Skip to main content

Enzymology and Molecular Biology of Lignin Degradation

  • Chapter
Biochemistry and Molecular Biology

Part of the book series: The Mycota ((MYCOTA,volume 3))

Abstract

Lignin is the most abundant aromatic polymer in nature. It is synthesized by higher plants, reaching levels of 20–30% of the dry weight of woody tissue. Although white-rot fungi were long recognized as efficient lignin-degrading microbes, research on their enzymology and genetics was somewhat neglected until the past decade. The impetus for increased research interest can be traced to the discovery of “ligninases” and potential commerical applications in the pulp and paper industry and in the degradation of xenobiotics. In this chapter, we briefly summarize several decades of research on white-rot fungi, and readers are referred to several comprehensive reviews for additional background information. Recent developments in molecular biology and enzymology are emphasized. Areas where knowledge is incomplete are highlighted.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 74.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adler E (1977) Lignin chemistry. Past, present and future. Wood Sci Technol 11: 169–218

    Article  CAS  Google Scholar 

  • Akamatsu Y, Ma DB, Higuchi T, Shimada M (1990) A novel enzymatic decarboxylation of oxalic acid by the lignin peroxidase system of white-rot fungus Phanerochaete chrysosporium. FEBS Lett 269: 261–263

    Article  PubMed  CAS  Google Scholar 

  • Alic M, Gold M (1991) Genetics and molecular biology of the lignin-degrading basidiomycete Phanerochaete chrysosporium. In: Bennett J Lasure L (eds) More gene manipulations in fungi. Academic Press, New York, pp 319–341

    Chapter  Google Scholar 

  • Alic M, Gold MH (1985) Genetic recombination in the lignin-degrading basidiomycete Phanerochaete chrysosporium. Appl Environ Microbiol 50: 27–30

    PubMed  CAS  Google Scholar 

  • Alic M, Kornegay JR, Pribnow D, Gold MH (1989) Transformation by complementation of an adenine auxotroph of the lignin-degrading basidiomycete Phanerochaete chrysosporium. Appl Environ Microbiol 55: 406–411

    PubMed  CAS  Google Scholar 

  • Alic M, Clark EK, Kornegay JR, Gold MH (1990) Transformation of Phanerochaete chrysosporium and Neurospora crassa with adenine biosynthetic genes from Schizophyllum commune. Curr Genet 17: 305–312

    Article  CAS  Google Scholar 

  • Alic M, Mayfield MB, Akileswaran L, Gold M (1991) Homologous transformation of the lignin-degrading basidiomycete Phanerochaete chrysosporium. Curr Genet 19: 491–494

    Article  CAS  Google Scholar 

  • Alic M, Akileswaran L, Gold ME-1 (1993) Gene replacement in the lignin-degrading basidiomycete Phanerochaete chrysosporium. Gene 136: 307–311

    Article  PubMed  CAS  Google Scholar 

  • Andersen HD, Jensen EB, Welinder KG (1992) A process for producing heme proteins. Eur Patent Appl 0505311A2

    Google Scholar 

  • Andersson LA, Renganathan V, Loeht TM, Gold MH (1987) Lignin peroxidase: resonance Raman spectral evidence for Compound II and for a temperature-dependent coordination-state equilibrium in the ferric enzyme. Biochemistry 26: 2258–2263

    Article  PubMed  CAS  Google Scholar 

  • Andrawis A, Johnson KA, Tien M (1988) Studies on compound I formation of lignin peroxidase from Phanerochaete chrysosporium. J Biol Chem 263: 1195–1198

    PubMed  CAS  Google Scholar 

  • Ayers AR, Ayers SB, Eriksson K (1978) Cellobiose oxidase, purification and partial characterization of a hemoprotein from Sporotrichum pulverulentum. Eur J Biochem 90: 171–181

    Article  PubMed  CAS  Google Scholar 

  • Banci L, Bertini I, Turano P, Tien M, Kirk TK (1991) Proton NMR investigation into the basis for the relatively high redox potential of lignin peroxidase. Proc Natl Acad Sci USA 88: 6956–6960

    Article  PubMed  CAS  Google Scholar 

  • Bar-Lev SS, Kirk TK (1981) Effects of molecular oxygen on lignin degradation by Phanerochaete chrysosporium. Biochem Biophys Res Commun 99: 373–378

    Article  PubMed  CAS  Google Scholar 

  • Barr DP, Shah MM, Aust SD (1993) Veratryl alcohol-dependent production of molecular oxygen by lignin peroxidase. J Biol Chem 268: 241–244

    PubMed  CAS  Google Scholar 

  • Black AK, Reddy CA (1991) Cloning and characterization of a lignin peroxidase gene from the white-rot fungus Trametes versicolor. Biochem Biophys Res Commun 179: 428–435

    Article  PubMed  CAS  Google Scholar 

  • Blanchette RA, Abad AR, Farrell RL, Leathers TD (1989) Detection of lignin peroxidase and xylanase by immunocytochemical labeling in wood decayed by basidiomycetes. Appl Environ Microbiol 55: 1457–1465

    PubMed  CAS  Google Scholar 

  • Bonnarme P, Jeffries T (1990) Mn(II) regulation of lignin peroxidases and manganese-dependent peroxidase from lignin-degrading white rot fungi. Appl Environ Microbiol 56: 210–217

    PubMed  CAS  Google Scholar 

  • Boominathan K, Reddy CA (1992) cAMP-mediated differential regulation of lignin peroxidase and manganese-dependent peroxidase production in the white-rot basidiomycete Phanerochaete chrysosporium. Proc Natl Acad Sci 89: 5586–5590

    Google Scholar 

  • Brown JA, Glenn JK, Gold MH (1990) Manganese regulates expression of manganese peroxidase by Phanerochaete chrysosporium. J Bacteriol 172: 3125–3130

    PubMed  CAS  Google Scholar 

  • Brown JA, Alic M, Gold M (1991) Manganese peroxidase gene transcription in Phanerochaete chrysosporium: activation by manganese. J Bacteriol 173: 4101–4106

    PubMed  CAS  Google Scholar 

  • Brown JA, Li D, Alic M, Gold MH (1993) Heat shock induction of manganese peroxidase gene transcription in Phanerochaete chrysosporium. Appl Environ Microbiol 59: 4295–4299

    PubMed  CAS  Google Scholar 

  • Burdsall HH, Eslyn WE (1974) A new phanerochaete with a chrysosporium imperfect state. Mycotaxon 1: 123–133

    Google Scholar 

  • Buswell JA, Odier E (1987) Lignin biodegradation. CRC Crit Rev Biotechnol 6: 1–60

    Article  CAS  Google Scholar 

  • Cai D, Tien M (1989) On the reactions of lignin peroxidase Compound III (Isozyme H8). Biochem Biophys Res Commun 162: 464–469

    Article  PubMed  CAS  Google Scholar 

  • Cai D, Tien M (1990) Characterization of the oxycomplex of lignin peroxidases from Phanerochaete chrysosporium: equilibrium and kinetics studies. Biochemistry 29: 2085–2091

    Article  PubMed  CAS  Google Scholar 

  • Cai D, Tien M (1992) Kinetic studies on the formation and decomposition of Compounds II and III. J Biol Chem 267: 11149–11155

    PubMed  CAS  Google Scholar 

  • Cavalieri E, Rogan E (1985) Role of radical cations in aromatic hydrocarbon carcinogenesis. Environ Health Perspect 64: 69–84

    Article  PubMed  CAS  Google Scholar 

  • Chen C-L, Chang H-M, Kirk TK (1982) Aromatic acids produced during degradation of lignin in spruce wood by Phanerochaete chrysosporium. Holzforschung 36: 3–9

    Article  CAS  Google Scholar 

  • Chen C-L, Chang H-M, Kirk TK (1983) Carboxylic acids produced through oxidative cleavage of aromatic rings during degradation of lignin in spruce wood by Phanerochaete chrysosporium. J Wood Chem Technol 3: 35–57

    Article  Google Scholar 

  • Chua MGS, Chen C-L, Chang H-M, Kirk TK (1982) 13CNMR spectroscopic study of spruce lignin degraded by Phanerochaete chrysosporium I. New structures. Holzforschung 36: 165–172

    Google Scholar 

  • Corcoran LM, Forsyth KP, Bianco AE, Brown GV, Kemp DJ (1986) Chromosome size polymorphisms of P. falciparum can involve deletions and are frequent in natural parasite populations. Cell 44: 87–95

    Article  PubMed  CAS  Google Scholar 

  • Corcoran LM, Thompson JK, Walliker D, Kemp DJ (1988) Homologous recombination within subtelomeric repeat sequences generates chromosome size polymorphisms in P. falciparum. Cell 53: 807–813

    Article  PubMed  CAS  Google Scholar 

  • Covert S, Bolduc J, Cullen D (1992a) Genomic organization of a cellulase gene family in Phanerochaete chrysosporium. Curr Genet 22: 407–413

    Article  PubMed  CAS  Google Scholar 

  • Covert S, Vanden Wymelenberg A, Cullen D (1992b) Structure, organization and transcription of a cellobiohydrolase gene cluster from Phanerochaete chrysosporium. Appl Environ Microbiol 58: 2168–2175

    PubMed  CAS  Google Scholar 

  • Cullen D, Kersten P (1992) Fungal enzymes for lignocellulose degradation. In: Kinghorn JR, Turner G (eds) Applied molecular genetics of filamentous fungi. Blackie Academic, London, pp 100–130

    Chapter  Google Scholar 

  • Daniel G, Pettersson B, Nilsson T, Vole J (1990) Use of immunogold cytochemistry to detect Mn(II)-dependent and lignin peroxidases in wood degraded by the white rot fungi Phanerochaete chrysosporium and Lentinus edodes. Can J Bot 68: 920–933

    Article  CAS  Google Scholar 

  • Daniel G, Vole J, Kubatova E (1994) Pyranose oxidase, a major source of H202 during wood degradation by Phanerochaete chrysosporium, Trametes versicolor, and Oudemansiella mucida. Appl Environ Microbiol 60: 2524–2532

    PubMed  CAS  Google Scholar 

  • Datta A, Bettermann A, Kirk TK (1991) Identification of a specific manganese peroxidase among ligninolytic enzymes secreted by Phanerochaete chrysosporium during wood decay. Appl Environ Microbiol 57: 1453–1460

    PubMed  CAS  Google Scholar 

  • De Jong E, Cazemier AE, Field JA, de Bont JAM (1994) Physiological role of chlorinated aryl alcohols biosynthesized de novo by the white rot fungus Bjerkandera sp. strain BOS55. Appl Environ Microbiol 60: 271–277

    PubMed  Google Scholar 

  • Edwards SL, Raag R, Wariishi H, Gold MH, Poulos TL (1993) Crystal structure of lignin peroxidase. Proc Natl Acad Sci USA 90: 750–754

    Article  PubMed  CAS  Google Scholar 

  • Enoki A, Gold MH (1982) Degradation of the diarylpropane lignin model compound 1-(3’,4’-diethoxyphenyl)1,3-dihydroxy-2-(4“-methoxy-phenyl)-propane and derivatives by the basidiomycete Phanerochaete chrysosporium. Arch Microbiol 132: 123–130

    Article  CAS  Google Scholar 

  • Enoki A, Goldsby GP, Gold MH (1980) Metabolism of the lignin model compounds veratrylglycerol-ß-guaiacyl ether and 4-ethoxy-3-methoxypheny]glycerol-ß-guaiacyl ether by Phanerochaete chrysosporium. Arch Microbiol 125: 227–232

    Article  CAS  Google Scholar 

  • Eriksson K-E, Kirk TK (1985) Biopulping, biobleaching, and treatments of Kraft bleaching effluents with white rot fungi. In: Cooney CL, Humphrey AE (eds) Comprehensive biotechnology. Pergammon Press, New York, pp 271–294

    Google Scholar 

  • Eriksson K-EL, Blanchette RA, Ander P (1990) Microbial and enzymatic degradation of wood and wood components. Springer, Berlin Heidelberg New York

    Book  Google Scholar 

  • Eriksson K-EL, Habu N, Samejima M (1993) Recent advances in fungal cellobiose oxidoreductases. Enz Microb Tech 15: 1002–1008

    Article  CAS  Google Scholar 

  • Farrell RL, Murtagh KE, Tien M, Mozuch MD, Kirk TK (1989) Physical and enzymatic properties of lignin peroxidase isozymes from Phanerochaete chrysosporium. Enzyme Microb Technol 11: 322–328

    Article  CAS  Google Scholar 

  • Calliano H, Gas G, Seris JL, Boudet AM (1991) Lignin degradation by Rigidoporus lignosus involves synergistic action of two oxidizing enzymes: Mn peroxidase and lactase. Enzyme Microb Technol 13: 478–482

    Google Scholar 

  • Gaskell J, Dieperink E, Cullen D (1991) Genomic organization of lignin peroxidase genes of Phanerochaete chrysosporium. Nucl Acids Res 19: 599–603

    Article  PubMed  CAS  Google Scholar 

  • Gaskell J, Vanden Wymelenberg A, Stewart P, Cullen D (1992) Method for identifying specific alleles of a Phanerochaete chrysosporium encoding a lignin peroxidase. Appl Environ Microbiol 58: 1379–1381

    PubMed  CAS  Google Scholar 

  • Gaskell J, Stewart P, Kersten PJ, Covert SF, Reiser J, Cullen D (1994) Establishment of genetic linkage by allele-specific PCR: application to the lignin peroxidase gene family of Phanerochaete chrysosporium. Bio/Technology 12: 1372–1375

    Article  PubMed  CAS  Google Scholar 

  • Gaskell J, Vanden Wymelenberg A, Cullen D (1995) Structure, inheritance, and transcriptional effects of Peel, an insertional element within Phanerochaete chrysosporium lignin peroxidase gene lipl. Proc Natl Acad Sci USA 92: 7465–7469

    Article  PubMed  CAS  Google Scholar 

  • Gessner M, Raeder U (1994) A histone H4 promoter for expression of a phleomycin-resistance gene in Phanerochaete chrysosporium. Gene 142: 237–241

    Article  PubMed  CAS  Google Scholar 

  • Glenn JK, Gold MH (1985) Purification and characterization of an extracellular Mn(II)-dependent peroxidase from the lignin-degrading basidiomycete Phanerochaete chrysosporium. Arch Biochem Biophys 242: 329–341

    Article  PubMed  CAS  Google Scholar 

  • Glenn JK, Morgan MA, Mayfield MB, Kuwahara M, Gold MH (1983) An extracellular H202-requiring enzyme preparation involved in lignin biodegradation by the white rot basidiomycete Phanerochaete chrysosporium. Biochem Biophys Res Commun 114: 1077–1083

    Article  PubMed  CAS  Google Scholar 

  • Glenn JK, Akileswaran L, Gold MH (1986) Mn(II) oxidation is the principal function of the extracellular Mnperoxidase from Phanerochaete chrysosporium. Arch Biochem Biophys 251: 688–696

    Article  PubMed  CAS  Google Scholar 

  • Glumoff T, Harvey PJ, Molinari S, Goble M, Frank G, Palmer JM, Smit JDG, Leisola MSA (1990) Lignin peroxidase from Phanerochaete chrysosporium. Molecular and kinetic characterization of isozymes. Eur J Biochem 187: 515–20

    Google Scholar 

  • Godfrey BJ, Mayfield MB, Brown JA, Gold M (1990) Characterization of a gene encoding a manganese peroxidase from Phanerochaete chrysosporium. Gene 93: 119–24

    Article  PubMed  CAS  Google Scholar 

  • Gold M, Alic M (1993) Molecular biology of lignin degradation by the basidiomycete Phanerochaete chrysosporium. Microbiol Rev 57: 605–622

    PubMed  CAS  Google Scholar 

  • Gold MH, Cheng TM, Mayfield MB (1982) Isolation and complementation studies of auxotrophic mutants of the lignin-degrading basidiomycete Phanerochaete chrysosporium. Appl Environ Microbiol 44: 996–1000

    PubMed  CAS  Google Scholar 

  • Gold MH, Kuwahara M, Chiu AA, Glenn JK (1984) Purification and characterization of an extracellular HZOZ requiring diarylpropane oxygenase from the white rot basidiomycete, Phanerochaete chrysosporium. Arch Biochem Biophys 234: 353–362

    Article  PubMed  CAS  Google Scholar 

  • Goldsby GP, Enoki A, Gold MH (1980) Alkyl-phenyl cleavage of the lignin model compounds guaiacylglycol and glycerol-ß-guaiacyl ether by Phanerochaete chrysosporium. Arch Microbiol 128: 190–195

    Article  CAS  Google Scholar 

  • Goodwin DC, Barr DP, Aust SD, Grover TA (1994) The role of oxalate in lignin peroxidase-catalyzed reduction: protection from Compound III accumulation. Arch Biochem Biophys 315: 267–272

    Article  PubMed  CAS  Google Scholar 

  • Haemmerli SD, Leisola MSA, Fiechter A (1986) Polymerisation of lignins by ligninases from Phanerochaete chrysosporium. FEMS Microbiol Lett 35: 33–36

    Article  CAS  Google Scholar 

  • Hammel KE (1992) Oxidation of aromatic pollutants by lignin-degrading fungi and their extracellular peroxidases. [n: Sigel H, Sigel A (eds) Degradation of environmental pollutants by microorganisms and their metalloenzymes. Marcel Dekker, New York, pp 41–60

    Google Scholar 

  • Hammel KE, Moen MA (1991) Depolymerization of a synthetic lignin in vitro by lignin peroxidase. Enzyme Microb Technol 13: 15–18

    Article  CAS  Google Scholar 

  • Hammel KE, Mozuch MD, Jensen Jr. KA, Kersten PJ (1994) H2OZ recycling during oxidation of the arylglycerol ß-aryl ether lignin structure by lignin peroxidase and glyoxal oxidase. Biochemistry 33: 1334913354

    Google Scholar 

  • Hammel KE, Tien M, Kalyanaraman B, Kirk TK (1985) Mechanism of oxidative Ca-Cß cleavage of a lignin model dimer by Phanerochaete chrysosporium ligninase: stoichiometry and involvement of free radicals. J Biol Chem 260: 8348–8353

    PubMed  CAS  Google Scholar 

  • Hammel KE, Kalyanaraman B, Kirk TK (1986a) Oxidation of polycyclic hydrocarbons and dibenzo[p]-dioxins by Phanerochaete chrysosporium ligninase. J Biol Chem 261: 16948–16952

    PubMed  CAS  Google Scholar 

  • Hammel KE, Kalyanaraman B, Kirk TK (1986h) Substrate free radicals are intermediates in ligninase catalysis. Proc Natl Acad Sci USA 83: 3708–3712

    Article  PubMed  CAS  Google Scholar 

  • Hammel KE, Tardone PJ, Moen MA, Price LA (1989) Biomimetic oxidation of nonphenolic lignin models by Mn(III): new observations on the oxidizability of guaiacyl and syringyl substructures. Arch Biochem Biophys 270: 404–409

    Article  PubMed  CAS  Google Scholar 

  • Harkin JM (1967) Lignin-a natural polymeric product of phenol oxidation. In: Taylor WI, Battersby AR (eds) Oxidative coupling of phenols, chapt. 6 Marcel Dekker, New York

    Google Scholar 

  • Harvey PJ, Schoemaker HE, Bowen RM, Palmer JM (1985) Single-electron transfer processes and the reaction mechanism of enzymic degradation of lignin. FEBS Lett 183: 13–16

    Article  CAS  Google Scholar 

  • Harvey PJ, Schoemaker HE, Palmer JM (1986) Veratryl alcohol as a mediator and the role of radical cations in lignin biodegradation by Phanerochaete chrysosporium. FEBS Lett 195: 242–6

    Article  CAS  Google Scholar 

  • Harvey PJ, Palmer JM, Schoemaker HE, Dekker HL, Weyer R (1989) Pre-steady-state kinetic study on the formation of Compound I and II of ligninase. Biochim Biophys Acta 994: 59–63

    Article  PubMed  CAS  Google Scholar 

  • Haylock R, Liwicki R, Broda P (1985) The isolation of mRNA from the basidiomycete fungi Phanerochaete chrysosporium and Coprinus cinereus and its in vitro translation. Appl Environ Microibiol 46: 260–263

    Google Scholar 

  • Hein JJ (1990) Unified approach to alignment and phylogenies. Methods enzymol 183: 626–645

    Article  PubMed  CAS  Google Scholar 

  • Henriksson G, Pettersson G, Johansson G, Ruiz A, Uzcategui E (1991) Cellobiose oxidase from Phanerochaete chrysosporium can be cleaved by papain into two domains. Eur J Biochem 196: 101–106

    Article  PubMed  CAS  Google Scholar 

  • Higuchi T (1990) Lignin biochemistry: biosynthesis and biodegradation. Wood Sci Technol 24: 23–63

    Article  CAS  Google Scholar 

  • Holzbaur E, Tien M (1988) Structure and regulation of a lignin peroxidase gene from Phanerochaete chrysosporium. Biochem Biophys Res Commun 155: 626–633

    Article  PubMed  CAS  Google Scholar 

  • Huoponen K, 011ikka P, Kalin M, Walther I, Mantsala P, Reiser J (1990) Characterization of lignin peroxidaseencoding genes from lignin-degrading basidiomycetes. Gene 89: 145–50

    Article  PubMed  CAS  Google Scholar 

  • Jäger A, Croan S, Kirk TK (1985) Production of ligninases and degradation of lignin in agitated submerged cultures of Phanerochaete chrysosporium. Appl Environ Microbiol 50: 1274–1278

    PubMed  Google Scholar 

  • James CM, Felipe MSS, Sims PFG, Broda P (1992) Expression of a single lignin peroxidase-encoding gene in Phanerochaete chrysosporium strain ME446. Gene 114: 217–222

    Article  PubMed  CAS  Google Scholar 

  • Jeffries TW, Choi S, Kirk TK (1981) Nutritional regulation of lignin degradation by Phanerochaete chrysosporium. Appl Environ Microbiol 42: 290–296

    PubMed  CAS  Google Scholar 

  • Johnson TM, Li JK (1991) Heterologous expression and characterization of an active lignin peroxidase from Phanerochaete chrysosporium using recombinant baculovirus. Arch Biochem Biophys 291: 371–378

    Article  PubMed  CAS  Google Scholar 

  • Jönsson L, Nyman PO (1992) Characterization of a lignin peroxidase gene from the white-rot fungus Trametes versicolor. Biochimie 74: 177–182

    Article  PubMed  Google Scholar 

  • Kamaya Y, Higuchi T (1984) Degradation of lignin substructure models with biphenyl linkage by Phanerochaete chrysosporium Burds. Wood Res 70: 25–28

    CAS  Google Scholar 

  • Karhunen E, Niku-Paavola M-L, Viikari L, Haltia T, van der Meer RA, Duine JA (1990) A novel combination of prosthetic groups in a fungal laccase; PQQ and two copper atoms. FEBS Lett 267: 6–8

    Google Scholar 

  • Kawai S, Umezawa T, Higuchi T (1988) Degradation mechanisms of phenolic ß-1 lignin substructure model compounds by laccase of Coriolus versicolor. Arch Biochem Biophys 262: 99–110

    Article  PubMed  CAS  Google Scholar 

  • Kawai S, Umezawa T, Higuchi T (1989) Oxidation of methoxylated benzyl alcohols by laccase of Coriolus versicolor in the presence of syringaldehyde. Wood Res 76: 10–16

    CAS  Google Scholar 

  • Kersten PJ (1990) Glyoxal oxidase of Phanerochaete chrysosporium; its characterization and activation by lignin peroxidase. Proc Natl Acad Sci USA 87: 29362940

    Google Scholar 

  • Kersten PJ, Cullen D (1993) Cloning and characterization of a cDNA encoding glyoxal oxidase, a H2O2-producing enzyme from the lignin-degrading basidiomycete Phanerochaete chrysosporium. Proc Natl Acad Sci USA 90: 7411–7913

    Article  PubMed  CAS  Google Scholar 

  • Kersten PJ, Kirk TK (1987) Involvement of a new enzyme, glyoxal oxidase, in extracellular H2O2 production by Phanerochaete chrysosporium. J Bacteriol 169: 21952201

    Google Scholar 

  • Kersten PJ, Tien M, Kalyanaraman B, Kirk TK (1985) The ligninase of Phanerochaete chrysosporium generates cation radicals from methoxybenzenes. J Biol Chem 260: 2609–2612

    PubMed  CAS  Google Scholar 

  • Kersten PJ, Kalyanaraman B, Hammel KE, Reinhammar B, Kirk TK (1990) Comparison of lignin peroxidase, horseradish peroxidase, and laccase in the oxidation of methoxybenzenes. Biochem J 268: 475–480

    PubMed  CAS  Google Scholar 

  • Keyser P, Kirk TK, Zeikus JG (1978) Ligninolytic enzyme system of Phanerochaete chrysosporium: synthesized in the absence of lignin in response to nitrogen starvation. J Bacteriol 135: 790–797

    PubMed  CAS  Google Scholar 

  • Kinscherf TG, Leong SA (1988) Molecular analysis of the karyotype of Ustilago maydis. Chromosoma 96: 427433

    Google Scholar 

  • Kirk TK, Adler E (1970) Methoxyl-deficient structural elements in lignin of sweetgum decayed by a brown-rot fungus. Acta Chem Scand 24: 3379–3390

    Article  CAS  Google Scholar 

  • Kirk TK, Farrell RL (1987) Enzymatic “combustion”: the microbial degradation of lignin. Annu Rev Microbiol 41: 465–505

    Article  PubMed  CAS  Google Scholar 

  • Kirk TK, Nakatsubo F (1983) Chemical mechanism of an important cleavage reaction in the fungal degradation of lignin. Biochem Biophys Acta 756: 376–384

    Article  CAS  Google Scholar 

  • Kirk TK, Shimada M (1985) Lignin biodegradation: The microorganisms involved and the physiology and biochemistry of degradation by white-rot fungi. In: Higuchi T (ed) Biosynthesis and biodegradation of wood components. Academic Press, San Diego, pp 579–605

    Google Scholar 

  • Kirk TK, Schultz E, Conners WJ, Lorentz LF, Zeikus JG (1978) Influence of culture parameters on lignin metabolism by Phanerochaete chrysosporium. Arch Microbiol 117: 277–285

    Article  CAS  Google Scholar 

  • Kirk TK, Croan S, Tien M, Murtagh KE, Farrell RL (1986a) Production of multiple ligninases by Phanerochaete chrysosporium: effect of selected growth conditions and use of a mutant strain. Enzyme Microb Technol 8: 27–32

    Article  CAS  Google Scholar 

  • Kirk TK, Tien M, Kersten PJ, Mozuch MD, Kalyanaraman B (1986b) Ligninase of Phanerochaete chrysoporium. Mechanism of its degradation of the non-phenolic arylglycerol /3-aryl ether substructure of lignin. Biochem J 236: 279–287

    PubMed  CAS  Google Scholar 

  • Kirk TK, Burgess RR, Koning JW (1992) Use of fungi in pulping wood: an overview of biopulping research. In: Leatham GF (ed) Frontiers in industrial mycology. Chapman and Hall, New York, pp 99–111

    Chapter  Google Scholar 

  • Kishi K, Wariishi H, Marquez L, Dunford HB, Gold MH (1994) Mechanism of manganese peroxidase compound II reduction. Effect of organic acid chelators and pH. Biochemistry 33: 8694–8701

    Google Scholar 

  • Kojima Y, Tsukuda Y, Kawai Y, Tsukamoto A, Sugiura J, Sakaino M, Kita Y (1990) Cloning, sequence analysis, and expression of ligninolytic phenoloxidase genes of the white rot basidiomycete Coriolus hirsutus. J Biol Chem 256: 15224–15230

    Google Scholar 

  • Kondo R, Iimori T, Imamura H, Nishida T (1990) Polymerization of DHP and depolymerization of DHPglucoside by lignin-oxidizing enzymes. J Biotechnol 13: 181–88

    Article  CAS  Google Scholar 

  • Kuan I-C, Tien M (1993) Stimulation of Mn peroxidase activity: a possible role for oxalate in lignin biodegradation. Proc Natl Acad Sci USA 90: 1242–1246

    Article  PubMed  CAS  Google Scholar 

  • Kuan I-C, Johnson KA, Tien M (1993) Kinetic analysis of manganese peroxidase: the reaction with manganese complexes. J Biol Chem 268: 20064–20070

    PubMed  CAS  Google Scholar 

  • Kuila D, Tien M, Fee JA, Ondrias MR (1985) Resonance raman spectra of extracellular ligninase: evidence for a heme active site similar to those of peroxidases. Biochemistry 24: 3394–3397

    Article  CAS  Google Scholar 

  • Kurek B, Kersten PJ (1995) Physiological regulation of glyoxal oxidase from Phanerochaete chrysoporium by peroxidase systems. Enz Microb Tech 17: 751–756

    Article  CAS  Google Scholar 

  • Kurek B, Odier E (1990) Influence of lignin peroxidase concentration and localisation in lignin biodegradation by Phanerochaete chrysosporium. Appl Microbiol Biotechnol 34: 264–269

    Article  CAS  Google Scholar 

  • Kuwahara M, Glenn JK, Morgan MA, Gold MH (1984) Separation and characterization of two extracellular 1–1,02-dependent oxidases from ligninolytic cultures of Phanerochaete chrysosporium. FEBS Lett 169: 247–250

    Article  CAS  Google Scholar 

  • Lamar RT (1992) The role of fungal lignin-degrading enzymes in xenobiotic degradation. Curr Biol 3: 261266

    Google Scholar 

  • Lamar RT, Schoenike B, Vanden Wymelenberg A, Stewart P, Dietrich DM, Cullen D (1995) Quantitation of fungal mRNAs in complex substrates by reverse transcription PCR and its application to Phanerochaete chrysosporium-colonized soil. Appl Environ Microbiol 61: 2122–2126

    PubMed  CAS  Google Scholar 

  • Leisola MSA, Schmidt B, Thanei-Wyss U, Fiechter A (1985) Aromatic ring cleavage of veratryl alcohol by Phanerochaete chrysosporium. FEBS 189: 267–270

    Article  CAS  Google Scholar 

  • Leisola MSA, Kozulic B, Meusdoerffer F, Fiechter A (1987) Homology among multiple extracellular peroxidases from Phanerochaete chrysosporium. J Biol Chem 262: 419–424

    PubMed  CAS  Google Scholar 

  • Leisola MSA, Haemmerli SD, Waldner R, Schoemaker HE, Schmidt HWH, Fiechter A (1988) Metabolism of a lignin model compound, 3,4-dimethoxybenzyl alcohol by Phanerochaete chrysosporium. Cellulose Chem Technol 22: 267–277

    CAS  Google Scholar 

  • Li D, Alic M, Brown JA, Gold MH (1995) Regulation of manganese peroxidase gene transcription by hydrogen peroxide, chemical stress, and molecular oxygen. Appl Environ Microbiol 61: 341–345

    PubMed  CAS  Google Scholar 

  • Lundquist K, Kirk TK (1978) De novo synthesis and decomposition of veratryl alcohol by a lignin-degrading basidiomycete. Phytochemistry 17: 1676

    Article  CAS  Google Scholar 

  • Maccarrone M, Veldink GA, Vliengenthart JFG (1991) An investigation on the quinoprotein nature of some fungal and plant oxidoreductases. J Biol Chem 266: 2101421017

    Google Scholar 

  • MacDonald MJ, Paterson A, Broda P (1984) Possible relationship between cyclic AMP and idiophasic metabolism in the white rot fungus Phanerochaete chrysosporiurn. J Bacteriol 160: 470–472

    PubMed  CAS  Google Scholar 

  • MacDonald MJ, Ambler R, Broda P (1985) Regulation of intracellular cyclic AMP levels in the white-rot fungus Phanerochaete chrysosporium during the onset of idiophasic metabolism. Arch Microbiol 142: 152–156

    Article  CAS  Google Scholar 

  • Malmström BG, Andréasson L -E, Reinhammer B (1975) In: Boyer PD (ed) The enzymes, vol 12. Academic Press, New York, pp 507–579

    Google Scholar 

  • Marquez L, Wariishi H, Dunford FIB, Gold MH (1988) Spectroscopic and kinetic properties of oxidized intermediates of lignin peroxidase from Phanerochaete chrysosporium. J Biol Chem 263: 10549–10552

    PubMed  CAS  Google Scholar 

  • Mayfield MB, Godfrey BJ, Gold MH (1994) Characterization of the mnp2 gene encoding manganese peroxidase isozyme 2 from the basidiomycete Phanerochaete chrysosporium. Gene 142: 231–235

    Article  PubMed  CAS  Google Scholar 

  • Millis CD, Cai D, Stankovich MT, Tien M (1989) Oxidation-reduction potentials and ionization states of extracellular peroxidases from the lignin-degrading fungus Phanerochaete chrysosporiurn. Biochemistry 28: 8484–8489

    Article  PubMed  CAS  Google Scholar 

  • Mino Y, Wariishi H, Blackburns NJ, Loehr TM, Gold MH (1988) Spectral characterization of manganese peroxidase, an extracellular heme enzyme from the lignin-degrading basidiomycete, Phanerochaete chrysosporium. J Biol Chem 263: 7029–7036

    PubMed  CAS  Google Scholar 

  • Morohoshi N, Fujita K, Wariishi H, Haraguchi T (1987) Degradation of lignin by the extracellular enzymes of Coriolis versicolor V. Mokuzai Gakkaishi 33: 310315

    Google Scholar 

  • Moukha SM, Wösten HAB, Mylius E, Asther M, Wessels JG (1993) Spatial and temporal accumulation of mRNAs encoding two common lignin peroxidases in Phanerochaete chrysosporiurn. J Bacteriol 175: 36723678

    Google Scholar 

  • Muheim A, Waldner R, Sanglard D, Reiser J, Schoemaker HE (1991) Purification and properties of an aryl-alcohol dehydrogenase from the white-rot fungus Phanerochaete chrysosproium Eur J Biochem 195: 369–375

    CAS  Google Scholar 

  • Nakatsubo F, Reid ID, Kirk TK (1982) Incorporation of ‘KO, and absence of stereospecificity in primary product formation during fungal metabolism of a lignin model compound. Biochim Biophys Acta 719: 284–291

    Article  CAS  Google Scholar 

  • Odier E, Mozuch MD, Kalyanaraman B, Kirk TK (1988) Ligninase-mediated phenoxy radical formation and polymerization unaffected by cellobiose: quinone oxidoreductase. Biochimie 70: 847–852

    Article  PubMed  CAS  Google Scholar 

  • Ono B, Ishino-Arao Y (1988) Inheritance of chromosome length polymorphisms in Saccharomyces cerevisiae. Curr Genet 14: 413–418

    Article  PubMed  CAS  Google Scholar 

  • Orth AB, Rzhets Kaya M, Cullen D, Tien M (1994) Characterization of a eDNA encoding a manganese peroxidase from Phanerochaete chrysosporium: genomic organization of lignin and manganese peroxidaseencoding genes. Gene 148: 161–165

    Article  PubMed  CAS  Google Scholar 

  • Paszczynski A, Huynh V-B, Crawford RL (1985) Enzymatic activities of an extracellular, manganese-dependent peroxidase from Phanerochaete chrysosporium. FEMS Microbiol Lett 29: 37–41

    Article  CAS  Google Scholar 

  • Paszczynski A, Huynh V-B, Crawford RL (1986) Comparison of ligninase-I and peroxidase-M2 from the white-rot fungus Phanerochaete chrysosporiurn. Arch Biochem Biophys 244: 750–765

    Article  PubMed  CAS  Google Scholar 

  • Pease EA, Tien M (1991) Lignin-degrading enzymes from the filamentous fungus Phanerochaete chrysosporium. In: Dordick (ed) Biocatalysts for industry. Plenum Press, New York, pp 115–135

    Google Scholar 

  • Pease E, Tien M (1992) Heterogeneity and regulation of manganese peroxidases from Phanerochaete chrysosporium. J Bacteriol 174: 3532–3540

    PubMed  CAS  Google Scholar 

  • Pease EA, Andrawis A, Tien M (1989) Manganese-dependent peroxidase from Phanerochaete chrysosporium. Primary structure deduced from complementary DNA sequence. J Biol Chen 264: 13531–13535

    Google Scholar 

  • Pease E, Aust SD, Tien M (1991) Heterologous expression of active manganese peroxidase from Phanerochaete chrysosporium using the baculovirus expression system. Biochem Biophys Res Commun 179: 897–903

    Article  PubMed  CAS  Google Scholar 

  • Pointek K, Glumoff T, Winterhalter K (1993) Low pH crystal structure of glycosylated lignin peroxidase from Phanerochaete chrysosporium at 2.5A resolution. FEBS Lett 315: 119–124

    Article  Google Scholar 

  • Popp JL, Kalyanaraman B, Kirk TK (1991) Lignin peroxidase oxidation of Mn2 in the presence of veratryl alcohol, malonic or oxalic acid, and oxygen. Biochemistry 29: 10475–10480

    Article  Google Scholar 

  • Pribnow D, Mayfield MB, Nipper VJ, Brown JA, Gold MH (1989) Characterization of a eDNA encoding a manganese peroxidase, from the lignin-degrading basidiomycete Phanerochaete chrysosporium. J Biol Chem 264: 5036–40

    PubMed  CAS  Google Scholar 

  • Raeder U, Broda P (1984) Comparison of the lignin-degrading white-rot fungi Phanerochaete chrysosporium and Sporotrichum pulverulentum at the DNA level. Curr Gen 8: 499–506

    Article  CAS  Google Scholar 

  • Raeder U, Broda P (1985) Rapid preparation of DNA from filamentous fungi. Lett Appl Microbiol 1:17–20 Raeder U, Thompson W, Broda P (1989) RFLP-based genetic map of Phanerochaete chrysosporium ME446: lignin peroxidase genes occur in clusters. Mol Microbiol 3: 911–18

    Article  Google Scholar 

  • Randall T, Reddy CA (1991) An improved transformation vector for the lignin-degrading white rot basidiomycete Phanerochaete chrysosporium. Gene 103: 125–130

    Article  PubMed  CAS  Google Scholar 

  • Randall T, Reddy CA (1992) The nature of extrachromosomal maintenance of transforming plasmids in the filamentous basidiomycete Phanerochaete chrysosporium. Curr Genet 21: 255–260

    Article  PubMed  CAS  Google Scholar 

  • Randall T, Rao TR, Reddy CA (1989) Use of a shuttle vector for the transformation of the white rot basidiomycte Phanerochaete chrysosporium. Biochem Biophys Res Commun 161: 720–725

    Article  PubMed  CAS  Google Scholar 

  • Randall T, Reddy CA, Boominathan K (1991) A novel extrachromosomally maintained transformation vector for the lignin-degrading basidiomycete Phanerochaete chrysosporium. J Bacteriol 173: 776–82

    PubMed  CAS  Google Scholar 

  • Reid ID (1979) The influence of nutrient balance on lignin degradation by the white-rot fungus Phanerochaete chrysosporium. Can J Bot 57: 2050–2058

    Article  CAS  Google Scholar 

  • Reinhammer B (1984) Laccase. In: Lontie R (ed) Copper proteins and copper enzymes. CRC Press, Boca Raton, FL, pp 1–35

    Google Scholar 

  • Reiser J, Walther IS, Fraefel C, Fiechter A (1993) Methods to investigate the expression of lignin peroxidase genes by the white rot fungus Phanerochaete chrysosporium. Gene 59: 2897–2903

    CAS  Google Scholar 

  • Renganathan V, Gold MH (1986) Spectral characterization of the oxidized states of lignin peroxidase, an extra-cellular enzyme from the white rot basidiomycete Phanerochaete chrysosporium. Biochemistry 25: 16261631

    Google Scholar 

  • Renganathan V, Miki K, Gold MH (1985) Multiple molecular forms of diarylpropane oxygenase, an H2O2- requiring, lignin-degrading enzyme from Phanerochaete chrysosporium. Arch Biochem Biophys 241: 304314

    Google Scholar 

  • Renganathan V, Miki K, Gold MH (1986) Role of molecular oxygen in lignin peroxidase reactions. Arch Biochem Biophys 246: 155–61

    Article  PubMed  CAS  Google Scholar 

  • Ritch TG, Nipper NV, Akileswaran L, Smith AJ, Pribnow DG, Gold MH (1991) Lignin peroxidase from the basidiomycete Phanerochaete chrysosporium is synthesized as a preproenzyme. Gene 107: 119–126

    Article  PubMed  CAS  Google Scholar 

  • Rogers MS, Jones GD, Antonini G, Wilson MT, Brunori M (1994) Electron transfer from Phanerochaete chrysosporium cellobiose oxidase to equine cytochrome c and Pseudomonas aeruginosa cytochrome c-551. Biochem J 298: 329–334

    PubMed  CAS  Google Scholar 

  • Roy BP, Paice MG, Archibald FS, Misra SK, Misiak LE (1994) Creation of metal-complexing agents, reduction of manganese dioxide, and promotion of manganese peroxidase-mediated Mn(III) production by cellobiose: quinone oxidoreductase from Trametes versicolor. J Biol Chem 269: 19745–19750

    PubMed  CAS  Google Scholar 

  • Rustehenko-Bulgac EP, Sherm F, Hicks JB (1990) Chromosomal rearrangements associated with morphological mutants provides a means for genetic variation of Candida albicans. J Bacteriol 172: 1276–1283

    Google Scholar 

  • Ruttiman C, Schwember E, Salas L, Cullen D, Vicuna R (1992) Ligninolytic enzymes of the white rot basidiomycetes Phlebia brevispora and Ceriporiopsis subvermispora. Biotechnol Appl Biochem 16: 64–76

    Google Scholar 

  • Saloheimo M, Niku-Paavola M (1991) Heterologous production of a ligninolytic enzyme: expression of the Phlebia radiata laccase gene in Trichoderma reesei. Bio/ Technology 9: 987–990

    Article  CAS  Google Scholar 

  • Saloheimo M, Barajas V, Niku-Paavola M, Knowles J (1989) A lignin peroxidase gene from the white rot fungus Phlebia radiata: characterization and expression in Trichoderma reesei. Gene 85: 343–351

    Article  PubMed  CAS  Google Scholar 

  • Saloheimo M, Niku-Paavola M, Knowles JKC (1991) Isolation and sructural analysis of the laccase gene from the lignin-degrading fungus Phlebia radiata. J Gen Microbiol 137: 1537–1544

    Article  PubMed  CAS  Google Scholar 

  • Sarkanen KV, Ludwig CH (eds) (1971) Lignins. Occurrence, formation, structure and reactions. Wiley, New York

    Google Scholar 

  • Schalch H, Gaskell J, Smith TL, Cullen D (1989) Molecular cloning and sequences of lignin peroxidase genes of Phanerochaete chrysosporium. Mol Cell Biol 9: 27432747

    Google Scholar 

  • Schoemaker HE (1990) On the chemistry of lignin biodegradation. Red Tray Chim Pays-Bas 109: 255–272

    Article  CAS  Google Scholar 

  • Schoemaker HE, Harvey PJ, Bowen RM, Palmer JM (1985) On the mechanism of enzymatic lignin breakdown. FEBS Lett 183: 7–12

    Article  CAS  Google Scholar 

  • Shimada M, Nakatsubo F, Kirk TK, Higuchi T (1981) Biosynthesis of the secondary metabolite veratryl alcohol in relation to lignin degradation in Phanerochaete chrysosporium. Arch Microbiol 129: 321–324

    Article  CAS  Google Scholar 

  • Smith AT, Santama N, Dacey S, Edwards M, Bray RC, Thorneley R, Burke JF (1990) Expression of a synthetic gene for horseradish peroxidase C in Escherichia coli and folding and activation of the recombinant enzyme with Ca+ and heme. J Biol Sci 265: 13335–13343

    CAS  Google Scholar 

  • Snook ME, Hamilton GA (1974) Oxidation and fragmentation of some phenyl-substituted alcohols and ethers by peroxydisulfate and Fenton’s reagent. J Am Chem Soc 96: 860–869

    Article  CAS  Google Scholar 

  • Stewart P, Kersten P, Vanden Wymelenberg A, Gaskell J, Cullen D (1992) The lignin peroxidase gene family of Phanerochaete chrysosporium: complex regulation by carbon and nitrogen limitation, and the identificaiotn of a second dimorphic chromosome. J Bacteriol 174: 50365042

    Google Scholar 

  • Sundaramoorthy M, Kishi K, Gold MH, Poulas TL (1994) The crystal structure of manganese peroxidase from Phanerochaete chrysosporium at 2.06 A resolution. J Biol Chem 269: 32759–32767

    PubMed  CAS  Google Scholar 

  • Thrash-Bingham C, Gorman JA (1992) DNA translocations contribute to chromosome length polymorphisms in Candida albicans. Curr Genet 22: 93100

    Article  Google Scholar 

  • Tien M, Kirk TK (1983) Lignin-degrading enzyme from the Hymenomycete Phanerochaete chrysosporium Burds. Science (Wash DC) 221: 661–663

    Article  CAS  Google Scholar 

  • Tien M, Kirk TK (1984) Lignin-degrading enzyme from Phanerochaete chrysosporium: purification, characterization, and catalytic properties of a unique H2O2requiring oxygenase. Proc Natl Acad Sci USA 81: 22802284

    Google Scholar 

  • Tien M, Tu C-PD (1987) Cloning and sequencing of a cDNA for a ligninase from Phanerochaete chrysosporium. Nature 326: 520–523

    Article  PubMed  CAS  Google Scholar 

  • Tien M, Kirk TK, Bull C, Fee JA (1986) Steady-state and transient-state kinetic studies on the oxidation of 3,4dimethoxybenzyl alcohol catalyzed by the ligninase of Phanerochaete chrysosporium Burds. J Biol Chem 261: 1687–1693

    PubMed  CAS  Google Scholar 

  • Umezawa T, Higuchi T (1984) Incorporation of H2’80 into the Ca but not the Cß position in degradation of a P-0–4 lignin substructure model by Phanerochaete chrysosporium. Agric Biol Chem 48: 1917–1921

    Article  CAS  Google Scholar 

  • Umezawa T, Higuchi T (1985) A novel Ca-Cß cleavage of a ß-O-4 lignin model dimer with rearrangement of the ß-aryl group by Phanerochaete chrysosporium. FEBS Lett 192: 147–150

    Article  CAS  Google Scholar 

  • Umezawa T, Higuchi T (1987) Mechanism of aromatic ring cleavage of 0-O-4 lignin substructure models by lignin peroxidase. FEBS Lett 218: 255–260

    Article  CAS  Google Scholar 

  • Umezawa T, Shimada M, Higuchi T, Kusai K (1986) Aromatic ring cleavage of ß-O-4 lignin substructure model dimers by lignin peroxidase of Phanerochaete chrysosporium. FEBS Lett 205: 287–292

    Article  CAS  Google Scholar 

  • Wariishi H, Gold MH (1990) Lignin peroxidase compound III. Mechanism of formation and decomposition. J Biol Chem 265: 2070–2077

    Google Scholar 

  • Wariishi H, Akileswaran L, Gold MH (1988) Manganese peroxidase from the basidiomycete Phanerochaete chrysosporium: spectral characterization of the oxidized states and the catalytic cycle. Biochemistry 27: 53655370

    Google Scholar 

  • Wariishi H, Dunford HB, MacDonald ID, Gold MH (1989) Manganese peroxidase from the lignin-degrading basi-

    Google Scholar 

  • diomycete Phanerochaete chrysoporium: transient-state kinetics and reaction mechanism. J Biol Chem 264: 3335–3340

    Google Scholar 

  • Wariishi H, Marquez L, Dunford HB, Gold MH (1990) Lignin Peroxidase Compound II and Compound III: spectral and kinetic characterization of reactions with peroxides. J Biol Chem 265: 11137–11142

    PubMed  CAS  Google Scholar 

  • Wariishi H, Valli K, Gold MH (1991) In vitro de-polymerization of lignin by manganese peroxidase of Phanerochaete chrysosporium. Biochem Biophys Res Commun 176: 269–275

    Article  PubMed  CAS  Google Scholar 

  • Wariishi H, Valli K, Gold MH (1992) Manganese (II) oxidation by manganese peroxidase from the basidiomycete Phanerochaete chrysosporium. J Biol Chem 267: 2368823695

    Google Scholar 

  • Wegner TH, Myers GC, Kirk TK, Leatham GF (1991) Biological treatments as an alternative to chemical pretreatments in high-yield pulping. TAPPI J 74: 189–193

    CAS  Google Scholar 

  • Westermark U, Eriksson K-E (1974) Cellobiose:quinone oxidoreductase, a new wood-degrading enzyme from white-rot fungi. Acta Chem Scand 28: 209–14

    Article  CAS  Google Scholar 

  • Wood JD, Wood PM (1992) Evidence that cellohiose:quinone oxidoreductase from Phanerochaete chrysosporium is a breakdown product of cellobiose oxidase. Biochim Biophys Acta 1119: 90–96

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Cullen, D., Kersten, P.J. (1996). Enzymology and Molecular Biology of Lignin Degradation. In: Brambl, R., Marzluf, G.A. (eds) Biochemistry and Molecular Biology. The Mycota, vol 3. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-10367-8_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-10367-8_13

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-10369-2

  • Online ISBN: 978-3-662-10367-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics