Skip to main content

Dynamics of Picoplankton and Microplankton Flora in the Experimental Wastewater Stabilization Ponds in the Arid Region of Marrakech, Morocco and Cyanobacteria Effect on Escherichia coli and Vibrio cholerae Survival

  • Chapter
Wastewater Treatment with Algae

Part of the book series: Biotechnology Intelligence Unit ((BIOIU))

Abstract

Several treatment systems are available to reduce the load of organic matter and bacterial pollution in sewage water. Among them, the technique of stabilization pond treatment appears to be a good choice due to its simple management and its satisfactory level of treatment.1

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 16.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Gloyna EF. Waste stabilization ponds. World Health Organization 1972; 1–185.

    Google Scholar 

  2. Sauze F. Interaction des algues et des microorganismes dans les milieux pollués. Industrie Alimentaire et Agricole 1978; 95: 1234–1243.

    Google Scholar 

  3. Raschke RL. Algal periodicity and waste reclamation in stabilization ponds system. J Wat Pol Cont Fed 1970; 42: 518–530.

    CAS  Google Scholar 

  4. Palmer CM. Algae and Water Pollution. US EPA Ohio, 1977: 1–124.

    Google Scholar 

  5. Ergashev AE, Tajiev SH. Seasonal variation of phytoplankton in a series of waste treatment lagoons (Chimkent, Central Asia). 1-Artificial inoculation and role of algae in sewage purification. Int Res Der Ges Hydrobiol 1986; 17: 545–555.

    Article  Google Scholar 

  6. Barbe J, Steiner B. Méthodologie de la caractérisation des installations de lagunage naturel par le phytoplancton. Revue Sciences de l’eau 1987; 6: 137–150.

    Google Scholar 

  7. Pearson HW, Mara DD, Mills SW et al. Factors determining algal populations in waste stabilization ponds and influence of algae on pond performance. Wat Sci Technol 1987; 19: 131–140.

    CAS  Google Scholar 

  8. Becker EW. Elimination of heavy metal removal from wastewater by means of algae. Water Research; 17: 459–466.

    Google Scholar 

  9. Abelovich A, Weisman D. Role of heterotrophic nutrition in growth of alga Scenedesmus obliquus in high rate oxidation ponds. Appl Environ Microbiol 1978; 35: 32–37.

    Google Scholar 

  10. Kalisz L. Role of algae in sewage purification. I-oxygen production. Pol Arch Hydrol 1973; 20: 389–412.

    CAS  Google Scholar 

  11. Pouliot Y, de la Noüe J. Mise au point d’une usine-pilote d’épuration des eaux usées par production de micro-algues. Revue Sciences de l’Eau 1985; 4: 207–222.

    CAS  Google Scholar 

  12. Sérodes JB, Walsh E, Goulet O et al. Tertiary treatment of municipal wastewater using bioflocculating micro-algae. Can J Civ Eng 1991; 18: 940–944.

    Article  Google Scholar 

  13. De la Noue J, Laliberté G, Proulx D. Algae and waste water. J Appl Phycol 1992; 4: 247–254.

    Article  Google Scholar 

  14. Talbot P, de la Noüe J. Tertiary treatment of wastewater with Phormidium bonheri (Schmidle) under various light and temperature conditions. Water Res 1993; 27: 153–159.

    Article  CAS  Google Scholar 

  15. Mara DD, Pearson HW. Artificial freshwater enviroments: waste stabilzation ponds. In: Rehm H, Reed G, eds. Biotechnology–A Comprehensive Treatise,VCH, Weinheim, 1986: 177–206.

    Google Scholar 

  16. Mezrioui N, Oufdou KH, Baleux B. Dynamics of non-01 Vibrio cholerae and fecal coliforms in experimental stabilization ponds in the arid region of Marrakesh, Morocco, and the effect of pH, temperature and sunlight on their experimental survival. J Can Microbiol 1995; 41: 489–498.

    Article  CAS  Google Scholar 

  17. Neel KJ, Mc-Dermott JH, Monday CA. Experimental lagooning of raw sewage at Fayette Missouri. J Wat Pol Cont Fed 1961; 33: 603–641.

    CAS  Google Scholar 

  18. Vuillot M, Pujol R. Traitement des eaux usées domestiques par le lagunage naturel. Performances et suivi d’installation. Rapport: traitement des E.U. des petites collectivités. 35 Journée internationale du CEBEDEAU 1982. Liége (France).

    Google Scholar 

  19. Yang LB, Wing LK, McGarry, MG et al. Overview of wastewater treatment and resource recovery. Report of a workshop on light-rate algae ponds 1980 Singapore, February 47p.

    Google Scholar 

  20. Culminance MJ, Shafer JRA. Algae and phosphorus removal from lagoon effluents by in situ chemical addition. Tech Report EL/82/6. US army Enninier waterways experiment station CE. Vieksburg, Miss.

    Google Scholar 

  21. Oswald WJ. Microalgae and wastewater treatment. In Borowitzka, MA, Borowitzka, LJ eds. “Microalgal Biotechnology.” New York, 1988: 305–328.

    Google Scholar 

  22. King DL. The role of carbon in eutrophication. J Water Pollution Control Federation 1970; 42: 2035–2051.

    CAS  Google Scholar 

  23. Humenik FJ, Hanna GP. Algal bacterial symbiosis for removal and conservation of wastewater nutrients. J Water Pollution Control Federation 1971; 43. 580–594.

    CAS  Google Scholar 

  24. Harris GP. Photosynthesis, production and growth: the physiological ecology of phytoplankton. Arch Hydrobiol Beich Ergebm Limnol 1978; 10: 1–171.

    Google Scholar 

  25. Kalisz L. Role of algae in sewage purification. II Nutrient removal. Pol Arch Hydrobiol 1973; 20413–434.

    Google Scholar 

  26. Van der post DC, Toerien DF. The retardment of algal growth in maturation ponds. Water Res 1974; 8: 593–600.

    Article  Google Scholar 

  27. Patil HS, Dodakundi GB, Rodgi SS. Succession in zoo-and phytoplankton in sewage stabilization ponds. Hydrobiologia 1975; 7253–264.

    Google Scholar 

  28. Shillanglow SN, Pieterse AJH. Observation on algal populations in experimental maturation pond system. Water SA 1977; 3: 183–192.

    Google Scholar 

  29. Steiner B. Evolution des peuplements planctoniques d’une installation de lagunage naturel (chaucenne, Doubs). Actes Colloque. Montpellier 1–5 juin/lagunage 1982: 13.

    Google Scholar 

  30. Roques H. Fondements théoriques du traitement biologique des eaux I et II. Techniques et Documents: Paris. 1979.

    Google Scholar 

  31. Kankalaa P. The relative importance of algae and bacteria as food for Daphnia longispina (Cladocera) in a polyhumic lake. Fresh Water Biology 1988; 19: 285–296.

    Article  Google Scholar 

  32. Raschke RL. Algal periodicity and waste reclamation in a stabilization ponds system. J Water Pollution Control Federation 1970; 42: 518–530.

    CAS  Google Scholar 

  33. Oswald WJ. Productivity of algae in sewage disposal. Solar Energy 1973; 15: 107–117.

    Article  CAS  Google Scholar 

  34. Delannoy M. Etude du phytoplancton dans les bassins d’autoépuration de la station de Wavrin. Rapport du Labo d’Algologie, UER de Biologie, Université de Lille I 1973: 83.

    Google Scholar 

  35. Martin JA. Phytoplankton–zooplankton relationship in Narragausett Bay 4. Limnol Oceanogr 1970; 15: 413–418.

    Article  Google Scholar 

  36. Bailey Watts AE. Seasonal variation in size spectra of phytoplankton assemblages in Loch leven Scotland. Hydrobiologia 1986; 138: 25–42.

    Article  Google Scholar 

  37. Pourriot R, Champ P. Consommateurs et production secondaire. In Pourriot, R, Masson eds. “Ecologie du plancton des eaux continentales.” Paris 1982: 49–112.

    Google Scholar 

  38. Chifaa A. Etude de la dynamique des peuplements phytoplanctoniques et interactions avec la qualité de l’eau des bassins expérimentaux de lagunage sous climat aride. Thèse de Doctorat de 3ème Cycle, Univ Cadi Ayyad Fac Sci. Marrakech 1987: 1–173.

    Google Scholar 

  39. Oudra B. Bassins de stabilisation anaérobie et aérobie facultatif pour le traitement des eaux usées à Marrakech: Dynamique du phytoplancton (Microplancton et Picoplancton) et évaluation de la biomasse primaire. Thèse de Doctorat de 3ème Cycle, Univ. Cadi Ayyad, Fac, Sci. Marrakech 1990; 1–144.

    Google Scholar 

  40. Komarek J. Taxonomic review of genera Synechocystis 1892, Synechococcales 1849 and Cyanophyceae. Arch Protistark Ed 1976; 118: 119–179

    Google Scholar 

  41. Lorenzen CJ. Determination of Chlorophyll and phaeopigments spectrophotometric equations. Limnol Oceanogr 1967; 12: 343–346.

    Article  CAS  Google Scholar 

  42. Prepas EE, Dunnigan ME, Trimbee AM. Comparisons in situ estimates of chlorophyll a obtained with Whatman GF/F and GF/C glass fiber filters in mesotrophic to hypertrophic lakes. J Can Fish Aquat Sci 1988; 45: 910–914.

    Article  CAS  Google Scholar 

  43. Pick FR, Caron DA. Picoplankton and nannoplankton biomass in lake Ontario: relative contribution of phototrophic and heterotrophic communities. J Can Fish Aquat Sci 1987; 44: 2164–2172.

    Article  Google Scholar 

  44. Weisse T. Dynamics of autotrophic picoplankton in lake Constance. J Plankton Res 1988; 1o: 1179–1188.

    Article  Google Scholar 

  45. Bouarab L. Contribution à l’étude des differentes formes du phosphore dans le lagunage naturel: station expérimentale de Marrakech. Thèse de Doctorat de 3ème Cycle, Univ Cadi Ayyad Fac Sci Marrakech1988: 1–125.

    Google Scholar 

  46. Lincoln EP, Hill DT. An integrated microalgae system. In: Shelef G, Soeder CJ, eds. “Algal Biomass” North-Holland, Biomedical Press 1980: 224–244.

    Google Scholar 

  47. Ouazzani N. Lagunage expérimental sous climat aride: variation des paramètres physico-chimiques à Marrakech. Thèse de Doctorat de 3ème Cycle, Univ Cadi Ayyad Fac Sci Marrakech 1987: 1–84.

    Google Scholar 

  48. Belkoura M, Dauta A. Interaction lumière-température et influence de la photopériode sur le taux de croissance de Chlorella Sorokiniana Shih et Kraus. Annales de Limnologie 1992; 28: 101–107.

    Article  Google Scholar 

  49. Craig SR. The distribution and contribution of picoplankton to deep photosynthetic layers in some monomictic lakes. Acta Acad Aboenis 1987; 47: 55–81.

    Google Scholar 

  50. Yamaoka T, Satah K, Kotak S. Photosynthetic activities of thermophilic Blue-green alga. Plant Cell Physiol 1978; 19: 943–954.

    CAS  Google Scholar 

  51. Caron DA, Pick FR, Lean DRS. Chroococcoid cyanobacteria in lake Ontario: seasonal and vertical distribution during 1982. J Phycol 1985; 21: 171–175.

    Article  Google Scholar 

  52. Tifnouti A. Zooplancton des bassins de lagunage de Marrakech: structure du peuplement et dynamique des principales populations. Thèse de Doctorat de 3ème Cycle, Univ. Cadi Ayyad, Fac, Sci. Marrakech 1987; 1–198.

    Google Scholar 

  53. Braband A, Faafeng BA, Kallqvist T et al. Biological control of undesirable cyanobacteria in culturally eutrophic lake. Oecologia 1983; 60: 1–5.

    Article  Google Scholar 

  54. Paerl HW. Growth and reproductive strategies of freshwater blue-green algae (Cyanobacteria). In: Craig DS, ed. Growth and Reproductive Strategies of Freshwater Phytoplancton. New York, 1988: 261–315.

    Google Scholar 

  55. Tifnouti A, Pourriot R. Dynamique d’une population de Moina micrura (Crustacea, Cladocera) dans un bassin de lagunage à Marrakech (Maroc). Rev Hydrobiol Trop 1989; 22: 239–250.

    Google Scholar 

  56. Casellas C. Dynamique des ecosystèmes de lagunes d’épuration d’eaux usées, application au laguange experimental de Marrakeck (Maroc) et comparaison avec le laguange de Meze ( Herault ). Doctorat d’Etat es-Sciences pharmaceutiques 1990; 1–122.

    Google Scholar 

  57. Singleton FL, Atwell RW, Jangi MS et al. Influence of salinity and organic nutrient concentration on survival and growth of V. cholerae in aquatic microcosms. Appl Environ Microbiol 1982; 43: 1080–1085.

    CAS  Google Scholar 

  58. Huq A, Small EB, West PA et al. The role of planktonic copepods in the survival and multiplication of V. cholerae in the aquatic environment. In Colwell, RR eds. “Vibrios in the Environment.” John Wiley and Sons. New York, 1984: 521–534.

    Google Scholar 

  59. Colwell RR. Vibrio cholerae and related Vibrios in the aquatic environment - an ecological paradigm. Proc IV ISME 1986: 426–434.

    Google Scholar 

  60. Rhee GY. Competition between an algae and an aquatic bacterium for phosphate. Limnol and Oceanogr 1972; 17: 505–513.

    Article  CAS  Google Scholar 

  61. Dor I, Svi B. Effect of heterotrophic bacteria on the green algae growing in wastewater. In: Shelef G, Soeder CG, eds. “Algal Biomass.” Elsevier/North-Holland. Biomedicall Press, 1980: 425–429.

    Google Scholar 

  62. Dor I, Svi B. Effect of the green algae isolated from wastewater on the activity of sewage bacteria. In Shelef, G, Soeder, CG eds. “Algal Biomass.” Elsevier/NorthHolland. Biomedicall Press, 1980 (presented as a poster communication).

    Google Scholar 

  63. Islam MS, Drakar BS, Bradley DJ. Attachment of toxigenic V. cholerae 01 to various freshwater plants and survival with a green algae, Rhizoclonium fontanum. J Trop Med Hyg 1989; 92: 396–401.

    CAS  Google Scholar 

  64. Nair GB, Sarkar BL, De SP et al. Ecology of V. cholerae in the fresh water environs of Calcutta, India. Microbiol Ecol 1988; 15: 203–215.

    Article  Google Scholar 

  65. Hofer E, Ernandez D. Incidencia de Vibrio cholerae nào 01 em affluentes de estaçoês de ratamento de esgotos da cidade do Rio de Janeiro, RJ Rev Microbiol sào Paulo 1990; 21: 31–40.

    Google Scholar 

  66. Martin YP, Bonnefont JL. Variations annuelles et identification des vibrions cultivant à 37°C dans un effluent urbain dans des moules et dans l’eau de mer en rade de Toulon (Méditerranée, France). J Can Microbiol 1990; 36: 47–52.

    Google Scholar 

  67. Oudra B, Lâakari A, Loudiki M et al. Blooms à picocyanobacteria dans un bassin expérimental de stabilisation des eaux usées de Marrakech: Causes et conséquences. Proc of fourth C.I.L.E.F. 25–28 Avril 1994, Marrakesh.

    Google Scholar 

  68. Dauta A. Conditions de développement du phytoplancton. Etude comparative du comportement de huits espèces en culture. 1. Détermination des paramètres de croissance en fonction de la lumière et de la température. Annales Limnologie 1982; 18: 3: 217–262.

    Article  Google Scholar 

  69. Ferris JM, Hirsch CF. Method for isolation and purification of Cyanobacteria. Appl Environ Microbiol 1991; 57: 1448–1452.

    CAS  Google Scholar 

  70. Sournia A. Phtoplanktonic Manual. UNESCO eds. Paris, 1978: 1–337.

    Google Scholar 

  71. Guillard RRL. Divison rates. In: Stein JR, eds. “Hand Book of Physiological Methods- Cultures Methodes & Growth Measurements.” Cambridge University Press, 1973: 289–311.

    Google Scholar 

  72. Chamberlin CE, Mitchell R. A decay model for enteric bacteria in naturel waters. In: Mitchell R, ed. Water Pollution Microbiology. John Wiley and Sons, New York: 1978; 2: 325–348.

    Google Scholar 

  73. Burdyl P, Post FJ. Survival of Escherichia coli in great salt lake water. Water Air Soil Pollut. 1979; 12: 237–246.

    Article  Google Scholar 

  74. Islam MS. Increased toxin production by V. cholerae 01 survival with a green algae, Rhizoclonium fontanum, in an artificial aquatic environment. Microbiol Immunol 1990; 34: 557–563.

    CAS  Google Scholar 

  75. Mezrioui N, Baleux B. Effets de la température, du pH et du rayonnement solaire sur la survie de différentes bactéries d’intérêt sanitaire dans une eau usée épurée par lagunage. Revue Sciences l’eau 1992; 5: 573–591.

    Google Scholar 

  76. Himber K, Keijola AM, Husvirta L et al. The effect of water treatment processes on the removal of hepatotoxines from Microcystis and Oscillatoria Cyanobacteria: Laboratory study. Wat Res 1989; 23: 979–984.

    Article  Google Scholar 

  77. Repavich WM, Svonzogni WC, Standridge JH et al. Cyanobacteria (blue green algae) in Wisconsin waters: Acute and chronic toxicity. Wat Res 1990; 24: 225–231.

    Article  CAS  Google Scholar 

  78. Yasumo M, Sugaya Y. Toxicities of Microcystis viridis and the isolated hepatotoxic polypeptides on cladocerans. Verh Intern Verein Limnol 1991; 24: 2622–2626.

    Google Scholar 

  79. Augier, H. Contribution à l’étude biochimique et physicochimique des substances de croissance chez les algues. Thèse Doc. Univ. Marseille 1972; 1–323.

    Google Scholar 

  80. Soeder CJ, Fingerhut U, Groneweg J. Microalgae and bacteria in wastewater: cooperation and interaction. In: Megunsar, F, Gantar, M eds. Perspective in Microbial Ecology. Proc of Fourth Intenational Symposium on Microbiol Ecology. Ljubljana, 1986: 80–85.

    Google Scholar 

  81. Imziln B. Traitement des eaux usées par lagunage anaérobie et aérobie facultatif à Marrakech: Etude bactériologique quantitative et qualitative. Antibiorésistance des bactéries d’intérêt sanitaire. Thèse de Sème cycle. Univ Cadi Ayyad Fac Sci Semlalia Marrakech 1990: 1–122.

    Google Scholar 

  82. Hassani L. Traitement des eaux usées par lagunage expérimental à Marrakech: Evolution spatio-temporelle et antibiorésistance des coliformes fécaux et d’Aeromonas spp, Influence du transfert conjucatif et des rayons solaires sur la résistance d’E. coli aux antibiotiques. Doctorat d’Etat Es-Sciences, Univ Cadi Ayyad Fac Sci Semlalia Marrakech 1993: 1–141.

    Google Scholar 

  83. Abeliovich A, Weisman D. Role of heterotrophic nutrition in growth of algae Scenedesmus obliqus in high rate oxidation ponds. Appl Environ Microbiol 1978; 35: 32–37.

    CAS  Google Scholar 

  84. Azov Y, Goldman JC. Free ammonia inhibition of algal photosynthesis in intensive culture. Appl Environ Microbiol 1982; 43: 735–739.

    CAS  Google Scholar 

  85. Konig A, Pearson HW, Silva SA. Ammonia toxicity to algal growth in wastewater stabilization ponds. Wat Sci Technol 1987; 19: 115–122.

    CAS  Google Scholar 

  86. Pinhero HM, Reis MT, Novais LM. A study of the performance of a high-rate photosynthesis pond system. Wat Sci Technol 1987; 19: 237–241.

    Google Scholar 

  87. Edline F. L’épuration biologique des eaux usées résiduaires. Théorie et technologie. CEBEDEAU: Thiége 1980: 299.

    Google Scholar 

  88. Mara DD, Pearson HW. Design manual for waste. World Health Organization 1986: 104.

    Google Scholar 

  89. Rodier J. L’analyse de l’eau: Eaux naturelles, eaux résiduaires et eau de mer. Chimie, physico-chimie, bactériologie et biologie. 7ème eds, DUNOD, Paris 1984: 1365.

    Google Scholar 

  90. Mezrioui N, Oudra B, Oufdou KH et al. Effect of microalgae growing on wastewater batch culture on Escherichia coli and Vibrio cholerae survival. Wat Sci Technol 1994; 30: 295–302.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Mezrioui, NE., Oudra, B. (1998). Dynamics of Picoplankton and Microplankton Flora in the Experimental Wastewater Stabilization Ponds in the Arid Region of Marrakech, Morocco and Cyanobacteria Effect on Escherichia coli and Vibrio cholerae Survival. In: Wong, YS., Tam, N.F.Y. (eds) Wastewater Treatment with Algae. Biotechnology Intelligence Unit. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-10863-5_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-10863-5_10

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-10865-9

  • Online ISBN: 978-3-662-10863-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics