Skip to main content

Immun- und Gentherapie bei malignen Erkrankungen

  • Chapter
Praxis der Viszeralchirurgie
  • 73 Accesses

Zusammenfassung

Bei der Immun- und der Gentherapie handelt es sich um neuartige, noch experimentelle Therapieformen. Schwerpunkte der Forschung sind z. Z. noch die Weiterentwicklung der Methoden und die Charakterisierung geeigneter Zielstrukturen. Daher sind der endgültige Stellenwert dieser Verfahren und ihre jeweiligen Anwendungsbereiche gegenwärtig noch nicht abzusehen. Nachfolgend sollen exemplarisch immun- und gentherapeutische Strategien zur Behandlung von malignen Tumoren dargestellt werden.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 54.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  • Aman P (1999) Fusion genes in solid tumors. Semin Cancer Bi 19: 303–318

    Google Scholar 

  • Banchereau J, Steinman RM (1998) Dendritic cells and the control of immunity. Nature 392: 245–252

    Article  PubMed  CAS  Google Scholar 

  • Baselga J, Tripathy D, Mendelsohn J et al. (1996) Phase II study of weekly intravenous recombinant humanized antip185xER2 monoclonal antibody in patients with HER2/neuoverexpressing metastatic breast cancer. J Clin Oncol 14: 737–744

    PubMed  CAS  Google Scholar 

  • Bernhard H, Meyer zum Büschenfelde C, Peschel C (1999) Adoptiver Transfer von malignomreaktiven T-Zellen. Onkologe 5: 688–694

    Google Scholar 

  • Bonini C, Ferrari G, Verzeletti S et al. (1997) HSV-TK gene transfer into donor lymphocytes for control of allogeneic graft-versus-leukemia. Science 276: 1719–1724

    Article  PubMed  CAS  Google Scholar 

  • Boon T, VanderBruggen P (1996) Human tumor antigens recognized by T lymphocytes. J Exp Med 183: 725–729

    Article  PubMed  CAS  Google Scholar 

  • Bouvet M, Ellis LM, Nishizaki M et al. (1998) Adenovirus-mediated wild-type p53 gene transfer down-regulates vascular endothelial growth factor expression and inhibits angiogenesis in human colon cancer. Cancer Res 58: 2288–2292

    PubMed  CAS  Google Scholar 

  • Brenner MK, Rill DR, Moen RC, Krance RA, Mirro J Jr, Anderson WF, Ihle JN (1993) Gene-marking to trace origin of relapse after autologous bone-marrow transplantation. Lancet 341: 85–86

    Article  PubMed  CAS  Google Scholar 

  • Cheever MA, Disis ML, Bernhard H et al. (1995) Immunity to oncogenic proteins. In: Möller G (ed) Immunological reviews. Munksgaard, Copenhagen, pp 33–59

    Google Scholar 

  • Clayman GL, el-Naggar AK, Lippman SM et al. (1998) Adenovirus-mediated p53 gene transfer in patients with advanced recurrent head and neck squamous cell carcinoma. J Clin Oncol 16: 2221–2232

    PubMed  CAS  Google Scholar 

  • Deisseroth AB, Zu Z, Claxton D et al. (1994) Genetic marking shows that Ph+ cells present in autologous transplants of chronic myelogenous leukemia ( CML) contribute to relapse after autologous bone marrow in CML. Blood 83: 3068–3076

    Google Scholar 

  • Hart DNJ (1997) Dendritic cells: Unique leukocyte populations which control the primary immune response. Blood 90: 3245–3287

    PubMed  CAS  Google Scholar 

  • Holmgren L, Jackson G, Arbiser J (1998) p53 induces angiogenesis-restricted dormancy in a mouse fibrosarcoma. Oncogene 17: 819–824

    Google Scholar 

  • Jäger E, Knuth A (1999) Stand and Perspektiven der therapeutischen Vakzinierung mit bekannten Tumorantigenen. Onkologe 5: 695–700

    Article  Google Scholar 

  • Jäger E, Bernhard H, Romero Pet al. (1996 a) Generation of cytotoxic T-cell responses with synthetic melanoma-associated antigens. Int J Cancer 66: 162–169

    Google Scholar 

  • Jäger E, Ringhoffer M, Dienes HP et al. (1996 b) Granulocytemacrophage-colony-stimulating factor enhances immune responses to melanoma-associated pepitdes in vivo. Int J Cancer 67: 54–62

    Google Scholar 

  • Knuth A, Danowski B, Oettgen HF, Old LJ (1984) T-cell mediated cytotoxicity against autologous malignant melanoma: Analysis with interleukin-2-dependent T-cell cultures. Proc Natl Acad Sci USA 81: 3511–3515

    Article  PubMed  CAS  Google Scholar 

  • Licht T, Hafkemeyer P (1999) Aktuelle Aspekte der somati- schen Gentherapie. Dtsch Med Wochenschr 124: 700–706

    Article  PubMed  CAS  Google Scholar 

  • McLaughlin P, Grillo-Lopez A, Link B et al. (1998) Rituximab chimeric anti-CD20 monoclonal antibody therapy for relapsed indolent lymphoma: Half of patients respond to a four-dose treatment program. J Clin Oncol 16: 2825–2833

    Google Scholar 

  • Mickisch GH, Licht T, Merlino GT, Gottesman MM, Pastan I (1991) Chemotherapy and chemosensitization of transgenic mice which express the human multidrug resistance gene in bone marrow: Efficacy, potency and toxicity. Cancer Res 51: 5417–5424

    Google Scholar 

  • Moscow JA, Huang H, Carter C et al. (1999) Engraftment of MDR1 and NeoR gene-transduced hematopoietic cells after breast cancer chemotherapy. Blood 94: 52–61

    PubMed  CAS  Google Scholar 

  • Old LJ (1981) Cancer immunology: the search for specificity. Cancer Res 41: 361–375

    PubMed  CAS  Google Scholar 

  • Pandha HS, Martin LA, Rigg A, Hurst HC, Stamp GW, Sikora K, Lemoine NR (1999) Genetic prodrug activation therapy for breast cancer: A phase I clinical trial of erbB-2-directed suicide gene expression. J Clin Oncol 17: 2180

    PubMed  CAS  Google Scholar 

  • Pardoll DM (1998) Cancer vaccines. Nat Med 4: 525–531 Rabbits T (1994) Chromosomal translocations in human cancer. Nature 372: 143–149

    Google Scholar 

  • Ram Z, Culver KW, Oshiro EM et al. (1997) Therapy of malignant brain tumors by intratumoral implantation of retroviral vector-producing cells. Nat Med 3: 1354–1361

    Article  PubMed  CAS  Google Scholar 

  • Riethmüller G, Schneider-Gadicke E, Schlimok G et al. (1994) Randomised trial of monoclonal antibody for adjuvant therapy of resected Dukes’ C colorectal carcinoma. German Cancer Aid 17–1A Study Group. Lancet 14: 1177–1183

    Article  Google Scholar 

  • Rooney CM, Smith CA, Ng CY et al. (1998) Infusion of cytotoxic T cells for the prevention and treatment of Epstein-Barr virus-induced lymphoma in allogeneic transplant recipients. Blood 92: 1549–1555

    PubMed  CAS  Google Scholar 

  • Rosenthal F, Cronin K, Bannerjee R, Golde D, Gänsbacher B (1994) Synergistic induction of cytotoxic effector cells by tumor cells transduced with a retroviral vector carrying boh the IL-2 and IFN-gamma cDNAs. Blood 83: 1289–1298

    PubMed  CAS  Google Scholar 

  • Roth JA, Nguyen D, Lawrence DD et al. (1996) Retrovirus-mediated wild-type p53 gene transfer to tumors of patients with lung cancer. Nat Med 2: 985–991

    Article  PubMed  CAS  Google Scholar 

  • Sahin U, Türeci Ö, Pfreundschuh M (1999) Vom Immunsystem erkennbare Antigene auf menschlichen Malignomen. Onkologe 5: 659–667

    Article  Google Scholar 

  • Schuler M, Rochlitz C, Horowitz JA et al. (1998) A phase I study of adenovirus-mediated wild-type p53 gene transfer in patients with advanced non-small cell lung cancer. Hum Gene Ther 9: 2075–2082

    Article  PubMed  CAS  Google Scholar 

  • Seliger B, Huber C (1999) „Immune escape“-Mechanismen von humanen Tumoren. Onkologe 5: 668–678

    Google Scholar 

  • Steiner MS, Anthony CT, Lu Y, Holt JT (1998) Antisense c-myc

    Google Scholar 

  • retroviral vector suppresses established human prostate cancer. Hum Gene Ther 9: 747–755

    Google Scholar 

  • Swisher SG, Roth JA, Nemunaitis J et al. (1999) Adenovirusmediated p53 gene transfer in advanced non-small-cell lung cancer. J Natl Cancer Inst 91: 763–771

    Article  PubMed  CAS  Google Scholar 

  • Tanaka K, Iwakuma T, Harimaya K, Sato H, Iwamoto Y (1997) EWS-Flil antisense oligodeoxynucleotide inhibits proliferation of human Ewing’s sarcoma and primitive neuroectodermal tumor cells. J Clin Invest 99: 239–247

    Article  PubMed  CAS  Google Scholar 

  • Thurner B, Haendle I, Röder C et al. (1999) Vaccination with Mage-3A1 peptide-pulsed mature, monocyte-derived dendritic cells expands specific cytotoxic t cells and induces regression of some metastases in advanced stage IV melanoma. J Exp Med 11: 1669–1678

    Article  Google Scholar 

  • Webb A, Cunningham D, Cotter F et al. (1997) BCL-2 antisense therapy in patients with non-Hodgkin lymphoma. Lancet 349: 1137–1141

    Article  PubMed  CAS  Google Scholar 

  • Winkler U, Schnell R, Engert A (1999) Einsatz mono-und bi-spezifischer Antikörper in der Tumortherapie. Onkologe 5: 679–687

    Article  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Bernhard, H., Licht, T., Peschel, C. (2001). Immun- und Gentherapie bei malignen Erkrankungen. In: Siewert, J.R., Harder, F., Rothmund, M. (eds) Praxis der Viszeralchirurgie. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-09420-4_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-09420-4_16

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-09421-1

  • Online ISBN: 978-3-662-09420-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics