. The structure of neurones in both regions confirm the general contention that catecholamines are produced in the perikaryon. In the substantia nigra two structurally distinct types of synaptic junctions are observed; namenly an “encircled type” by which a dentrite is surrounded by three or more axon terminals, containing granulate and/or synaptic vesicles, and a “sandwich type” which is characterized by a dendrite interposed between two axon terminals, which contain only synaptic vesicles. The bouton containing both granulate and synaptic vesicles is considered aminergic (type A), whereas that having only synaptic vesicles is regarded cholinergic (type C) in nature. The caudate nucleus does not show the regional specialization of synaptic junctions, and its junctions are composed of simple appositions of dendrites and axon terminals, which contain a limited number of granulate vesicles. Treatment with reserpine depletes the dense core of granulate vesicles, while injections of iproniazid increase the relative number of granulate vesicles in axon terminals. The relative number of granulate vesicles is not affected by oxypertin.

These observations are discussed in light of currently available information on the anatomy, chemistry and physiology of amine-containing brain regions. It is suggested that there might be two functionally different types of boutons (types A and C) in the substantia nigra, and that granulate vesicles of axon terminals of the substantia nigra and caudate nucleus might contain dopamine, which may act as a transmitter.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bak, I.J.: Electron microscopic observations in the substantia nigra of mouse during reserpine administration. Experientia (Basel) 21, 568–570 (1965).

    Google Scholar 

  • Bernheimer, H., u. O. Hornykiewicz: Herabgesetzte Konzentration der Homovanilinsäure im Gehirn von parkinsonkranken Menschen als Ausdruck der Störung des zentralen Dopaminstoffwechsels. Klin. Wschr. 43, 711–715 (1965).

    Google Scholar 

  • Bertler, Å., B. falck, N.Å. Hillarp and A. Torp: Dopamine and chromaffin cells. Acta physiol. scand. 47, 251–258 (1959).

    Google Scholar 

  • —, N.Å. Hillarp and E. Rosengren: “Bound” and “free” catecholamines in the brain. Acta physiol. scand. 51, 113–118 (1960).

    Google Scholar 

  • Brodie, B.B., and E. Costa: Some current views on brain monoamines. Psychopharmacology service center bull. 2, 1–24 (1962).

    Google Scholar 

  • Burgen, A.S.V., and L.M. Chipman: Cholinesterase and succinic dehydrogenase in the central nervous system. J. Physiol. (Lond.) 114, 296–305 (1951).

    Google Scholar 

  • Carlsson, A.: Detection and assay of dopamine. Pharmacol. Rev. 11, 300–304 (1959).

    Google Scholar 

  • —, B. Falck and N.Å. Hillaep: Cellular localization of brain monoamines. Acta physiol. scand. 56, suppl. 196, 1–28 (1962).

    Google Scholar 

  • Clementi, F.: Modifications ultrastructurelles provoquée par quelques médicaments sur les terminaisons nerveuses adrénergiques et sur la médullaire surrénale. Experientia (Basel) 21, 171–176 (1965).

    Google Scholar 

  • —, and G.P. Zoche: Morphological and pharmacological effects of reserpine, given alone or after iproniazid on the catechol-amines of the adrenal glands of the rat. J. Cell Biol. 17, 587–596 (1963).

    Google Scholar 

  • Colburn, R.W., and J.W. Maas: Adenosine triphosphatemetal-Norepinephrine ternary complexes and catecholamine binding. Nature (Lond.) 208, 37–41 (1965).

    Google Scholar 

  • Costa, E., and B.B. Brodie: Concept of the Neurochemical Transducer as an Organized Molecular Unit at Sympathetic Nerve Endings. In: Biogenic amines, Progress in brain research, Vol. 8, pp. 168–185 (H.E. Himwich and W.A. Himwich eds.). Amsterdam: Elsevier 1964.

    Google Scholar 

  • Dahlström, A., and K. Fuxe: Evidence for the existence of monoamine containing neurons in the CNS. Acta physiol. scand. 62, suppl. 232, 4–55 (1964).

    Google Scholar 

  • De Robertis, E., W.W. Nowinski and F.A. Saez: Cytologic and cytochemical aspects of cellular activity. In: General Cytology, pp. 456–493. Philadelphia and London: Saunders & Co. 1960.

    Google Scholar 

  • Euler, U.S.V., and G. Swanbeck: Some morphological features of Catecholamine storing nerve vesicles. Acta physiol. scand. 62, 487–488 (1964).

    Google Scholar 

  • Falck, B.: Cellular localization of monoamines. In: Biogenic amines, Progress in brain research, Vol. 8, pp. 28–44 (H.E. Himwich and W.A. Himwich eds.). Amsterdam: Elsevier 1964.

    Google Scholar 

  • Giarman, N.J., D.X. Freedman and S.M. Schanberg: Drug induced changes in the sub-cellular distribution of serotonin in rat brain with special reference to the action of reserpine. In: Biogenic amines, Progress in brain research, Vol. 8, pp. 72–80 (H.E. Himwich and W.A. Himwich eds.). Amsterdam: Elsevier 1964.

    Google Scholar 

  • Grillo, M.A., and S.L. Palay: Granules-containing vesicles in the autonomic nerve system. In: Fifth International Congress for Electron Microscopy, Philadelphia, Electron Microscopy Vol. 2, U-1. New York: Academic Press 1962.

    Google Scholar 

  • Hager, H., u. W.L. Tafuri: Elektronenoptischer Nachweis sog. neurosekretorischer Elementargranula in marklosen Nervenfasern des Plexus myentericus (Auerbach) des Meerschweinchens. Naturwiss. 9, 332–333 (1959).

    Google Scholar 

  • Han, S. S.: An electron microscopic and radioautographic study of the rat parotid gland after actinomycin D administration. Amer. J. Anat. (in press) (1966).

  • Hassler, R.: Contribution morphologique á la physiologic des lobes frontaux. Compt. reud. I. Congr. mond. Psychiatr., Vol. 3, 118–127, Paris 1950.

    Google Scholar 

  • Holt, S.J.: Factors governing the validity of staining methods for enzymes, and their bearing upon the Gomori acid phosphatase technique. Exp. Cell Res., Suppl. 7, 1–27 (1959).

    Google Scholar 

  • —, and M. Hicks: Studies on formalin fixation for electron microscopy and cytochemical staining purposes. J. biophys. biochem. Cytol. 11, 31–45 (1961).

    Google Scholar 

  • Hornykiewicz, O.: Die topische Lokalisation und das Verhalten von Noradrenalin und Dopamin (2-Hydroxytyramin) in der Substantia nigra des normalen und Parkinsonkranken Menschen. Wien. klin. Wschr. 75, 309–312 (1963).

    Google Scholar 

  • Jung, R., and R. Hassler: The extra-pyramidal motor system. In: Handbook of Physiology — Neurophysiology II, pp. 863–927. Washington 1960.

  • Luft, J.H.: Improvements in epoxy resin embedding methods. J. biophys. biochem. Cytol. 9, 409–414 (1961).

    Google Scholar 

  • Maas, J.W., and R.W. Colburn: Coordination chemistry and membrane function with particular reference to the synapse and catecholamine transport. Nature (Lond.) 208, 41–46 (1965).

    Google Scholar 

  • Matsuoka, M., S. Ishii, N. Shimizu and R. Imaizumi: Effect of Win 18501–2 on the content of catecholamines and the number of catecholamine containing granules in the rabbit hypothalamus. Experientia (Basel) 21, 121–123 (1965).

    Google Scholar 

  • McIlwain, H.: Biochemistry and the Central Nervous System. 3rd Edition, pp. 147–148. Boston: Little, Brown and Company 1966.

    Google Scholar 

  • Pellegrino De Iraldi, A., L.M. Ziehrer and E. De Robertis: Ultrastructure and pharmacological studies of nerve endings in the pineal organ. In: Structure and function of the epiphysis cerebri, Progress in brain research, Vol. 10, pp. 389–422 (J.A. Kappers and J.P. Schadé eds.). Amsterdam: Elsevier 1965.

    Google Scholar 

  • Pletscher, A.: Significance of monoamine oxidase inhibition for the pharmacological and clinical effects of hydrazine derivatives. Ann. N. Y. Acad. Sci. 80, 1039–1045 (1959).

    Google Scholar 

  • Shimizu, N., and S. Ischii: Electron microscopic observations on nuclear extrusion in nerve cells of the rat hypothalamus. Z. Zellforsch. 67, 367–372 (1965).

    Google Scholar 

  • Whittkaer, V.P.: Investigations on the storage sites of biogenic amines. In: Biogenic amines, Progress in brain research, Vol. 8, pp. 90–117 (H.E. Himwich and W.A. Himwich eds.). Amsterdam: Elsevier 1964.

    Google Scholar 

  • Wood, J.G.. and R.J. Barrnett: Histochemical demonstration of norepinephrine at a fine structural level. J. Histochem. 12, 197–209 (1964).

    Google Scholar 

  • Yates, R.D.: A light and electron microscopic study correlating the chromaffin reaction and granule ultrastructure in the adrenal medulla of the Syrian hamster. Anat. Rec. 149, 237–250 (1964).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bak, I.J. The ultrastructure of the substantia nigra and caudate nucleus of the mouse and the cellular localization of catecholamines. Exp Brain Res 3, 40–57 (1967). https://doi.org/10.1007/BF00234469

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00234469

Key Words

Navigation