Skip to main content

Integrated Facies Analysis

  • Chapter
Microfacies of Carbonate Rocks

Abstract

To understand the formation and diagenesis of carbonate rocks mineralogical and geochemical data derived from the study of non-carbonate constituents, trace elements, and stable isotopes must be integrated. Other indicators for depositional and diagenetic conditions are organic matter and organic carbon.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 74.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Basics: Insoluble residues in limestones

  • Adatte, T., Rumley, G. (1984): Microfaciès, minéralogie, stratigraphie et évolution des milieux de depôts de la plateforme berriaso-valanginienne des régions de Sainte-Croix (VD), Cressier et du Landeron (NE). — Bulletin de la Societé Neuchâteloise des Sciences Naturelles, 107, 221–239

    Google Scholar 

  • Bausch, W. (1980): Tonmineralprovinzen in Malmkalken. — Erlanger Forschungen, Reihe B, 8, 78 pp.

    Google Scholar 

  • Bausch, W. (1996): Noncarbonates as controlling factor in reef growth and as a tool in reef stratigraphy (with examples from the Upper Jurassic of southern Germany). — Göttinger Arbeiten zur Geologie und Paläontologie, Sonderband, 2, 203–205

    Google Scholar 

  • Bolliger, W., Burri, P. (1967): Versuch einer Zeitkorrelation zwischen Plattformkarbonaten und tiefermarinen Sedimenten mit Hilfe von Quarz-Feldspat-Schüttungen (mittlerer Malm des Schweizer Jura). — Eclogae geologicae Helvetiae, 60, 491–507

    Google Scholar 

  • Cater, J.M.L. (1984): An application of scanning electron microscopy of quartz sand surface textures to the environmental diagnosis of Neogene carbonate sediments, Finestrat Basin, south-east Spain. — Sedimentology, 31, 717–731

    Article  Google Scholar 

  • Chamley, H. (1989): Clay sedimentology. — 623 pp., Berlin (Springer)

    Book  Google Scholar 

  • Chamley, H., Proust, N.-J., Mansy, J.-L., Boulvain, F. (1997): Diagenetic and paleogeographic significance of clay, carbonate and other sedimentary componentes in the Middle Devonian limestones of the western Ardennes, France. — Palaeogeography, Palaeoclimatology, Palaeoecology, 129, 369–385

    Article  Google Scholar 

  • Dürkoop, A., Richter, D.K., Stritzke, R. (1986): Fazies, Alter und Korrelation der triadischen Rotkalke von Epidauros, Adhami und Hydra /Griechenland). — Facies, 24, 105–150

    Article  Google Scholar 

  • Piller, W., Mansour, A.M. (1994): Origin and transport mechanisms of non-carbonate sediments in carbonate-dominated environments (Northern Safaga Bay, Red Sea, Egypt). — Abhandlungen der Geologischen Bundesanstalt Wien, 50, 369–379

    Google Scholar 

  • Ruffell, A., McKinnley, J.M., Worden, R.H. (2002): Comparison of clay mineral stratigraphy to other proxy paleoclimate indicators in the Mesozoic of NW Europe. — Philo-sophical Transactions of the Royal Society London, A360, 675–693

    Google Scholar 

  • Singer, A. (1984): The paleoclimatic interpretation of clays in sediments — a review. — Earth Science Review, 21, 251–293

    Article  Google Scholar 

  • Veide, B. (1992): Introduction to clay minerals. Chemistry, origins, uses and environmental significance. — 208 pp., New York (Chapman and Hall)

    Google Scholar 

  • Further reading: K068, K153

    Google Scholar 

Basics: Authigenic minerals in carbonate rocks

  • DeMaster, D.J. (1981): The supply and accumulation of silica in the marine environment. — Geochimica et Cosmochimica Acta, 45, 1715–1732

    Article  Google Scholar 

  • Hesse, R. (1990a): Origin of chert: diagenesis of biogenic siliceous sediments. — In: McIllreath, I.A., Morrow, D.W. (eds.): Diagenesis. — Geoscience Canada, Reprint Series, 4, 227–252

    Google Scholar 

  • Hesse, R. (1990b): Silica diagenesis: origin of inorganic and replacement cherts. — In: Mclllreath, I.A., Morrow, D.W. (eds.): Diagenesis. — Geoscience Canada, Reprint Series, 4, 253–276

    Google Scholar 

  • Kastner M., Siever, R. (1979): Low temperate feldspars in sedimentary rocks. — American Journal of Science, 279, 435–479

    Article  Google Scholar 

  • Laschet, C. (1984): On the origin of cherts. — Facies, 10, 257–289

    Article  Google Scholar 

  • Maliva, R., Siever, R. (1988): Mechanisms and controls of silicification of fossils in limestones. — Journal of Geology, 96, 387–398

    Article  Google Scholar 

  • Martín Penela, A.J. (1995): Silicification of carbonate clasts in a marine environment (Upper Miocene, Vera Basin, SE Spain). — Sedimentary Geology, 97, 21–32

    Article  Google Scholar 

  • Molenaar, N., de Jong, A.F.M. (1987): Authigenic quartz and albite in Devonian limestones: origin and significance. — Sedimentology, 34, 623–640

    Article  Google Scholar 

  • Wilson, R.G.C. (1966): Silica diagenesis in Upper Jurassic limestones of southern England. — Journal of Sedimentary Petrology, 36, 1036–1049

    Google Scholar 

  • Further reading: K064, K091, K092

    Google Scholar 

Glauconite

  • Amorosi, A. (1993): Use of glauconites for stratigraphic correlation: a review and case studies. — Giornale di Geologìa, 55, 117–137

    Google Scholar 

  • Chafetz, H.S., Reid, A. (2000): Syndepositional shallow-water precipitation of glauconite minerals. — Sedimentary Geology, 136, 29–42

    Article  Google Scholar 

  • Odin, G.S., Matter, A. (1981): De glauconiarum origine. — Sedimentology, 28, 611–641

    Article  Google Scholar 

  • Triplehorn, D.E. (1966): Morphology, internal structure, and origin of glauconite pellets. — Sedimentology, 6, 247–266

    Article  Google Scholar 

  • Further reading: K093

    Google Scholar 

Pyrite

  • Baird, G.C., Brett, C.E. (1986): Erosion of an anaerobic seafloor: significance of reworked pyrite deposits from the Devonian of New York State. — Palaeogeography, Palaeoclimatology, Palaeoecology, 57, 157–193

    Article  Google Scholar 

  • Berner, R.A. (1985): Sulphate reduction, organic matter decomposition and pyrite formation. — Philosophical Transactions of the Royal Society of London, A315, 25–38

    Google Scholar 

  • Canfield, D.R., Raiswell, R. (1991): Pyrite formation and fossil preservation. — In: Allison, P.A., Briggs, D.E.G. (eds.): Taphonomy: releasing the data locked in the fossil record. — 337–387, New York (Plenum)

    Google Scholar 

  • Hudson, J.D. (1982): Pyrite in ammonite-bearing shales from the Jurassic of England and Germany. — Sedimentology, 29, 639–667

    Article  Google Scholar 

  • Schallreuther, R. (1984): Framboidal pyrite in deep-sea sediments. — Initial Reports of the Deep Sea Drilling Project, 75, 875–891

    Google Scholar 

  • Schieber, J. (2002): Sedimentary pyrite: a window into the microbial past. — Geology, 30, 531–534

    Article  Google Scholar 

  • Wilkin, R.T., Barnes, H.L., Brantley, S.L. (1996): The size distribution of framboidal pyrite in modern sediments: an indicator of redox conditions. — Geochimica et Cosmochimica Acta, 60, 3897–3912

    Article  Google Scholar 

  • Further reading: K067

    Google Scholar 

Sulfates: Evaporites

  • Aigner, T., Bachmann, G.H. (1989): Dynamic stratigraphy of an evaporite-to-red bed sequence, Gipskeuper (Triassic), southwest German Basin. — Sedimentary Geology, 62, 5–25

    Article  Google Scholar 

  • Balzer, D. (1997): Mikrofazies-Analyse von Ca-Sulfatgesteinen des Zechstein. — Geologisches Jahrbuch, D, 106, 3–99

    Google Scholar 

  • Handford, C.R., Loucks, R.G., Davies, G.R. (1982): Depositional and diagenetic spectra of evaporites — a core workshop. — SEPM Core Workshop, 3, 395 pp.

    Google Scholar 

  • Renault, R.W. (ed., 1989): Sedimentology and diagenesis of evaporites. — Sedimentary Geology, 64, 207

    Google Scholar 

  • Richter-Bernburg, G. (1985): Zechstein-Anhydrite. Fazies und Genese. — Geologisches Jahrbuch, A85, 1–82

    Google Scholar 

  • Rouchy, J.M., Taberner, C., Peryt, D. (eds., 2001): Sedimentary and diagenetic transitions between carbonates and evaporites. — Sedimentary Geology, 140, 1–189

    Google Scholar 

  • Sarg, J.F. (2001): The sequence stratigraphy, sedimentology and economic importance of evaporite-carbonate transitions. — Sedimentary Geology, 140, 9–34

    Article  Google Scholar 

  • Shearman, D.J. (1991): Evaporite sediments and rocks: the calcium sulphate and halite facies. — 304 pp., New York (Van Nostrand)

    Google Scholar 

  • Warren, J. (1999): Evaporites. Their evolution and economics. — 448 pp., Oxford (Blackwell)

    Google Scholar 

  • Further reading: K065

    Google Scholar 

Phosphates and phosphorites

  • Baturin, G.N. (1982): Stages of phosphorite formation. — Developments in Sedimentology, 33, 344 pp.

    Google Scholar 

  • Bentor, Y.K. (ed., 1980): Marine phosphorites. — Society of Economic Paleontologists and Mineralogists, Special Publications, 29, 259 pp.

    Google Scholar 

  • Föllmi, K.B. (1996): The phosphorus cycle, phosphogenesis and marine phosphate-rich deposits. — Earth Science Reviews, 40, 55–124

    Article  Google Scholar 

  • Glenn, C.R., Föllmi, K.B., Riggs, S.R., Baturin, G.N., Grimm, K.A., Trappe, J., Abed, A.M., Galli-Oliver, C., Garrison, R.E., nyin, A.V., Jahl, C., Roehrlich, V., Sadaqah, R.M.Y., Schidlowski, M., Sheldon, R.E., Siegmund, H. (1994): Phosphorus and phosphorites: sedimentology and environments of formation. — Eclogae geologicae Helvetiae, 87, 747–788

    Google Scholar 

  • Lucas, J., Prévost-Lucas, L. (2002): Phosphorite and limestone, two independent end-member products of the range of bio-productivity in shallow-marine environments. — In: Glenn, C.R., Prévost-Lucas, L., Lucas, J. (eds.): Marine authigenesis: from global to microbial. — SEPM, Special Publications, 66, 117–127

    Google Scholar 

  • Nothold, A.J.G., Jarvis, I. (eds., 1990): Phosphorite research and development. — Geological Society of America, Special Publications, 52, 326 pp.

    Google Scholar 

  • Soudry, D. (2000): Microbial phosphate sediments. — In: Riding, R., Awramik, S.E. (eds.): Microbial sediments. — 127–136, Berlin (Springer)

    Chapter  Google Scholar 

  • Trappe, J. (1998): Phanerozoic phosphorite depositional systems. A dynamic model for a sedimentary resource system. — Lecture Notes in Earth Sciences, 76, 316 pp.

    Article  Google Scholar 

  • Trappe, J. (2001): A nomenclature system for granular phosphate rocks according to depositional texture. — Sedimentary Geology, 145, 135–150

    Article  Google Scholar 

  • Further reading: K066

    Google Scholar 

Basics: Trace elements in carbonates

  • Brand, U. and Veizer, J. (1980): Chemical diagenesis of a multicomponent carbonate system — I. Trace elements. — Journal of Sedimentary Petrology, 50, 1219–1236

    Google Scholar 

  • Carpenter, S.J. and Lohmann, K.C. (1992): Sr/Mg ratios of modern marine calcite: empirical indicators of ocean chemistry and precipitation rate. — Geochimica et Cosmochimica Acta, 56, 1837–1849

    Article  Google Scholar 

  • Churnet, H.G., Misra, K.C. (1981): Genetic implications of the trace distribution pattern in the upper Knox carbonate rocks, Copper Ridge District, East Tennessee. — Sedimen-tary Geology, 30, 173–194

    Article  Google Scholar 

  • Kühl, A., Schreiber, A., Scheffler, E. (1996): Faziesanalyse mit multivariatstatistischen und geostatistischen Methoden des Dunklen Knotenkalkes von Wildenfels. — Freiberger Forschungshefte, C., 462, 212 pp.

    Google Scholar 

  • Morse, J.W., Mackenzie, F.T. (1990): Geochemistry of sedimentary carbonates. — 707 pp., Amsterdam (Elsevier)

    Google Scholar 

  • Popp. B., Anderson, F.T., Sandberg, P.A. (1986): Textural, elemental and isotopic variations among constituents in Middle Devonian limestones, North America. — Journal of Sedimentary Petrology, 56, 715–727

    Google Scholar 

  • Renard, M. (1986): Pelagic carbonate chemostratigraphy (Sr, Mg, 18O,13C). — Marine Micropaleontology, 16, 117–164

    Article  Google Scholar 

  • Veizer, J. (1983): Chemical diagenesis of carbonates: theory and application of trace element techniques. — In: Arthur, M.A., Anderson, T.F., Kaplan, I.R., Veizer, J., Land, L.S. (eds.): Stable isotopes in sedimentary geology. — Soc. Econom. Paleont. Miner., Short Course, 10, 3.1–3.100

    Google Scholar 

  • Further reading: K154, K155, K156

    Google Scholar 

Basics: Stable isotopes

  • Arthur, M.A., Anderson, T.F., Kaplan, I.R., Veizer, J., Land, L.S. (1983): Stable isotopes in sedimentary geology. — Soc. Econom. Paleont. Miner., Short Course, 10, 1–151

    Google Scholar 

  • Banner, J.J. (1995): Application of the trace element and isotope geochemistry of strontium to studies of carbonate diagenesis. — Sedimentology, 42, 805–824

    Article  Google Scholar 

  • Barrera, E., Tevesz, M.J.S. (1990): Oxygen and carbon isotopes: utility for environmental interpretation of recent and fossil invertebrate skeletons. — In: Carter, J.G. (ed.): Skeletal biomineralization: patterns, processes and evolutionary trends. Volume I. — 557–566, New York (Van Nostrand)

    Google Scholar 

  • Berger, H., Vincent, E. (1986): Deep-sea carbonates: Reading the carbon-isotope signal. — Geologische Rundschau, 75, 249–269

    Article  Google Scholar 

  • Brand, U., Veizer, J. (1981): Chemical diagenesis of a multicomponent carbonate system. — 2: Stable isotopes. — Journal of Sedimentary Petrology, 51, 987–997

    Google Scholar 

  • Clauer, N., Chaudhuri, S. (eds., 1992): Isotopic signatures and sedimentary records. — Lecture Notes in Earth Sciences, 43, 529 pp.

    Google Scholar 

  • Elderfield, H. (1986): Strontium isotope stratigraphy. — Palaeogeography, Palaeoclimatology, Palaeoecology, 57, 71–90

    Article  Google Scholar 

  • Faure, G. (1986): Principles of isotope geology. — 589 pp., New York (Wiley)

    Google Scholar 

  • Hoefs, J. (1997): Stable isotope geochemistry. 4th edition. — 201 pp., Berlin (Springer)

    Book  Google Scholar 

  • Hudson, J.D., Anderson, T.F. (1989): Ocean temperatures and isotopic compositions through time. — Transactions of the Royal Society Edinburgh, 80, 183–192

    Article  Google Scholar 

  • Joachimski, M. (1991): Stabile Isotopen (C, O) und Geochemie der Purbeck-Mikrite in Abhängigkeit von Fazies und Diagenese (Berriasian/Schweizer und Französischer Jura, Südengland). — Erlanger Geologische Abhandlungen, 119, 1–114

    Google Scholar 

  • Marshall, J.D. (1992): Climatic and oceanographie signals from the carbonate rock record and their preservation. — Geological Magazine, 129, 143–160

    Article  Google Scholar 

  • Morse, J.W., Mackenzie, F.T. (1990): Geochemistry of sedimentary carbonates. — Developments in Sedimentology, 48, 707 pp., Amsterdam (Elsevier)

    Article  Google Scholar 

  • Munnecke, A., Samtleben, C., Bickert, T. (2003): The Ireviken event in the lower Silurian of Gotland, Sweden — relations to similar Palaeozoic and Proterozoic events. — Palaeogeography, Palaeoclimatology, Palaeoecology, 195, 99–124

    Article  Google Scholar 

  • Popp, B.N., Anderson, T.F., Sandberg, P.A. (1986): Brachiopods as indicators of original isotopie compositions in some Palaeozoic limestones. — Geological Society of America, Bulletin, 97, 1262–1269

    Article  Google Scholar 

  • Rasser, M., Fenninger, A. (2002): Paleoenvironmental and diagenetic implications of δ18O and δ13C isotope ratios from the Upper Jurassic Plassen limestone (Northern Calcareous Alps, Austria). — Geobios, 35, 41–49

    Article  Google Scholar 

  • Schidlowski, M. (2000): Carbon isotopes and microbial sediments. — In: Riding, R., Awramik, S.M. (eds.): Microbial sediments. — 84–95, Berlin (Springer)

    Chapter  Google Scholar 

  • Schulz, H.D., Zabel, M. (eds., 2000): Marine geochemistry. — 455 pp., Berlin (Springer)

    Google Scholar 

  • Veizer, J., Hoefs, J. (1976): The nature of O18/O16 and C13/ C12 secular trends in sedimentary carbonate rocks. — Geochimica et Cosmochimica Acta, 40, 1387–1395

    Article  Google Scholar 

  • Veizer, J., Fritz, P., Jones, B. (1986): Geochemistry of brachiopods: Oxygen and carbon isotope records of Paleozoic oceans. — Geochimica et Cosmochimica Acta, 50, 1679–1696

    Article  Google Scholar 

  • Wadleigh, M.A., Veizer, J. (1992): 18O/16O and 13C/12C in lower Paleozoic articulate brachiopods: Implications for the isotopie composition of seawater. — Geochimica et Cosmochimica Acta, 56, 431–443

    Article  Google Scholar 

  • Wefer, G., Berger, W.H. (1991): Isotope paleontology: growth and composition of extant calcareous species. — Marine Geology, 100, 207–248

    Article  Google Scholar 

  • Wenzel, B.C. (1997): Isotopenstratigrapische Untersuchungen an silurischen Abfolgen und deren paläoozeanographische Interpretation. — Erlanger Geologische Abhandlungen, 129, 1–117 (cum lit.!)

    Google Scholar 

  • Further reading: K157, K158 (stable isotopes in sediments), K159 (stable isotopes in organisms and fossils)

    Google Scholar 

Basics: Organic matter

  • Crick, R.E. (ed., 1989): Origin, evolution and modern aspects of biomineralization in plants and animals. — 536 pp., New York (Plenum Press)

    Google Scholar 

  • De Leeuw, J.W., Frewin, N.L., Van Bergen, PR, Sinninghe Damste, J.S., Collinson, M.E. (1995): Organic carbon as a paleoenvironmental indicator in the marine realm. — In: Bosence, D.W., Allison, P.A. (eds.): Marine paleoenvironmental analysis from fossils. — Geological Society of London, Special Publication, 83, 43–71

    Article  Google Scholar 

  • Gautier, D.L. (ed., 1986): Roles of organic matter in sediment diagenesis. — Soc. Econ. Paleont. Miner., Special Publications, 38, 203 pp.

    Google Scholar 

  • Huc, A.Y. (1990): Deposition of organic facies. — American Association of Petroleum Geologists, Studies in Geology, 30, 234 pp.

    Google Scholar 

  • Marynowski, L., Narkiewicz, M., Grelowski, C. (2000): Biomarkers as environmental indicators in a carbonate complex, example from the Middle to Upper Devonian, Holy Cross Mountains, Poland. — Sedimentary Geology, 137, 187–212

    Article  Google Scholar 

  • Peters, K.E., Moldovan, J.M. (1993): The biomarker guide — interpreting molecular fossils in petroleum and ancient sediments. — 363 pp., Englewood Cliffs (Prentice Hall)

    Google Scholar 

  • Ramseyer, K., Miano, T.M., D’Orazio, V., Wildberger, A., Wagner, T., Geister, J. (1997): Nature and origin of organic matter in carbonates from speleothems, marine cements and coral skeletons. — Organic Geochemistry, 26, 361–378

    Article  Google Scholar 

  • Ricken, W. (1993): Sedimentation as a three-component system. — Lecture Notes in Earth Science, 51, 211 pp., Berlin (Springer)

    Google Scholar 

  • Tyson, R.V. (1995): Sedimentary organic matter. Organic facies and palynofacies. — 615 pp., London (Chapman and Hall)

    Book  Google Scholar 

  • Whelan, J.K., Farrington, J.W. (eds., 1992): Organic matter: productivity, accumulation and preservation in recent and ancient sediments. — 533 pp., New York (Columbia Press)

    Google Scholar 

  • Further reading: K069

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Flügel, E. (2004). Integrated Facies Analysis. In: Microfacies of Carbonate Rocks. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-08726-8_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-08726-8_13

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-08728-2

  • Online ISBN: 978-3-662-08726-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics