Skip to main content
Log in

Transformation of Phanerochaete chrysosporium and Neurospora crassa with adenine biosynthetic genes from Schizophyllum commune

  • Original Articles
  • Published:
Current Genetics Aims and scope Submit manuscript

Summary

Protoplasted basidiospores of two different adenine auxotrophs of the lignin-degrading basidiomycete Phanerochaete chrysosporium were transformed to prototrophy using plasmids containing genes encoding adenine biosynthetic enzymes from Schizophyllum commune. Fragments containing these genes were subcloned into pUC18 and P. chrysosporium transformants obtained with these subclones were analyzed. The subclones were mapped for restriction sites and the approximate locations of the complementing genes were determined. One of these plasmids was used to transform the Neurospora crassa auxotrophic strain ade2, thereby identifying the S. commune ade5 biosynthetic gene as encoding phosphoribosylaminoimidazole synthetase.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Akins RA, Lambowitz AM (1985) Mol Cell Biol 5:2272–2278

    Google Scholar 

  • Alic M, Gold MH (1985) Appl Environ Microbiol 50:27–30

    Google Scholar 

  • Alic M, Letzring C, Gold MH (1987) Appl Environ Microbiol 53:1464–1469

    Google Scholar 

  • Alic M, Kornegay JR, Pribnow D, Gold MH (1989) Appl Environ Microbiol 55:406–411

    Google Scholar 

  • Andrawis A, Pease EA, Kuan I, Holzbaur E, Tien M (1989) Biochem Biophys Res Commun 162:673–680

    Google Scholar 

  • Asada Y, Kimura Y, Kuwahara M, Tsukamoto A, Koide K, Oka A, Takanami M (1988) Appl Microbiol Biotechnol 29:469–473

    Google Scholar 

  • Buchanan JM (1960) Harvey Lectures 54:104–130

    Google Scholar 

  • Buswell JA, Odier E (1987) CRC Critical Rev Biotechnol 6:1–60

    Google Scholar 

  • Casselton LA, de laFuente Herce A (1989) Curr Genet 16:35–40

    Google Scholar 

  • de Boer HA, Zhang YZ, Collins C, Reddy CA (1987) Gene 60:93–102

    Google Scholar 

  • Ebbole DJ, Zalkin H (1987) J Biol Chem 262:8274–8287

    Google Scholar 

  • Eriksson, K-E (1981) In: Hollaender A, Rabson R (eds) Trends in the biology of fermentation for fuels and chemicals. Plenum Publishing Corp, New York, pp 19–32

    Google Scholar 

  • Feinberg AP, Vogelstein BA (1983) Anal Biochem 132:6–13

    Google Scholar 

  • Fincham JRS (1989) Microbiol Rev 53:148–170

    Google Scholar 

  • Froeliger EH, Muñoz-Rivas AM, Specht CA, Ullrich RC, Novotny, CP (1987) Curr Genet 12:547–554

    Google Scholar 

  • Gold MH, Cheng TM (1979) Arch Microbiol 121:37–41

    Google Scholar 

  • Gold MH, Cheng TM, Mayfield MB (1982) Appl Environ Microbiol 44:996–1000

    Google Scholar 

  • Gold MH, Wariishi H, Valli K (1989) In: Whitaker JR, Sonnet PE (eds) Biocatalysis in agricultural biotechnology. ACS, Washington DC, pp 127–140

    Google Scholar 

  • Hynes MJ (1989) Exp Mycol 13:196–198

    Google Scholar 

  • Jones EW, Fink, GR (1982) In: Strathern JN, Jones EW, Broach JR (eds) The molecular biology of the yeast Saccharomyces: Metabolism and gene expression. Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, pp 181–299

    Google Scholar 

  • Kirk TK, Farrell RL (1987) Annu Rev Microbiol 41:465–505

    Google Scholar 

  • Maniatis T, Fritsch EF, Sambrook J (1982) Molecular cloning a laboratory manual. Cold Spring Harbor Laboratory, Cold Spring Harbor, New York

    Google Scholar 

  • Mellon FM, Casselton LA (1988) Curr Genet 14:451–456

    Google Scholar 

  • Mellon FM, Little PFR, Casselton LA (1987) Mol Gen Genet 210:352–357

    Google Scholar 

  • Orbach MJ, Porro EB, Yanofsky C (1986) Mol Cell Biol 6:2452–2461

    Google Scholar 

  • Pease EA, Andrawis A, Tien M (1989) J Biol Chem 264:13531–13535

    Google Scholar 

  • Perkins DD, Radford A, Newmeyer D, Björkman M (1982) Microbiol Rev 46:426–570

    Google Scholar 

  • Pribnow D, Mayfield MB, Nipper VJ, Brown JA, Gold MH (1989) J Biol Chem 264:5063–5040

    Google Scholar 

  • Raeder U, Broda P (1984) Curr Genet 8:499–506

    Google Scholar 

  • Raeder U, Broda P (1986) EMBO J 51:1125–1127

    Google Scholar 

  • Randall T, Rao TR, Reddy CA (1989) Biochem Biophys Res Commun 161:720–725

    Google Scholar 

  • Razanamparany V, Bégueret J (1988) Gene 74:399–409

    Google Scholar 

  • Schalch H, Gaskell J, Smith TL, Cullen D (1989) Mol Cell Biol 9:2743–2747

    Google Scholar 

  • Schechtman MG, Yanofsky C (1983) J Mol Appl Gen 2:83–99

    Google Scholar 

  • Schweizer M, Case ME, Dykstra CC, Giles NH, Kushner SR (1981) Proc Natl Acad Sci USA 78:5086–5090

    Google Scholar 

  • Smith TL, Schalch H, Gaskell J, Covert S, Cullen D (1988) Nucleic Acids Res 16:1219

    Google Scholar 

  • Specht CA, Muñoz-Rivas A, Novotny CP, Ullrich RC (1988) Exp Mycol 12:357–366

    Google Scholar 

  • Tien M, Tu C-PD (1987) Nature 326:520–523

    Google Scholar 

  • Timberlake WE, Marshall MA (1989) Science 244:1313–1317

    Google Scholar 

  • Walther I, Kalin M, Reiser J, Suter F, Fritsche B, Saloheimo M, Leisola M, Teeri T, Knowles JKC, Fiechter A (1988) Gene 70:127–137

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Communicated by K. Esser

Rights and permissions

Reprints and permissions

About this article

Cite this article

Alic, M., Clark, E.K., Kornegay, J.R. et al. Transformation of Phanerochaete chrysosporium and Neurospora crassa with adenine biosynthetic genes from Schizophyllum commune . Curr Genet 17, 305–311 (1990). https://doi.org/10.1007/BF00314877

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00314877

Key words

Navigation