Skip to main content

Monochromatic (Line) Radiation

  • Chapter
Astrophysical Formulae

Part of the book series: Springer Study Edition ((SSE))

  • 239 Accesses

Abstract

Consider the orbital motion of an electron of mass, m, and charge, e, about a nucleus of charge Z e. Equating the Coulomb force of attraction to the force from centripetal acceleration we obtain

$$ \frac{{Z{e^2}}}{{{r^2}}} = \frac{{m{v^2}}}{r}, $$
((2–1))

where r is the radius of the orbit, and v is the velocity of the electron. Solving for r,

$$ r = {r_0}{\left( {\frac{c}{v}} \right)^2}Z, $$
((2–2))

where the classical electron radius

$$ {r_0} = {e^2}/(m{c^2}) \approx 2.818X{10^{ - 13}}cm. $$
((2–3))

.

“They (atoms) move in the void and catching each other up jostle together, and some recoil in any direction that may chance, and others become entangled with one another in various degrees according to the symmetry of their shapes and sizes and position and order, and they remain together and thus the coming into being of composit things is effected.”

Simplicus (6th Century A. D.)

“I write about molecules with great diffidence, having not yet rid myself of the tradition that atoms are physics, but molecules are chemistry, but the new conclusion that hydrogen is abundant seems to make it likely that the above-mentioned elements H, O, and N will frequently form molecules.”

Sir Arthur Eddington, 1937

“Modern improvements in optical methods lend additional interest to an examination of the causes which interfere with the absolute homogeneity of spectrum lines. So far as we know these may be considered under five heads, and it appears probable that the list is exhaustive.”

(I) The translatory motion of the radiating particles in the line of sight, operating in accordance with Doppler’s principle.

(II) A possible effect of the rotation of the particles.

(III) Disturbance depending on collisions with other particles either of the same or another kind.

(IV) Gradual dying down of the luminous vibrations as energy is radiated away.

(V) Complications arising from the multiplicity of sources in the line of sight. Thus if the light of a flame be observed through a similar one, the increase of illumination near the centre of the spectrum line is not so great as towards the edges and the line is effectively widened.”

Lord Rayleigh, 1915

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 74.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Aannestad, P. A.: Molecule formation: I. In normal HI clouds; II. In interstellar shock waves. Ap. J. Suppl. No. 217, 25, 205 (1973).

    Article  ADS  Google Scholar 

  • Abney, W. de W.: Effect of a star’s rotation on its spectrum. M.N.R.A.S. 37, 278 (1877).

    ADS  Google Scholar 

  • Abt, H. A., Biggs, E. S.: Bibliography of stellar radial velocities. New York: Latham Press and Kitt Peak Nat. Obs. 1972.

    Google Scholar 

  • Abt, H. A., Hunter, J. H.: Stellar rotation in galactic clusters. Ap. J. 136, 381 (1962).

    Article  ADS  Google Scholar 

  • Abt, H. A., Meinel, A. B., Morgan, W. W., Tabscott, J. W.: An atlas of low-dispersion grating stellar spectra. Kitt Peak Nat. Obs., Steward Obs., Yerkes Obs., 1969.

    Google Scholar 

  • Adams, W. S.: The relativity displacement of the spectral lines in the companion of Sirius. Proc. Nat. Acad. Sci. (Wash.) 11, 382 (1925).

    Article  ADS  Google Scholar 

  • Adams, W. S., Dunham, T.: Absorption bands in the infra-red spectrum of Venus. P. A.S.P. 44, 243 (1932).

    Article  ADS  Google Scholar 

  • Ali, A. W., Griem, H. R.: Theory of resonance broadening of spectral lines by atom-atom impacts. Phys. Rev. 140 A, 1044 (1965).

    Article  ADS  Google Scholar 

  • Ali, A. W., Griem, H. R.: Theory of resonance broadening of spectral lines by atom-atom impacts. Phys. Rev. 144, 366 (1966).

    Article  ADS  Google Scholar 

  • Allen, C. W.: Astrophysical quantities. Univ. of London, London: Athalone Press 1963.

    Google Scholar 

  • Allen, R. J.: Intergalactic hydrogen along the path to Virgo A. Astron. Astrophys. 3, 382 (1969).

    ADS  Google Scholar 

  • Aller, L. H.: Gaseous nebulae. London: Chapman and Hall 1956.

    Google Scholar 

  • Aller, L. H.: The Abundance of the elements. New York: Interscience Publ. 1961.

    Google Scholar 

  • Aller, L. H., Bowen, I. S., Wilson, O. C.: The spectrum of NGC 7027. Ap. J. 138, 1013 (1963).

    Article  ADS  Google Scholar 

  • Aller, L.H., Czyzak, S. S.: The chemical composition of planetary nebulae. In: Planetary nebulae (ed. D. E. Osterbrock, C. R. O’Dell). I.A.U. Symp. No. 34. Dordrecht, Holland: D. R. Reidel. Berlin-Heidelberg-New York: Springer 1968.

    Google Scholar 

  • Aller, L.H., Faulker, D.J.: Spectrophotometry of 14 southern planetary nebulae. In: The Galaxy and the Magellanic clouds—I.A.U. Symp. No. 20 Aust. Acad. Sci., Canberra, Austr. 1964.

    Google Scholar 

  • Aller, L. H., Greenstein, J. L.: The abundances of the elements in G-type subdwarfs. Ap. J. Suppl. No. 46, 5, 139(1960).

    Article  ADS  Google Scholar 

  • Aller, L. H., Liller, W.: Planetary nebulae. In: Nebulae and interstellar matter—Stars and stellar systems VII (ed. B. M. Middlehurst, L. H. Aller). Chicago, III: Univ. of Chicago Press 1960.

    Google Scholar 

  • Anderson, P. W.: Pressure broadening in the microwave and infra-red regions. Phys. Rev. 76, 647 (1949).

    Article  ADS  MATH  Google Scholar 

  • Andrews, M. H., Hjellming, R. M.: Intensities of radio recombination lines (II). Astrophys. L. 4, 159(1969).

    ADS  Google Scholar 

  • Angel, J. R. P., Landstreet, J. D.: Detection of circular polarization in a second white dwarf. Ap. J. 164, L 15 (1971).

    Article  ADS  Google Scholar 

  • Babcock, H. W.: Zeeman effect in stellar spectra. Ap. J. 105, 105 (1947).

    Article  ADS  Google Scholar 

  • Babcock, H. W.: The 34-kilogauss magnetic field of HD 215441. Ap. J. 132, 521 (1960).

    Article  ADS  Google Scholar 

  • Babcock, H. W., Babcock, H. D.: The sun’s magnetic field, 1952–1954. Ap. J. 121, 349 (1955).

    Article  ADS  Google Scholar 

  • Back, E. von, Goudsmit, S.: Kernmoment und Zeeman-Effekt von Wismut (Nuclear moment and Zeeman effect in bismuth). Z. Physik 47, 174 (1928).

    Article  ADS  Google Scholar 

  • Bahcall, J. N.: A systematic method for identifying absorption lines as applied to PKS 0237–23. Ap. J. 153, 679 (1968).

    Article  ADS  Google Scholar 

  • Bahcall, J. N., Greenstein, J. L., Sargent, W. L. W.: The absorption-line spectrum of the quasistellar radio source PKS 0237–23. Ap. J. 153, 689 (1968).

    Article  ADS  Google Scholar 

  • Bahcall, J. N., Wolf, R. A.: Fine-structure transitions. Ap. J. 152, 701 (1968).

    Article  ADS  Google Scholar 

  • Baker, J. G., Menzel, D. H.: Physical processes in gaseous nebulae III. The Balmer decrement. Ap. J. 88, 52 (1938). Reprod. in: Selected papers on physical processes in ionized plasmas (ed. D. H. Menzel). New York: Dover 1962.

    Article  ADS  Google Scholar 

  • Balmer, J. J.: Notiz über die Spectrallinien des Wasserstoffs (A note on the spectral lines of hydrogen). Ann. Phys. Chem. 25, 80 (1885).

    ADS  Google Scholar 

  • Baranger, M.: Problem of overlapping lines in the theory of pressure broadening. Phys. Rev. 111, 494 (1958).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  • Baranger, M.: General impact theory of pressure broadening. Phys. Rev. 112, 855 (1958).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  • Baranger, M.: Spectral line broadening in plasmas. In: Atomic and molecular processes (ed. D. R. Bates). New York: Academic Press 1962.

    Google Scholar 

  • Bates, D. R.: Rate of formation of molecules by radiative association. M.N.R.A.S. 111, 303 (1951).

    MathSciNet  ADS  MATH  Google Scholar 

  • Bates, D. R., Dalgarno, A.: Electronic recombination. In: Atomic and molecular processes (ed. D. R. Bates). New York: Academic Press 1962.

    Google Scholar 

  • Bates, D. R., Damgaard, A.: The calculation of the absolute strengths of spectral lines. Phil. Trans. Roy. Soc. London A 242, 101 (1949).

    Article  ADS  MATH  Google Scholar 

  • Bates, D. R., Spitzer, L.: The density of molecules in interstellar space. Ap. J. 113, 441 (1951).

    Article  ADS  Google Scholar 

  • Berman, L.: The effect of reddening on the Balmer decrement in planetary nebulae. M.N.R.A.S. 96, 890 (1936).

    ADS  Google Scholar 

  • Bethe, H. A.: Quantenmechanik der Ein- und Zwei-Elektronen-Probleme (Quantum mechanics of one- and two-electron problems). In: Handbuch der Physik (ed. H. Geiger, K. Scheel), Vol. XXIV, p. 273. Berlin: Springer 1933.

    Google Scholar 

  • Bethe, H. A., Salpeter, E. E.: Quantum mechanics of one and two electron atoms. Berlin-Göttingen-Heidelberg: Springer 1957.

    Book  MATH  Google Scholar 

  • Black, J. H., Dalgarno, A.: The cosmic abundance of deuterium. Ap. J. 184, L 101 (1973).

    Article  ADS  Google Scholar 

  • Blamont, J.E., Roddier, F.: Precise observation of the profile of the Fraunhofer strontium resonance line. Evidence for the gravitational redshift of the Sun. Phys. Rev. Lett. 7, 437 (1961).

    Article  ADS  Google Scholar 

  • Böhm, K. H.: Basic theory of line formation. In: Stars and stellar systems (ed. J. Greenstein) vol. 6. Chicago, Ill.: Univ. of Chicago Press 1960.

    Google Scholar 

  • Böhm, K. H.: The atmospheres and spectra of central stars. In: Planetary nebulae—I.A.U. Symp. No. 34. Dordrecht, Holland: D. Reidel. Berlin-Heidelberg-New York: Springer 1968.

    Google Scholar 

  • Böhm, D., Aller, L. H.: The electron velocity distribution, in gaseous nebulae and stellar envelopes, Ap. J. 105, 131 (1947). Reprod. In: Selected papers on physical processes in ionized plasmas (ed. D. H. Menzel). New York: Dover 1962.

    ADS  Google Scholar 

  • Bohr, N.: On the constitution of atoms and molecules. Phil. Mag. 26, 1, 10, 476, 857 (1913).

    Google Scholar 

  • Born, M., Oppenheimer, R.: Zur Quantentheorie der Molekeln (On the quantum theory of molecules). Ann. Phys. 84, 457 (1927).

    Article  MATH  Google Scholar 

  • Bowen, I. S.: The origin of the nebular lines and the structure of the planetary nebulae. Ap. J. 67, 1 (1928).

    Article  ADS  Google Scholar 

  • Boyarchuk, A. A., Kopylov, I. M.: A general catalogue of rotational velocities of 2558 stars. Bull. Crimean. Ap. Obs. 31, 44 (1964).

    Google Scholar 

  • Boyarchuk, A. A., Gershberg, R. E., Godovnikov, N. V.: Formulae graphs, and tables for a quantitative analysis of the hydrogen radiation of emission objects. Bull. Crimean. Ap. Obs. 38, 208 (1968).

    Google Scholar 

  • Boyarchuk, A. A., Gershberg, R. E., Godovnikov, N. V., Pronik, V. I.: Formulae and graphs for a quantitative analysis of the forbidden line radiation of emission objects. Bull. Crimean Ap. Obs. 39, 147 (1969).

    Google Scholar 

  • Brackett, F. S.: Visible and infra-red radiation of hydrogen. Ap. J. 56, 154 (1922).

    Article  ADS  Google Scholar 

  • Briet, G., Teller, E.: Metastability of hydrogen and helium levels. Ap. J. 91, 215 (1940).

    Article  ADS  Google Scholar 

  • Brocklehurst, M.: Level populations of hydrogen in gaseous nebulae. M.N.R.A. S. 148, 417(1970).

    ADS  Google Scholar 

  • Brocklehurst, M., Leeman, S.: The pressure broadening of radio recombination lines. Astrophys. Lett. 9, 35 (1971).

    Article  ADS  Google Scholar 

  • Brocklehurst, M., Seaton, M. J.: The profiles of radio recombination lines. Astrophys. Lett. 9, 139(1971).

    Google Scholar 

  • de Broglie, L.: Waves and quanta. Nature 112, 540 (1923).

    Article  ADS  Google Scholar 

  • de Broglie, L.: Recherches sur la théorie des quanta. Ann. Physique 3, 22 (1925).

    MATH  Google Scholar 

  • Brown, R. L., Mathews, W. G.: Theoretical continuous spectra for gaseous nebulae. Ap. J. 160, 939 (1970).

    Article  ADS  Google Scholar 

  • Burbidge, G. R.: Nuclei of galaxies. Ann. Rev. Astron. Astrophys. 8, 369 (1970).

    Article  ADS  Google Scholar 

  • Burbidge, G. R., Burbidge, E. M.: Quasi-stellar objects. San Francisco, Calif.: W. H. Freeman, 1967.

    Google Scholar 

  • Burbidge, G. R., Burbidge, E. M.: Red-shifts of quasi-stellar objects and related extragalactic systems. Nature 222, 735 (1969).

    Article  ADS  Google Scholar 

  • Burbidge, E. M., Burbidge, G. R.: Optical observations of southern radio sources. Ap. J. 172, 37 (1972).

    Article  ADS  Google Scholar 

  • Burbidge, E. M., Strittmatter, P. A.: Redshifts of twenty radio galaxies. Ap. J. 172, L 37 (1972)

    Google Scholar 

  • Burger, H. C. von, Dorgelo, H. B.: Beziehung zwischen inneren Quantenzahlen und Intensitäten von Mehrfachlinien (Relations between inner quantum numbers and intensities of multiple lines). Z. Physik 23, 258 (1924).

    Article  ADS  Google Scholar 

  • Burgess, A.: The hydrogen recombination spectrum. M.N.R.A.S. 118, 477 (1958).

    ADS  Google Scholar 

  • Burgess, A.: Dielectronic recombination and the temperature of the solar corona. Ap. J. 139, 776 (1964).

    Article  ADS  Google Scholar 

  • Burgess, A.: A general formula for the estimation of dielectronic recombination coefficients in low density plasmas. Ap. J. 141, 1588 (1965).

    Article  ADS  Google Scholar 

  • Burgess, A., Seaton, M. J.: The ionization equilibrium for iron in the solar corona. M.N.R.A.S. 127, 355 (1964).

    ADS  Google Scholar 

  • Cameron, R. C.: The magnetic and related stars. Baltimore, Maryland: Mono Book 1967.

    Google Scholar 

  • Capriotti, E. R. The hydrogen radiation spectrum in gaseous nebulae. Ap. J. 139, 225 (1964).

    Article  ADS  Google Scholar 

  • Capriotti, E. R., Daub, C. T.: Hβ and [OUI] fluxes from planetary nebulae. Ap. J. 132, 677 (1960).

    Article  ADS  Google Scholar 

  • Carroll, T. D., Salpeter, E. E.: On the abundance of interstellar OH. Ap. J. 143, 609 (1966).

    Article  ADS  Google Scholar 

  • Carruthers, G. R.: Rocket observation of interstellar molecular hydrogen. Ap. J. 161, L 81 (1970).

    Google Scholar 

  • Catalán, M. A.: Series and other regularities in the spectrum of manganese. Phil. Trans. Roy. Soc. London A 223, 127(1922).

    ADS  Google Scholar 

  • Chandrasekhar, S.: Stochastic problems in physics and astronomy. Rev. Mod. Phys. 15, 1 (1943). Reprod. in: Selected papers on noise and stochastic processes (ed. N. Wax). New York: Dover 1954.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  • Chandrasekhar, S.: Radiative transfer. New York: Dover 1960.

    Google Scholar 

  • Chandrasekhar, S., Breen, F. H.: On the continuous absorption coefficient of the negative hydrogen ion. III. Ap. J. 104, 430 (1946).

    Article  ADS  Google Scholar 

  • Cheung, A. C., Rank, D. M., Townes, C. H., Thorton, D. D., Welch, W. J.: Detection of NH3 molecules in the interstellar medium by their microwave emission. Phys. Rev. Lett. 21, 1701 (1968).

    Article  ADS  Google Scholar 

  • Churchwell, E., Mezger, P. G.: On the determination of helium abundance from radio recombination lines. Astrophys. Lett. 5, 227 (1970).

    ADS  Google Scholar 

  • Clark, B. G.: An interferometer investigation of the 21-centimeter hydrogen-line absorption. Ap. J. 142, 1398(1965).

    Article  ADS  Google Scholar 

  • Cohen, M. H., Shaffer, D. B.: Positions of radio sources from long-baseline interferometry. Astron. J. 76, 91 (1971).

    Article  ADS  Google Scholar 

  • Compton, A. H.: A quantum theory of the scattering of X-rays by light elements. Phys. Rev. 21, 483 (1923).

    Article  ADS  Google Scholar 

  • Condon, E. U.: A theory of intensity distribution in band systems. Phys. Rev. 28, 1182 (1926).

    Article  ADS  MATH  Google Scholar 

  • Condon, E. U.: Nuclear motions associated with electron transitions in diatomic molecules. Phys. Rev. 32, 858 (1928).

    Article  ADS  MATH  Google Scholar 

  • Condon, E. U., Shortley, G. H.: The theory of atomic spectra. Cambridge: Cambridge University Press 1963.

    MATH  Google Scholar 

  • Cord, M. S., Lojko, M. S., Petersen, J. D.: Microwave spectral tables—Spectral lines listing. Nat. Bur. Stands. (Wash.) Mon. 79, 1968.

    Google Scholar 

  • Corliss, C. H., Bozman, W. R.: Experimental transition probabilities for spectral lines of seventy elements. Nat. Bur. Stands. (Wash.) Mon. 53, 1962.

    Google Scholar 

  • Corliss, C. H., Warner, B.: Absolute oscillator strengths for Fe I. Ap. J. Suppl. 8, 395 (1964).

    Article  ADS  Google Scholar 

  • Cowley, C. R., Cowley, A. P.: A new solar curve of growth. Ap. J. 140, 713 (1964).

    Article  ADS  Google Scholar 

  • Cox, D. P., Mathews, W. G.: Effects of self-absorption and internal dust on hydrogen-line intensities in gaseous nebulae. Ap. J. 155, 859 (1969).

    Article  ADS  Google Scholar 

  • Cox, A. N., Stewart, J. N.: Rosseland opacity tables for population II compositions. Ap. J. Suppl. No. 174,19, 261 (1970).

    ADS  Google Scholar 

  • Curtis, H. D.: I. Descriptions of 762 nebulae and clusters, III. The planetary nebulae. Lick Obs. Bull. 13,11, 57(1918).

    Google Scholar 

  • Czyzak, S. J., Krueber, T. K., Martins, P. de A. P., Saraph, H. E., Seaton, M. J., Shemming, J.: Collision strengths for excitation of forbidden lines. In: Planetary nebulae (ed. D. E. Osterbrock, C. R. O’Dell). I.A.U. Symp. No. 34. Dordrecht, Holland: D. Reidel. Berlin-Heidelberg-New York: Springer 1968.

    Google Scholar 

  • Dalgarno, A., McCray, R. A.: The formation of molecules from negative ions. Ap. J. 181, 85 (1973).

    Article  ADS  Google Scholar 

  • Davies, P. C. W., Seaton, M. J.: Radiation damping in the optical continuum. J. Phys. B. (Atom. Molec. Phys.) 2, 757 (1969).

    Article  ADS  Google Scholar 

  • Dennison, D. M., Uhlenbeck, G. E.: The two-minima problem and the ammonia molecule. Phys. Rev. 41, 313 (1932).

    Article  ADS  Google Scholar 

  • Dirac, P. A. M.: The effect of Compton scattering by free electrons in a stellar atmosphere. M. N. R. A. S. 85, 825 (1925).

    ADS  MATH  Google Scholar 

  • Dirac, P. A. M.: The elimination of the nodes in quantum mechanics, Sec. 10 The relative intensities of the lines of a multiplet. Proc. Roy. Soc. London A 111, 302 (1926).

    Google Scholar 

  • Doppler, C.: Über d. farbige Licht d. Doppelsterne usw. (On the colored light of double stars, etc.). Abhandlungen d. k. Böhmischen Gesell. d. Wiss. 2, 467 (1842).

    Google Scholar 

  • Dravskikh, Z. V., Dravskikh, A. F.: An attempt of observation of an excited hydrogen radio line Astron. Tsirk 282, 2 (1964).

    Google Scholar 

  • Dunham, T., Adams, W. S.: Interstellar neutral potassium and neutral calcium. P. A. S. P. 49, 26 (1937).

    Article  ADS  Google Scholar 

  • Dunn, R. B., Evans, J. W., Jefferies, J. T., Orrall, F. Q., White, O. R., Zirker, J. B.: The chromospheric spectrum at the 1962 Eclipse. Ap. J. Suppl. No. 139, 15, 275 (1968).

    Article  ADS  Google Scholar 

  • Dupree, A. K.: Radiofrequency recombination lines from heavy elements: Carbon. Ap. J. 158, 491 (1969).

    Article  ADS  Google Scholar 

  • Ecker, G., Müller, K. G.: Plasmapolarisation und Trägerwechselwirkung (Plasma polarization and carrier interaction). Z. Physik 153, 317 (1958).

    Article  ADS  MATH  Google Scholar 

  • Eddington, A. S.: On the radiative equilibrium of the stars. M.N.R.A.S. 77, 16 (1917).

    ADS  MATH  Google Scholar 

  • Eddington, A.S.: The internal constitution of the stars. Cambridge: Cambridge University Press 1926, Reprod. New York: Dover.

    Google Scholar 

  • Eddington, A. S.: Interstellar matter. Obs. 60, 99 (1937).

    ADS  Google Scholar 

  • Edlén, B.: The dispersion of standard air. J. Opt. Soc. Amer. 43, 339 (1953).

    Article  ADS  Google Scholar 

  • Einstein, A.: Über einen die Erzeugung und Verwandlung des Lichtes betreffenden heuristischen Gesichtspunkt (On a heuristic point of view concerning the generation and transformation of light). Ann. Phys. 17, 132 (1905).

    Article  MATH  Google Scholar 

  • Einstein, A.: Über den Einfluß der Schwerkraft auf die Ausbreitung des Lichtes (On the influence of gravity on the propagation of light). Ann. Phys. 35, 898 (1911). Trans. In: The principle of relativity, H. A. Lorentz, A. Einstein, H. Minkowski, H. Weyl. New York: Dover 1952.

    Article  MATH  Google Scholar 

  • Einstein, A.: Die Grundlage der allgemeinen Relativitätstheorie (The foundations of the general theory of relativity). Ann. Physik 49, 769 (1916). Trans. in: The principle of relativity, H. A.

    Article  ADS  MATH  Google Scholar 

  • Lorentz, A. Einstein, H. Minkowski, H. Weyl. New York: Dover 1952.

    Google Scholar 

  • Einstein, A.: Zur Quantentheorie der Strahlung (On the quantum theory of radiation). Phys. Z. 18, 121 (1917).

    Google Scholar 

  • Ekers, J. A.: The Parkes catalogue of radio sources—declination zone +20 to — 90. Austr. J. Phys. Suppl. No. 7 (1969).

    Google Scholar 

  • Elander, N., Smith, W. H.: Predissociation in the C2 Σ+ state of CH and its astrophysical importance. Ap. J. 184, 663 (1973).

    Article  ADS  Google Scholar 

  • Epstein, P. S.: Zur Theorie des Starkeffektes (The theory of the Stark effect). Ann. Physik 50, 489 (1916).

    Article  ADS  Google Scholar 

  • Epstein, P. S.: The Stark effect from the point of view of Schroedinger’s quantum theory. Phys. Rev. 28, 695 (1926).

    Article  ADS  MATH  Google Scholar 

  • Ewen, H. I., Purcell, E. M.: Radiation from galactic hydrogen at 1,420 M Hz. Nature 168, 356 (1951).

    Article  ADS  Google Scholar 

  • Fermi, E.: Über die magnetischen Momente der Atomkerne (On the magnetic moments of atomic nuclei). Z. Physik 60, 320 (1930).

    Article  ADS  MATH  Google Scholar 

  • Field, G. B.: Excitation of the hydrogen 21-cm line. Proc. I.R.E. 46, 240 (1958).

    Article  ADS  Google Scholar 

  • Field, G. B.: The spin temperature of intergalactic neutral hydrogen. Ap. J. 129, 536 (1959).

    Article  ADS  Google Scholar 

  • Field, G. B., Steigman, G.: Charge transfer and ionization equilibrium in the interstellar medium. Ap. J. 166, 59 (1971).

    Article  ADS  Google Scholar 

  • Field, G. B., Somerville, W. B., Dressler, K.: Hydrogen molecules in astronomy. Ann. Rev. Astron. Astrophys. 4, 207 (1966).

    Article  ADS  Google Scholar 

  • Finn, G. D., Mugglestone, D.: Tables of the line broadening function H (a, v). M.N. R. A.S. 129, 221 (1965).

    ADS  Google Scholar 

  • Foley, H. M.: The pressure broadening of spectral lines. Phys. Rev. 69, 616 (1946).

    Article  ADS  Google Scholar 

  • Fomalont, E. B., Moffet, A. T.: Positions of 352 small diameter sources. Astron. J. 76, 5 (1971).

    Article  ADS  Google Scholar 

  • Ford, W. K., Rubin, V. C., Roberts, M. S.: A comparison of 21-cm radial velocities and optical radial velocities of galaxies. Astron. J. 76, 22 (1971).

    Article  ADS  Google Scholar 

  • Franck, J.: Elementary processes of photochemical reactions. Trans. Far. Soc. 21, 536 (1925).

    Article  Google Scholar 

  • Fraunhofer, J.: Auszug davon in. Gilb. Ann. Physik 56, 264 (1817).

    Article  ADS  Google Scholar 

  • Garstang, R. H.: Forbidden transitions. In: Atomic and molecular processes (ed. D. R. Baus). New York: Academic Press 1962.

    Google Scholar 

  • Garstang, R. H.: Transition probabilities for forbidden lines. in: Planetary nebulae (ed. D. E. Osterbrock, C. R. O’Dell). I.A.U. Symp. No. 34. Dordrecht, Holland: D. Reidel. Berlin-Heidelberg-New York: Springer 1968.

    Google Scholar 

  • Gaunt, J. A.: Continuous absorption. Phil. Trans. Roy. Soc. London A229, 163 (1930).

    ADS  Google Scholar 

  • Gingerich, O., Noyes, R. W., Kalkofen, W., Cuny, Y.: The Harvard-Smithsonian reference atmosphere. Solar Phys. 18, 347 (1971).

    Article  ADS  Google Scholar 

  • Gingerich, O., de Jager, C.: The Bilderberg model of the photosphere and low chromosphere. Solar Phys. 3, 5 (1968).

    Article  ADS  Google Scholar 

  • Gioumousis, G., Stevenson, D. P.: Reactions of gaseous molecule ions with gaseous molecules V. Theory. J. Chem. Phys. 29, 294 (1958).

    Article  ADS  Google Scholar 

  • Glennon, B. M., Wiese, W. L.: Bibliography on atomic transition probabilities. Nat. Bur. Stands. (Wash.). Mon. 50, 1962.

    Google Scholar 

  • Goldberg, L.: Relative multiplet strengths in LS coupling. Ap. J. 82, 1 (1935).

    Article  ADS  Google Scholar 

  • Goldberg, L.: Stimulated emission of radio-frequency lines of hydrogen. Ap. J. 144, 1225 (1966).

    Article  ADS  Google Scholar 

  • Goldberg, L., Dupree, A. K.: Population of atomic levels by dielectronic recombination. Nature 215, 41 (1967).

    Article  ADS  Google Scholar 

  • Goldberg, L., Müller, E. A., Aller, L. H.: The abundances of the elements in the solar atmosphere. Ap. J. Suppl. No. 45, 5, 1 (1960).

    Article  ADS  Google Scholar 

  • Goldwire, H. C.: Oscillator strengths for electric dipole transitions of hydrogen. Ap. J. Suppl. No. 152, 17, 445 (1968),

    Article  ADS  Google Scholar 

  • Goss, W. M., Field, G. B.: Collisional excitation of low-energy permitted transitions by charged particles. Ap. J. 151, 177 (1968).

    Article  ADS  Google Scholar 

  • Gould, R. J., Gold, T., Salpeter, E. E.: The interstellar abundance of the hydrogen molecule II. Galactic abundance and distribution. Ap. J. 138, 408 (1963).

    Article  ADS  Google Scholar 

  • Gould, R. J., Salpeter, E. E.: The interstellar abundance of the hydrogen molecule I. Basic processes. Ap. J. 138, 393 (1963).

    Article  ADS  Google Scholar 

  • Green, L. C., Rush, P. P., Chandler, C. D.: Oscillator strengths and matrix elements for the electric dipole moment of hydrogen. Ap. J. Suppl. No. 26, 3, 37 (1957).

    Article  ADS  Google Scholar 

  • Greenstein, J. L., Oke, J. B., Shipman, H. L.: Effective temperature, radius, and gravitational redshift of Sirius B. Ap. J. 169, 563 (1971).

    Article  ADS  Google Scholar 

  • Greenstein, J. L., Trimble, V. L.: The gravitational redshift of 40 Eridani B. Ap. J. 175, L 1 (1972).

    Article  ADS  Google Scholar 

  • Griem, H. R.: Stark broadening of higher hydrogen and hydrogen-like lines by electrons and ions. Ap. J. 132, 883 (1960).

    Article  ADS  Google Scholar 

  • Griem, H. R.: Wing formulae for Stark-broadened hydrogen and hydrogenic lines. Ap. J. 136, 422 (1962).

    Article  ADS  Google Scholar 

  • Griem, H. R.: Plasma spectroscopy. New York: McGraw-Hill 1964.

    Google Scholar 

  • Griem, H. R.: Corrections to the asymptotic Holtsmark formula for hydrogen lines broadened by electrons and ions in a plasma. Ap. J. 147, 1092 (1967).

    Article  ADS  Google Scholar 

  • Griem, H. R.: Stark broadening by electron and ion impacts of n α hydrogen lines of large principal quantum number. Ap. J. 148, 547 (1967).

    Article  ADS  Google Scholar 

  • Griem, H. R., Kolb, A. C., Shen, K. Y.: Stark broadening of hydrogen lines in a plasma. Phys. Rev. 116, 4(1959).

    Article  ADS  MATH  Google Scholar 

  • Grotrian, W.: Gesetzmäßigkeiten in den Serienspektren (Regularities in the series spectra). In: Handbuch der Astrophysik. Berlin: Springer 1930.

    Google Scholar 

  • Habing, H. J.: The interstellar radiation density between 912Å and 2400 Å. B.A.N. 19, 421 (1968).

    ADS  Google Scholar 

  • Hale, G. E.: On the probable existence of a magnetic field in Sun-spots. Ap. J. 28, 315 (1908).

    Article  ADS  Google Scholar 

  • Harris, D. L.: On the line-absorption coefficient due to Doppler effect and damping. Ap. J. 108, 112 (1948).

    Article  ADS  Google Scholar 

  • Hartree, D. R.: The wave mechanics of an atom with a non-Coulomb central field. Part. 1. Theory and methods. Proc. Camb. Phil. Soc. 24, 89 (1928).

    Article  MATH  Google Scholar 

  • Hebb, M. H., Menzel, D. H.: Physical processes in gaseous nebulae X. collisional excitation of nebulium. Ap. J. 92, 408 (1940). Reprod. in: Selected papers on physical processes in ionized plasmas (ed. D. H. Menzel). New York: Dover 1962.

    Article  ADS  Google Scholar 

  • Heiles, C., Habing, H. J.: To be publ. Astron. and Astrophys. (1974).

    Google Scholar 

  • Heiles, C., Jenkins, E.: To be publ. Astron. and Astrophys. (1974).

    Google Scholar 

  • Held, E. F. M. van der: Intensity and natural widths of spectral lines. Z. Phys. 70, 508 (1931).

    Article  ADS  Google Scholar 

  • Henyey, L. G.: The Doppler effect in resonance lines. Proc. Nat. Acad. Sci. 26, 50 (1940).

    Article  ADS  Google Scholar 

  • Herzberg, G.: Molecular spectra and molecular structure I. Spectra of diatomic molecules. New York: Van Nostrand 1950.

    Google Scholar 

  • Higgs, L. A.: A survey of microwave radiation from planetary nebulae. M.N. R. A.S. 153, 315 (1971).

    ADS  Google Scholar 

  • Higgs, L. A.: A catalogue of radio observations of planetary nebulae and related optical data. Nat. Res. Council (Canada), NRC 12129, Astrophys. Branch, Ottawa, 1971.

    Google Scholar 

  • Hindman, J. V., Kerr, F. J., McGee, R. X.: A low resolution hydrogen-line survey of the Magellanic system. Austr. J. Phys. 16, 570 (1963).

    Article  ADS  Google Scholar 

  • Hinteregger, H. E.: Absolute intensity measurements in the extreme ultraviolet spectrum of solar radiation. Space Sci. Rev. 4, 461 (1965).

    Article  ADS  Google Scholar 

  • Hjellming, R. M., Andrews, M. H., Sejnowski, T. J.: Intensities of radio recombination lines. Astrophys. Lett., 3, 111 (1969).

    ADS  Google Scholar 

  • Hjellming, R. M., Gordon, M. A.: Radio recombination lines and non-LTE theory: A reanalysis. Ap. J. 164, 47 (1971).

    Article  ADS  Google Scholar 

  • Hjerting, F.: Tables facilitating the calculation of line absorption coefficients. Ap. J. 88, 508 (1938).

    Article  ADS  Google Scholar 

  • Hollenbach, D. J., Salpeter, E. E.: Surface adsorption of light gas atoms. J. Chem. Phys. 53, 79 (1970).

    Article  ADS  Google Scholar 

  • Hollenbach, D. J., Salpeter, E. E.: Surface recombination of hydrogen molecules. Ap. J. 163, 155(1971).

    Article  ADS  Google Scholar 

  • Hollenbach, D.J., Werner, M.W., Salpeter, E.E.: Molecular hydrogen in HI regions. Ap. J. 163, 165 (1971).

    Article  ADS  Google Scholar 

  • Holstein, T.: Pressure broadening of spectral lines. Phys. Rev. 79, 744 (1950).

    Article  MathSciNet  ADS  Google Scholar 

  • Holtsmark, J. von: Über die Verbreiterung von Spektrallinien (On the broadening of spectral lines). Ann. Physik 58, 577 (1919).

    Article  ADS  Google Scholar 

  • Holtsmark, J. von: Über die Absorption in Na-Dampf (On the absorption in sodium vapor). Z. Physik 34, 722 (1925).

    Article  ADS  MATH  Google Scholar 

  • Hönl, H. von: Die Intensitäten der Zeeman-Komponenten (The intensity of the Zeeman components). Z. Physik 31, 340 (1925).

    Article  ADS  MATH  Google Scholar 

  • Hooper, C. F. Low-frequency component electric microfield distributions in plasmas. Phys. Rev.165, 215 (1968).

    Article  ADS  Google Scholar 

  • Huang, S. S., Struve, O.: Study of Doppler velocities in stellar atmospheres. The spectrum of Alpha Cygni, Ap. J. 121, 84 (1955).

    Article  ADS  Google Scholar 

  • Huang, S. S., Struve, O.: Stellar rotation and atmospheric turbulence. In: Stars and stellar systems, vol. 6 (ed. J. Greenstein). Chicago, 111.: Univ. of Chicago Press 1960.

    Google Scholar 

  • Hughes, M. P., Thompson, A. R., Colvin, R. S.: An absorption line study of the galactic neutral hydrogen at 21 centimeters wavelength. Ap. J. Suppl. No. 200, 23, 323 (1971).

    Article  ADS  Google Scholar 

  • Hulst, H. C. van de: Radiogloven mit hat wereldrium: I. Ontvangst der radiogloven; II. Herkomst der radiogloven (Radio waves from space: I. Reception of radiowaves; II. Origin of radiowaves). Ned. Tijdsch. Natuurk 11, 201 (1945).

    Google Scholar 

  • Hulst, H. C. van de: The solid particles in interstellar space. Rech. Astr. Obs. Utrecht XI, part 2 (1949).

    Google Scholar 

  • Humason, M. L., Mayall, N. U., Sandage, A. R.: Redshifts and magnitudes of extragalactic nebulae. Astron. J. 61, 97 (1956).

    Article  ADS  Google Scholar 

  • Hummer, D. G., Seaton, M. J.: The ionization structure of planetary nebulae: I. Pure hydrogen nebulae. M.N.R.A.S. 125, 437 (1963).

    ADS  MATH  Google Scholar 

  • Humphreys, C. J.: The sixth series in the spectrum of atomic hydrogen. J. Res. Nat. Bur. Stands., 50, 1 (1953).

    Article  Google Scholar 

  • Hund, F. von: Zur Deutung der Molekelspektren II (On the interpretation of molecular spectra II). Z. Physik 42, 93 (1927).

    Article  ADS  Google Scholar 

  • Hunger, K.: The theory of curves of growth. Z. Ap. 39, 38 (1956).

    ADS  Google Scholar 

  • Inglis, D. R., Teller, E.: Ionic depression of series limits in one-electron spectra. Ap. J. 90, 439 (1939).

    Article  ADS  MATH  Google Scholar 

  • Jefferts, K. B., Penzias, A. A., Wilson, R. W.: Deuterium in the Orion nebula. Ap. J. 179, L 57 (1973).

    Google Scholar 

  • Jeffries, J. T.: Spectral line formation. Waltham, Mass.: Blaisdell 1968.

    Google Scholar 

  • Jenkins, F. A., Segre, É.: The quadratic Zeeman effect. Phys. Rev. 55, 52 (1939).

    Article  ADS  MATH  Google Scholar 

  • de Jong, T.: The density of H2 molecules in dark interstellar clouds. Astron. Astrophys. 20, 263 (1972).

    ADS  Google Scholar 

  • Julienne, P. S., Krauss, M.: Molecule formation by inverse predissociation. In: Molecules in the galactic environment (ed. M. A. Gordon, L. E. Snyder). New York: Wiley 1973.

    Google Scholar 

  • Julienne, P. S., Krauss, M., Donn, B.: Formation of OH through inverse predissociation. Ap. J. 170, 65 (1971).

    Article  ADS  Google Scholar 

  • Kaler, J. B.: Chemical composition and the parameters of planetary nebulae. Ap. J. 160, 887 (1970).

    Article  ADS  Google Scholar 

  • Kardashev, N. S.: On the possibility of detection of allowed lines of atomic hydrogen in the radio- frequency spectrum. Soviet Astron. 3, 813 (1959).

    ADS  Google Scholar 

  • Kaufman, F.: Elementary gas processes. Ann. Rev. Phys. Chem. 20, 46 (1969).

    Article  ADS  Google Scholar 

  • Kemp, J. C.: Circular polarization of thermal radiation in a magnetic field. Ap. J. 162, 169 (1970).

    Article  ADS  Google Scholar 

  • Kemp, J. C., Swedlund, J. B., Landstreet, J. D., Angel, J. R. P.: Discovery of circularly polarized light from a white dwarf. Ap. J. 161, L 77 (1970).

    Article  ADS  Google Scholar 

  • Kepple, P. C.: Improved Stark-profile calculations for the Hell lines at 256, 304, 1085, 1216, 1640, 3203 and 4686 Å. Phys. Rev. A 6, 1 (1972).

    Article  ADS  Google Scholar 

  • Kepple, P. C., Griem, H. R.: Improved Stark profile calculations for the hydrogen lines Hα, , Hγ and Hδ. Phys. Rev. A 173, 317 (1968).

    ADS  Google Scholar 

  • Kerr, F. J.: Radio line emission and absorption by the interstellar gas. In: Stars and stellar systems, vol. 7 (ed. G. P. Kuiper), Chicago, Ill.: Univ. of Chicago Press 1968.

    Google Scholar 

  • Khintchine, A.: Korrelationstheorie der stationären stochastischen Prozesse (Correlation theory of stationary stochastic process). Math. Annalen 109, 604 (1934).

    Article  MathSciNet  Google Scholar 

  • Kirchhoff, H.: On the simultaneous emission and absorption of rays of the same definite refrangibility. Phil. Mag. 19, 193 (1860).

    Google Scholar 

  • Kirchhoff, G., Bunsen, R.: Chemical analysis by spectrum-observations. Phil. Mag. 22, 329, 498 (1861).

    Google Scholar 

  • Klemperer, W.: Interstellar molecule formation, radiative association and exchange reactions. In: Highlights of astronomy, vol. 2 (ed. C. de Jager). Dordrecht, Holland: D. Reidel (1971).

    Google Scholar 

  • Knapp, H. F. P., van den Meijdenberg, C. J. N., Beenakker, J. J. M., van de Hulst, H. C.: Formation of molecular hydrogen in interstellar space. B.A.N. 18, 256 (1966).

    ADS  Google Scholar 

  • Koehler, J. A.: Intergalactic atomic neutral hydrogen II. Ap. J. 146, 504 (1966).

    Article  ADS  Google Scholar 

  • Kolb, A.C., Griem, H.: Theory of line broadening in multiplet spectra. Phys. Rev. 111, 514 (1958).

    Article  ADS  MATH  Google Scholar 

  • Kraft, R. P.: Studies in stellar rotation I. Comparison of rotational velocities in the Hyades and Coma clusters. Ap. J. 142, 681 (1965).

    Article  ADS  Google Scholar 

  • Kraft, R. P.: Stellar rotation. In: Spectroscopic astrophysics—An assessment of the contributions of Otto Struve. Berkeley: University of California Press 1970.

    Google Scholar 

  • Kramers, H. A.: On the theory of X-ray absorption and of the continuous X-ray spectrum. Phil. Mag. 46, 836 (1923).

    Google Scholar 

  • Kramers, H. A.: The law of dispersion and Bohr’s theory of spectra. Nature 113, 783 (1924).

    Article  Google Scholar 

  • Kramers, H. A., ter Haar, D.: Condensation in interstellar space. B.A.N. 10, 137 (1946).

    ADS  Google Scholar 

  • Kronig, R. von de L.: Über die Intensität der Mehrfachlinien und ihrer Zeeman-Komponenten (On the intensity of multiple lines and their Zeeman components). Z. Physik 31, 885 (1925).

    Article  ADS  MATH  Google Scholar 

  • Kuhn, W. von: Über die Gesamtstärke der von einem Zustande ausgehenden Absorptionslinien (On the total intensity of the absorption lines originating at one level). Z. Physik 33, 408 (1925).

    Article  ADS  MATH  Google Scholar 

  • Ladenburg, R. von: Die quantentheoretische Deutung der Zahl der Dispersionselektronen (The quantum theory interpretation of the number of scattering electrons). Z. Physik 4, 451 (1921).

    Article  ADS  Google Scholar 

  • Lambert, D. L., Warner, B.: The abundances of the elements in the solar photosphere II., III. M.N.R.A.S. 138, 181, 213 (1968).

    ADS  Google Scholar 

  • Landau, L. D., Lifshitz, E. M.: Classical theory of fields. New York: Pergamon Press 1962.

    MATH  Google Scholar 

  • Landé, A. von: Über den anomalen Zeeman-Effekt (On the anomalous Zeeman effect). Z. Physik 5, 231 (1920).

    Article  ADS  Google Scholar 

  • Landé, A. von: Termstruktur und Zeeman-Effekt der Multipletts (Term structure and Zeeman effect in multiplets). Z. Physik 19, 112 (1923).

    Article  ADS  Google Scholar 

  • Laporte, O.: Die Struktur des Eisenspektrums (The structure of the iron spectrum). Z. Physik 23, 135 (1924).

    Article  ADS  Google Scholar 

  • Larmor, Sir J.: On the theory of magnetic influence on spectra and on the radiation from moving ions. Phil. Mag. 44, 503 (1897).

    MATH  Google Scholar 

  • Ledoux, P., Renson, P.: Magnetic stars. Ann. Rev. Astron. Astrophys. 4, 326 (1966).

    Article  Google Scholar 

  • Lewis, M., Margenau, H.: Statistical broadening of spectral lines emitted by ions in a plasma. Phys. Rev. 109, 842 (1958).

    Article  ADS  Google Scholar 

  • Liller, W.: The photoelectric photometry of planetary nebulae. Ap. J. 122, 240 (1955).

    Article  ADS  Google Scholar 

  • Liller, W., Aller, L. H.: Photoelectric spectrophotometry of planetary nebulae. Ap. J. 120, 48 (1955).

    Article  ADS  Google Scholar 

  • Lilley, A. E., Palmer, P.: Tables of radio-frequency recombination lines. Ap. J. Suppl. No. 144, 16, 143 (1968).

    ADS  Google Scholar 

  • Lindholm, E.: Zur Theorie der Verbreiterung von Spektrallinien (On the theory of broadening of spectral lines). Arkiv. Mat. Astron. Physik 28 B, No. 3 (1941).

    Google Scholar 

  • Litvak, M. M.: Infrared pumping of interstellar OH. Ap. J. 156, 471 (1969).

    Article  ADS  Google Scholar 

  • Lorentz, H. A.: Influence du champ magnétique sur l’émission lumineuse (On the influence of magnetic forces on light emission). Rev. d’electricité 14, 435 (1898)

    Google Scholar 

  • Lorentz, H. A.: Ann. Physik 63, 278 (1897).

    Article  ADS  MATH  Google Scholar 

  • Lorentz, H. A.: Electromagnetic phenomena in a system moving with any velocity smaller than that of light. Proc. Am. Acad. Sci. 6, 809 (1904). Reprod. in: The principle of relativity (H. A. Lorentz, A. Einstein, H. Minkowski, H. Weyl). New York: Dover 1952.

    Google Scholar 

  • Lorentz, H. A.: The absorption and emission lines of gaseous bodies. Proc. Am. Acad. Sci. 8, 591 (1906).

    Google Scholar 

  • Lorentz, H. A.: The theory of electrons. 1909. Republ. New York: Dover 1952.

    Google Scholar 

  • Lutz, B. L.: Radiative association and formation of diatomic molecules. Ann. N. Y. Acad. Sci. 194, 29 (1972).

    Article  ADS  Google Scholar 

  • Lyman, T.: The spectrum of hydrogen in the region of extremely short wave-length. Ap. J. 23, 181 (1906).

    Article  ADS  Google Scholar 

  • Margenau, H.: Van der Waals forces. Rev. Mod. Phys. 11, 1 (1939).

    Article  ADS  MATH  Google Scholar 

  • Margenau, H., Lewis, M.: Structure of spectral lines from plasmas. Rev. Mod. Phys. 31, 579 (1959).

    Article  ADS  Google Scholar 

  • Maxwell, J. C.: Illustrations of the dynamical theory of gases—Part I. On the motions and collisions of perfectly elastic spheres. Phil. Mag. 19, 19 (1860).

    Google Scholar 

  • Mayall, N. U., de Vaucouleurs, A.: Redshifts of 92 galaxies. Astron. J. 67, 363 (1962).

    Article  ADS  Google Scholar 

  • Mayer, M. G.: Über Elementarakte mit zwei Quantensprüngen (On elementary processes with two quantum emissions). Ann. Phys. 9, 273 (1931).

    Article  Google Scholar 

  • McNalley, D.: Interstellar molecules. In: Advances in astronomy and astrophysics, vol. 6 (ed. Z. Kopal). New York: Academic Press 1968.

    Google Scholar 

  • Meggers, W. F., Corliss, C. H., Scribner, B. F.: Tables of spectral line intensities. Nat. Bur. Stands. Mon. 32 (Wash.), 1961.

    Google Scholar 

  • Menzel, D. H.: The theoretical interpretation of equivalent breadths of absorption lines. Ap. J. 84, 462 (1936).

    Article  ADS  MATH  Google Scholar 

  • Menzel, D. H.: Extended sum rules for transition arrays. Ap. J. 105, 126 (1947).

    Article  ADS  Google Scholar 

  • Menzel, D. H.: Oscillator strengths, f, for high-level transitions in hydrogen. Ap. J. Suppl. No. 161,18, 221 (1969).

    Article  ADS  Google Scholar 

  • Menzel, D. H., Goldberg, L.: Multiplet strengths for transitions involving equivalent electrons. Ap. J. 84, 1 (1936).

    Article  ADS  Google Scholar 

  • Menzel, D. H., Pekeris, C. L.: Absorption coefficients and hydrogen line intensities. M.N.R.A.S. 96, 77 (1935). Reprod. In: Selected papers on physical processes in ionized plasmas (ed. D. H. Menzel). New York: Dover 1962.

    Google Scholar 

  • Merrill, P. W.: Lines of chemical elements in astronomical spectra. Washington, D. C: Carnegie Inst. of Wash. Publ. 610, 1958.

    Google Scholar 

  • Miley, G. K.: The radio structure of quasars—a statistical investigation. M.N.R.A.S. 152, 477 (1971).

    ADS  Google Scholar 

  • Milne, D. Aller, L. H.: to be publ.

    Google Scholar 

  • Milne, E. A.: Radiative equilibrium in the outer layers of a star: The temperature distribution and the law of darkening. M.N.R.A.S. 81, 361 (1921).

    ADS  Google Scholar 

  • Milne, E. A.: Thermodynamics of the stars. In: Handbuch der Astrophysik. 3, 80 (1930). Reprod. In: Selected papers on the transfer of radiation (ed. D. H. Menzel). New York: Dover 1966.

    Google Scholar 

  • Mihalas, D.: Stellar atmospheres. San Francisco, Calif.: W. H. Freeman 1970.

    Google Scholar 

  • Mitler, H.E.: The solar light element abundances and primeval helium. Smithsonian Astrophys. Obs. Rpt. 323 (1970).

    Google Scholar 

  • Moffet, A.: Strong nonthermal radio emission from galaxies. In: Galaxies and the universe—Stars and stellar systems, vol. IX (ed. A. R. Sandage). Chicago, Ill.: Univ. of Chicago Press 1974.

    Google Scholar 

  • Moore, C. E.: Atomic energy levels—Vol. I, II, III. Nat. Bur. Stands. (Wash.) 1949, 1952, 1959.

    Google Scholar 

  • Moore, C. E.: An ultraviolet multiplet table. Nat. Bur. Stands. (Wash.) 1950–69.

    Google Scholar 

  • Moore, C. E., Minnaert, M. G. J., Houtgast, J.: The solar spectrum 2935 Å to 8770Å. Nat. Bur. Stands. (Wash.) Mon. 61, 1966.

    Google Scholar 

  • Moore, C. E., Merrill, P. W.: Partial Grotrian diagrams of astrophysical interest. Nat. Bur. Stands. (Wash.) NSRDS-NBS. 23, 1968.

    Google Scholar 

  • Morgan, W. W., Keenan, P. C., Kellman, E.: An atlas of stellar spectra. Chicago, Ill.: University of Chicago Press 1943.

    Google Scholar 

  • Morse, P. M.: Diatomic molecules according to the wave mechanics: II. Vibrational levels. Phys. Rev. 34, 57 (1929).

    Article  ADS  MATH  Google Scholar 

  • Mottemann, J.: Thesis, Dept. of Astron., U.C.L.A. 1972.

    Google Scholar 

  • Mozer, B., Baranger, M.: Electric field distributions in an ionized gas. Phys. Rev. 118, 626 (1960).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  • Nelson, R. D., Lide, D. R., Maryott, A. A.: Selected values of electric dipole moments for molecules in the gas phase, NSRDS-NBS 10. Nat. Bur. Stands. (Wash.), 1967.

    Google Scholar 

  • O’Dell, C. R.: A distance scale for planetary nebulae based on emission line fluxes. Ap. J. 135, 371 (1962).

    Article  ADS  Google Scholar 

  • O’Dell, C. R.: Photoelectric spectrophotometry of planetary nebulae. Ap. J. 138, 1018 (1963).

    Article  ADS  Google Scholar 

  • Ornstein, L. S., Burger, H. C.: Strahlungsgesetz und Intensität von Mehrfachlinien (The radiation laws and intensities of multiple lines). Z. Physik 24, 41 (1924).

    Article  ADS  Google Scholar 

  • Ornstein, L. S., Burger, H. C.: Nachschrift zu der Arbeit Intensität der Komponenten im Zeeman-Effekt (Postscript to the work on intensities of the components in the Zeeman effect). Z. Physik 29, 241 (1924).

    Article  ADS  MATH  Google Scholar 

  • Osterbrock, D. E.: Expected ultraviolet emission spectrum of a gaseous nebulae. Planet Space Sci. 11, 621 (1963).

    Article  ADS  Google Scholar 

  • Pagel, B. E. J., Revised abundance analysis of the halo red-giant HD 122563. Roy. Obs. Bul.. No. 104 (1965).

    Google Scholar 

  • Palmer, P., Zuckerman, B., Penfield, H., Lilley, A. E., Mezger, P. G.: Detection of a new microwave spectral line. Nature 215, 40 (1967).

    Article  ADS  Google Scholar 

  • Paschen, F. von: Zur Kenntnis ultraroter Linienspektra I (On the knowledge of infrared line spectra I). Ann. Physik 27, 537 (1908).

    Article  ADS  Google Scholar 

  • Paschen, F. von, Back, E.: Normale und anomale Zeeman-Effekte (Normal and anomalous Zeeman effect). Ann. Physik 39, 929 (1912)

    Google Scholar 

  • Paschen, F. von, Back, E.: Normale und anomale Zeeman-Effekte (Normal and anomalous Zeeman effect). Ann. Physik 40, 960 (1913).

    Article  ADS  Google Scholar 

  • Pauli, W.: Über den Zusammenhang des Abschlusses der Elektronengruppen im Atom mit der Komplexstruktur der Spektren (On the connection of the termination of electron groups in atoms with the complex structure of spectra). Z. Physik 31, 765 (1925).

    Article  ADS  MATH  Google Scholar 

  • Pauli, W.: Zur Quantenmechanik des magnetischen Elektrons (On the quantum mechanics of the magnetic electron). Z. Physik 43, 601 (1927).

    Article  ADS  MATH  Google Scholar 

  • Peach, G.: The broadening of radio recombination lines by electron collisions. Astrophys. Lett. 10, 129 (1972).

    Article  ADS  Google Scholar 

  • Pedlar, A., Davies, R. D.: Stark broadening in high quantum number recombination lines of hydrogen. Nature-Phys. Sci. 231, 49 (1971).

    Article  ADS  Google Scholar 

  • Pengally, R. M.: Recombination spectra I. Calculations for hydrogenic ions in the limit of low densities. M.N.R.A.S. 127, 145 (1964).

    ADS  Google Scholar 

  • Penzias, A. A., Wilson, R. W.: Intergalactic H I emission at 21 centimeters. Ap. J. 156, 799 (1969).

    Article  ADS  Google Scholar 

  • Perek, L.: Photometry of southern planetary nebulae. Czech. Astr. Bull. No. 22, 103 (1971).

    ADS  Google Scholar 

  • Perek, L., Kohoutek, L.: Catalogue of planetary nebulae. Prague: Czech. Acad. Sci. 1967.

    Google Scholar 

  • Peterson, B. A., Bolton, J. G.: Redshifts of southern radio sources. Ap. J. 173, L 19 (1972).

    Article  ADS  Google Scholar 

  • Pfund, A. H.: The emission of nitrogen and hydrogen in the infrared. J. Opt. Soc. Am. 9, 193 (1924).

    Article  ADS  Google Scholar 

  • Pickering, E. C.: Stars having peculiar spectra, new variable stars in Crux and Cygnus. Ap. J. 4, 369 (1896).

    Article  ADS  Google Scholar 

  • Pickering, E. C.: The spectrum of £ Puppis. Ap. J. 5, 92 (1897).

    Article  ADS  Google Scholar 

  • Planck, M.: Über das Gesetz der Energieverteilung im Normalspectrum (On the law of energy distribution in a normal spectrum). Ann. Physik 4, 553 (1901).

    Article  ADS  MATH  Google Scholar 

  • Planck, M.: Zur Theorie der Wärmestrahlung (On the theory of thermal radiation). Ann. Physik 31, 758 (1910).

    Article  ADS  MATH  Google Scholar 

  • Planck, M.: The theory of heat radiation. 1913. Reprod. New York: Dover 1969. Planetary atmospheres. Pub. 1688 of Nat. Acad. Sci. (Wash.) 1968.

    Google Scholar 

  • Polanyi, J. C.: Chemical processes. In: Atomic and molecular processes (ed. D. R. Bates). New York: Academic Press 1962.

    Google Scholar 

  • Popper, D. M.: Red shift in the spectrum of 40 Eridani B. Ap. J. 120, 316 (1954).

    Article  ADS  Google Scholar 

  • Preston, G. W.: The quadratic Zeeman effect and large magnetic fields in white dwarfs. Ap. J. 160, L 143 (1970).

    Google Scholar 

  • Preston, T.: Radiation phenomena in the magnetic field. Phil. Mag. 45, 325 (1898).

    MATH  Google Scholar 

  • Purcell, E. M.: The lifetime of the 22S1/2 state of hydrogen in an ionized atmosphere. Ap. J. 116, 457 (1952).

    Article  ADS  Google Scholar 

  • Radhakrishnan, V., Brooks, J. W., Goss, W. M., Murray, J. D., Schwarz, U. J.: The Parkes survey of 21-centimeter absorption in discrete-source spectra. Ap. J. Suppl. No. 203, 24, 1 (1972).

    Article  ADS  Google Scholar 

  • Rapp, D., Francis, W. E.: Charge exchange between gaseous ions and atoms. J. Chem. Phys. 37, 2631 (1962).

    Article  ADS  Google Scholar 

  • Rayleigh, Lord: On the limit to interference when light is radiated from moving molecules. Phil. Mag. 27, 298 (1889).

    MATH  Google Scholar 

  • Rayleigh, Lord: On the visibility of faint interference bands. Phil. Mag. 27, 484 (1889).

    MATH  Google Scholar 

  • Rayleigh, Lord: On the widening of spectrum lines. Phil. Mag. 29, 274 (1915).

    Google Scholar 

  • Reifenstein, E. C., Wilson, T. L., Burke, B. F., Mezger, P. G., Altenhoff, W. J.: A survey of H 109 α recombination line emission in galactic H II regions of the northern sky. Astron. Astrophys. 4, 357 (1970).

    ADS  Google Scholar 

  • Ritz, W.: On a new law of series spectra. Ap. J. 28, 237 (1908).

    Article  ADS  Google Scholar 

  • Roberts, M. S.: Neutral hydrogen observations of the binary galaxy system NGC 4631/4656. Ap. J. 151, 117(1968).

    Article  ADS  Google Scholar 

  • Rogers, A. E. E., Barrett, A. H.: Excitation temperature of the 18-cm line of OH in H I regions. Ap. J. 151; 163 (1968).

    Article  ADS  Google Scholar 

  • Rogerson, J.: On the abundance of iron in the solar photosphere. Ap. J. 158, 797 (1969).

    Article  ADS  Google Scholar 

  • Rohrlich, F.: Sum rules for multiplet strengths. Ap. J. 124, 449 (1959).

    Article  MathSciNet  ADS  Google Scholar 

  • Rosseland, S.: Note on the absorption of radiation within a star, M.N.R.A.S. 84, 525 (1924). Reprod. in: Selected papers on the transfer of radiation (ed. D. H. Menzel). New York: Dover 1966.

    ADS  Google Scholar 

  • Russell, H. N.: The intensities of lines in multiplets. Nature 115, 835 (1925).

    Article  ADS  Google Scholar 

  • Russell, H. N.: On the composition of the Sun’s atmosphere. Ap. J. 70, 11 (1929).

    Article  ADS  Google Scholar 

  • Russell, H. N.: Tables for intensities of lines in multiplets. Ap. J. 83, 129 (1936).

    Article  ADS  Google Scholar 

  • Russell, H. N., Saunders, F. A.: New regularities in the spectra of the alkaline earths. Ap. J. 61, 38 (1925).

    Article  ADS  Google Scholar 

  • Rydberg, J. R.: On the structure of the line-spectra of the chemical elements. Phil. Mag. 29, 331 (1890).

    Google Scholar 

  • Rydberg, J. R.: The new elements of Clevèite gas. Ap. J. 4, 91 (1896).

    Article  ADS  Google Scholar 

  • Saha, M. N.: On the physical theory of stellar spectra. Proc. Roy. Soc. London A 99, 135 (1921).

    Article  ADS  Google Scholar 

  • Sargent, W. L. W.: The atmospheres of the magnetic and metallic-line stars. Ann. Rev. Astron. Astrophys. 2, 297 (1964).

    Article  ADS  Google Scholar 

  • Sargent, W. L. W.: Redshifts for 51 galaxies identified with radio sources in the 4 C catalog. Ap. J., 182, L 13 (1973).

    Article  ADS  Google Scholar 

  • Schlesinger, F.: The algol-variable δ Libre. Pub. Allegheny Obs. 1, 125 (1909).

    Google Scholar 

  • Schrödinger, E. von: Quantisierung als Eigenwertproblem (Quantisation as an eigenvalue problem). Ann. Physik 79, 361, 80, 437, 81, 109 (1925, 1926).

    Google Scholar 

  • Schuster, A.: Radiation through a foggy atmosphere, Ap. J. 21, 1 (1905) Reprod. in: Selected papers on the transfer of radiation (ed. D. H. Menzel). New York: 1966.

    Google Scholar 

  • Schwarzschild, K. von: Über das Gleichgewicht der Sonnenatmosphäre (On the equilibrium of the solar atmosphere). Nach. Ges. Gott. 195, 41 (1906). Engl trans. in: Selected papers on the transfer of radiation (ed. D. H. Menzel). New York: Dover 1966.

    Google Scholar 

  • Schwarzschild, K. von: Über Diffusion und Absorption in der Sonnenatmosphäre (On scattering and absorption in the solar atmosphere). Sitz. Akad. Wiss. 1183 (1914),.Engl, trans, in: Selected paper on the transfer of radiation (ed. D. H. Menzel). New York: Dover 1966.

    Google Scholar 

  • Schwarzschild, K. von: Zur Quantenhypothese (On the quantum hypothesis). Sitz. Akad. Wiss. 548 (1916).

    Google Scholar 

  • Seares, F. H.: The displacement-curve of the sun’s general magnetic field. Ap. J. 38, 99 (1913).

    Article  ADS  Google Scholar 

  • Seaton, M. J.: Thermal inelastic collision processes. Rev. Mod. Phys. 30, 979 (1958).

    Article  ADS  Google Scholar 

  • Seaton, M. J.: Planetary nebulae. Rep. Prog. Phys. 23, 314 (1960).

    Article  ADS  Google Scholar 

  • Seaton, M. J.: The theory of excitation and ionization by electron impact. In: Atomic and molecular processes (ed. D. R. Bates). New York: Academic Press 1962.

    Google Scholar 

  • Seaton, M. J.: Recombination spectra. M.N.R.A.S. 127, 177 (1964).

    ADS  Google Scholar 

  • Sejnowski, T. J., Hjellming, R. M.: The general solution of the b n problem for gaseous nebulae. Ap. J. 156, 915 (1969).

    Article  ADS  Google Scholar 

  • Shajn, G., Struve, O.: On the rotation of the stars. M. N. R. A. S. 89, 222 (1929).

    ADS  Google Scholar 

  • Shapley, H., Nicholson, S. B.: On the spectral lines of a pulsating star. Comm. Nat. Acad. Sci. Mt. Wilson Obs. 2, 65 (1919).

    Google Scholar 

  • Shields, G. A., Oke, J. B., Sargent, W. L. W.: The optical spectrum of the Seyfert galaxy 3C 120. Ap. J. 176, 75 (1972).

    Article  ADS  Google Scholar 

  • Shortley, G. H.: Line strengths in intermediate coupling. Phys. Rev. 47, 295, 419 (1935).

    Article  ADS  Google Scholar 

  • Shortley, G. H.: The computation of quadrupole and magnetic-dipole transition probabilities. Phys. Rev. 57, 225 (1940).

    Article  ADS  Google Scholar 

  • Slettebak, A.: On the axial rotation of the brighter O and B stars. Ap. J. 110, 498 (1949).

    Article  ADS  Google Scholar 

  • Slettebak, A.: The spectra and rotational velocities of the bright stars of Draper types B8–A2. Ap. J. 119, 146(1954).

    Google Scholar 

  • Slettebak, A.: The spectra and rotational velocities of the bright stars of Draper types A3–G0. Ap. J. 121, 653 (1955).

    Article  ADS  Google Scholar 

  • Slettebak, A., ed.: Proceedings I.A.U. colloquium on stellar rotation. New York: Gordon and Breach 1970.

    Google Scholar 

  • Slettebak, A., Howard, R. F.: Axial rotation in the brighter stars of Draper types B2-B5. Ap. J. 121, 102(1955).

    Article  ADS  Google Scholar 

  • Smerd, S. F., Westfold, K. C.: The characteristics of radio-frequency radiation in an ionized gas, with applications to the transfer of radiation in the solar atmosphere. Phil. Mag. 40, 831 (1949).

    Google Scholar 

  • Smith, A. M., Stecher, T. P.: Carbon monoxide in the interstellar spectrum of Zeta Ophiuchi. Ap. J. 164, L 43 (1971).

    Article  ADS  Google Scholar 

  • Smith, W. H., Liszt, H. S., Lutz, B. L.: A reevaluation of the diatomic processes leading to CH and CH+ formation in the interstellar medium. Ap. J. 183, 69 (1973).

    Article  ADS  Google Scholar 

  • Snyder, L. T., in: M.T.P. International review of science, sec. 1, 3, ch. 6, 1973.

    Google Scholar 

  • Solomon, P., Klemperer, W.: The formation of diatomic molecules in interstellar clouds. Ap. J. 178, 389 (1972).

    Article  ADS  Google Scholar 

  • Sommerfeld, A. von: Zur Quantentheorie der Spektrallinien (On the quantum theory of spectral lines). Ann. Phys. 50, 385, 51, 1 (1916).

    Google Scholar 

  • Spitzer, L.: Impact broadening of spectral lines. Phys. Rev. 58, 348 (1940).

    Article  ADS  Google Scholar 

  • Spitzer, L., Greenstein, J. L.: Continuous emission from planetary nebulae. Ap. J. 114, 407 (1951).

    Article  ADS  Google Scholar 

  • Spitzer, L., Drake, J. F., Jenkins, E. B., Morton, D. C., Rogerson, J. B., York, D. G.: Spectrophotometry results from the Copernicus satellite IV molecular hydrogen in interstellar space. Ap. J. 181, L 116 (1973).

    Article  ADS  Google Scholar 

  • Stark, J. von: Beobachtungen über den Effekt des elektrischen Feldes auf Spektrallinien (Observations of the effect of the electric field on spectral lines). Sitz. Akad. Wiss. 40, 932 (1913).

    Google Scholar 

  • Stecher, P., Williams, D. A.: Interstellar molecule formation. Ap. J. 146, 88 (1968).

    Article  ADS  Google Scholar 

  • Stief, L. J., Donn, B., Glicker, S., Gentieu, E. P., Mentall, J. E.: Photochemistry and lifetimes of interstellar molecules. Ap. J., 171, 21 (1972).

    Article  ADS  Google Scholar 

  • Stief, L. J.: Photochemistry of interstellar molecules. In: Molecules in the galactic environment (ed. M. A. Gordon, L. E. Snyder). New York: Wiley 1973.

    Google Scholar 

  • Striganov, A. R., Sventitskii, N. S.: Tables of spectral lines of neutral and ionized atoms. New York: IFI/Plenum 1968.

    Google Scholar 

  • Struve, O.: The Stark effect in stellar spectra. Ap. J. 69, 173 (1929).

    Article  ADS  Google Scholar 

  • Struve, O.: On the axial rotation of stars. Ap. J. 72, 1 (1930).

    Article  ADS  Google Scholar 

  • Struve, O., Elvey, C. T.: The intensities of stellar absorption lines. Ap. J. 79, 409 (1934).

    Article  ADS  Google Scholar 

  • Swings, P.: Considerations regarding cometary and interstellar molecules. Ap. J., 95, 270 (1942).

    Article  ADS  MATH  Google Scholar 

  • Tarter, C. B.: Ultraviolet and forbidden-line intensities. Ap. J. Suppl. No. 154, 18, 1 (1969).

    Google Scholar 

  • Terzian, Y.: Observations of planetary nebulae at radio wavelengths. In: Planetary nebulae (ed. D. E. Osterbrock, C. R. O’Dell), I.A.U. Symp. No. 34. Dordrecht, Holland: D. Reidel. Berlin-Heidelberg-New York: Springer 1968.

    Google Scholar 

  • Thomas, L. H.: The motion of the spinning electron. Nature 117, 514 (1926).

    Article  ADS  Google Scholar 

  • Thomas, L. H.: The kinematics of an electron with an axis. Phil. Mag. 1, 1 (1927).

    Google Scholar 

  • Thomas, W.: Über die Zahl der Dispersionselektronen die einem stationären Zustande zugeordnet sind (On the number of scattering electrons which are associated with a stationary state). Naturwiss. 13, 627 (1925).

    Article  ADS  MATH  Google Scholar 

  • Thomson, J. J.: Conduction of electricity through gases. Cambridge: Cambridge University Press, 1903. Republ. New York: Dover 1969.

    Google Scholar 

  • Townes, C. H.: Microwave and radiofrequency resonance lines of interest to radio astronotay. In: I.A.U. Symp. No. 4 (ed H. C. van de Hulst). Cambridge: Cambridge University Press 1957.

    Google Scholar 

  • Townes, C. H., Schawlow, A. L.: Microwave spectroscopy. New York: McGraw-Hill 1955.

    Google Scholar 

  • Trimble, V. L., Thorne, K. S.: Spectroscopic binaries and collapsed stars. Ap. J. 156, 1013 (1969).

    Article  ADS  Google Scholar 

  • Turner, B. E.: Fifty new OH sources associated with H II regions. Astrophys. Lett 6, 99 (1970).

    ADS  Google Scholar 

  • Uhlenbeck, G. E., Goudsmit, S.: Zuschriften und vorläufige Mitteilungen (Replacement of the hypothesis of nonmechanical constraint by a requirement referring to the irrner properties of each individual electron). Naturwiss. 13, 953 (1925).

    Article  ADS  MATH  Google Scholar 

  • Uhlenbeck, G. E., Goudsmit, S.: Spinning electrons and the structure of spectra. Nature 117, 264 (1926).

    Article  ADS  Google Scholar 

  • Underhill, A. B., Waddell, J. H.: Stark broadening functions for the hydrogen lines. Nat. Bur. Stands. (Wash.), Circ. 603, 1959,

    Google Scholar 

  • Unsöld, A.: Stellar abundances and the origin of the elements. Science 163, 1015 (1969).

    Article  ADS  Google Scholar 

  • Van Vleck, J. H.: On σ-type doubling and electron spin in the spectra of diatomic molecules. Phys. Rev. 33, 467 (1929).

    Article  ADS  MATH  Google Scholar 

  • Van Vleck, J. H.: Theory of electric and magnetic susceptibilities. London: Oxford University Press, 1932.

    MATH  Google Scholar 

  • Varsavsky, M.: Some atomic parameters for ultraviolet lines. Ap. J. Suppl. 6, 75 (1961).

    Article  ADS  Google Scholar 

  • de Vaucouleurs, G., de Vaucouleurs, A.: Reference catalogue of bright galaxies. Austin, Texas: Univ. of Texas Press 1964.

    Google Scholar 

  • de Veny, J. B., Osborn, W. H., Janes, K.: A catalogue of quasars. P. A.S.P. 83, 611 (1971).

    Article  ADS  Google Scholar 

  • Verschuur, G. L. Positive determination of an interstellar magnetic field by measurement of the Zeeman splitting of the 21-cm hydrogen line. Phys. Rev. Lett. 21, 775 (1968).

    Article  ADS  Google Scholar 

  • Vidal, C. R., Cooper, J., Smith, E. W.: Hydrogen Stark—broadening tables. Ap. J. Suppl. No. 214, 25, 37 (1973).

    Article  ADS  Google Scholar 

  • Voigt, W.: Über die Intensitätsverteilung innerhalb einer Spektrallinie (Distribution of intensity within a spectrum line. Phys. Zeits. 14, 377 (1913).

    MATH  Google Scholar 

  • Wampler, E. J., Robinson, L. B., Baldwin, J. A., Burbidge, E. M.: Redshift of OQ 172. Nature 243, 336 (1973).

    Article  ADS  Google Scholar 

  • Watson, W. D., Salpeter, E. E.: Molecule formation on interstellar grains. Ap. J. 174, 321 (1972).

    Article  ADS  Google Scholar 

  • Watson, W. D., Salpeter, E. E.: On the abundances of interstellar molecules. Ap. J. 175, 659 (1972).

    Article  ADS  Google Scholar 

  • Weaver, H. F., Williams, D. R. W.: The Berkeley low latitude survey of neutral hydrogen part I. Profiles. Astron. Astrophys. Suppl. 8, 1 (1973).

    ADS  Google Scholar 

  • Weinreb, S., Barrett, A. H., Meeks, M. L., Henry, J. C.: Radio observations of OH in the interstellar medium. Nature 200, 829 (1963).

    Article  ADS  Google Scholar 

  • Weisskopf, V. von: Die Breite der Spektrallinien in Gasen (The width of spectral lines in gases). Phys. Zeits. 34, 1 (1933).

    Google Scholar 

  • Weisskopf, V. von: The intensity and structure of spectral lines. Observatory 56, 291 (1933).

    ADS  Google Scholar 

  • Weisskopf, V. von, Wigner, E.: Berechnung der natürlichen Linienbreite auf Grund der Diracschen Lichttheorie (Calculation of the natural line width on the basis of Dirads theory of light). Z. Phys. 63, 54 (1930).

    Article  ADS  MATH  Google Scholar 

  • Wentzel, D. G.: An upper limit on the abundance of H2 formed by chemical exchange. Ap. J. 150, 453 (1967).

    Article  ADS  Google Scholar 

  • Werner, M. W.: Ionization equilibrium of carbon in interstellar clouds. Astrophys. Lett. 6, 81 (1970).

    ADS  Google Scholar 

  • Westerhout, G.: Maryland-Greenbank 21-cm line survey. College Park, Maryland: Univ. Maryland 1969.

    Google Scholar 

  • White, H. E., Eliason, A. Y.: Relative intensity tables for spectrum lines. Phys. Rev. 44, 753 (1933).

    Article  ADS  Google Scholar 

  • Whitford, A. E.: An extension of the interstellar absorption-curve. Ap. J. 107, 102 (1948).

    Article  ADS  Google Scholar 

  • Whitford, A. E.: The law of interstellar reddening. Astron. J. 63, 201 (1958).

    Article  ADS  Google Scholar 

  • Wiener, N.: Generalized harmonic analysis. Acta. Math. Stockholm 55, 117 (1930).

    Article  MathSciNet  MATH  Google Scholar 

  • Wiese, W. L., Smith, M. W., Glennon, B. M.: Atomic transition probabilities, vol. 1. Hydrogen through helium. Nat. Bur. Stands. (Wash.), NSRDS-NBS4 1966.

    Google Scholar 

  • Wild, J. P.: Radio-frequency line spectrum of atomic hydrogen and its applications in astronomy. Ap. J. 115, 206 (1952).

    Article  ADS  Google Scholar 

  • Wilkinson, P. G.: Diatomic molecules of astrophysical interest: Ionization potentials and dissociation energies. Ap. J. 138, 778 (1963).

    Article  ADS  Google Scholar 

  • Wilson, O. C.: A survey of internal motions in the planetary nebulae. Ap. J. 111, 279 (1950).

    Article  ADS  Google Scholar 

  • Wilson, O. C.: Kinematic structures of gaseous envelopes—internal kinematics of the planetary nebulae. Rev. of Mod. Phys. 30, 1025 (1958).

    Article  ADS  Google Scholar 

  • Wilson, T. L., Mezger, P. G., Gardner, F. F., Milne, D. K.: A survey of H 109 a recombination line emission in galactic H II regions of the southern sky. Astron. Astrophys. 6, 364 (1970).

    ADS  Google Scholar 

  • Wilson, R. W., Penzias, A. A., Jefferts, K. P., Solomon, P. M.: Interstellar deuterium: The hyperfine structure of DCN. Ap. J. 179, L 107 (1973).

    Article  ADS  Google Scholar 

  • Woolley, R. v. D. R.: The solar corona. Suppl. Austr. J. of Sci. 10, 2 (1947).

    Google Scholar 

  • Wrubel, M. H.: Exact curves of growth for the formation of absorption lines according to the Milne-Eddington model: II. Center of the disk. Ap. J. 111, 157 (1950).

    Article  ADS  Google Scholar 

  • Wrubel, M. H.: Exact curves of growth: III. The Schuster-Schwarzschild model. Ap. J. 119, 51 (1954).

    Article  ADS  Google Scholar 

  • Wyndham, J. D.: Optical identification of radio sources in the 3 C revised catalogue. Ap. J. 144, 459 (1966).

    Article  ADS  Google Scholar 

  • Zanastra, H.: An application of the quantum theory to the luminosity of diffuse nebulae. Ap. J. 65, 50 (1927).

    Article  ADS  Google Scholar 

  • Zeeman, P.: On the influence of magnetism on the nature of the light emitted by a substance. Phil. Mag. 43, 226 (1896).

    Google Scholar 

  • Zeeman, P.: Doublets and triplets in the spectrum produced by external magnetic forces I., II. Phil. Mag. 44, 55, 255 (1897).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1974 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Lang, K.R. (1974). Monochromatic (Line) Radiation. In: Astrophysical Formulae. Springer Study Edition. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-11188-8_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-11188-8_2

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-09064-9

  • Online ISBN: 978-3-662-11188-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics