Skip to main content
Log in

Deep-sea carbonates: Reading the carbon-isotope signal

  • Published:
Geologische Rundschau Aims and scope Submit manuscript

Zusammenfassung

Das Kohlenstoff-Isotopensignal in den Tiefseesedimenten spiegelt ein Zusammenspiel wider, das (1) von den globalen Austauschraten des ozeanischen Kohlenstoffreservoirs mit der Biosphäre, den Böden und den Sedimenten gesteuert wird, (2) in dem ein globaler und regionaler Wechsel in der Produktivität des Oberflächenwassers und (3) interne Veränderungen in der Wassermassen-Struktur und -Zirkulation (Becken-zu-Becken-Fraktionierung, Sauerstoffminimumentwicklung) zum Ausdruck kommen, und (4) in dem eine spezifische Fraktionierung hervorgerufen durch die Milieuänderung im Lebensraum der Organismen und/oder ontogenetische Fraktionierung (»Vitaleffekte«) erscheint. Zusätzliche Komplikationen entstehen aus unterschiedlichen Erhaltungsmöglichkeiten. Es ist unmöglich, alle diese verschiedenen Faktoren vollständig zu isolieren. Als Faustregel kann man annehmen, daß langpenodische Signale, die parallel mit Plankton- und Benthosentwicklungen verlaufen, externe globale Fraktionierungstrends widerspiegeln, während kurzzeitige Signale eher an interne Muster gebunden sind (Fraktionierung innerhalb der Wassermassen). Die verschiedenen Möglichkeiten der Interpretation werden an speziellen Fällen diskutiert: am Übergang Pleistozän zu Holozän, an der Veränderung des Kohlenstoffverhältnisses im Messinium und an dem Monerey-Maximum im Miozän.

Abstract

The carbon isotope signal in deep-sea sediments reflects a mix of (1) global changes in the rates of exchange of the ocean's carbon reservoir with biosphere, soil, and sediments, (2) global and regional changes in surface water productivity, (3) internal shifts in water-mass structure and circulation (basin-basin fractionation, oxygen minimum development), and (4) organism-specific fractionation effects due to changes in micro-habitat and/or ontogenic fractionation (»vital effects«). Additional complications arise from differential preservation. It is impossible to entirely isolate these various factors. As a rule of thumb, long period signals that are parallel for planktonic and benthic data reflect external (global) fractionation patterns, whilst short-period signals are more likely tied to internal patterns (water-mass fractionation). The various approaches to interpretation are illustrated with three case studies: the Glacial-Holocene transition, the Messinian Carbon Shift, and the Miocene Monterey Excursion.

Résumé

Le signal isotopique du carbone enregistré dans les sédiments océaniques résulte d'un ensemble de mécanismes qui reflètent: 1) les variations globales dans l'intensité des échanges entre le réservoir du carbone de l'océan et la biosphère, les sols et les sédiments, 2) les variations globales et régionales de productivité des eaux de surface, 3) les changements dans la structure et la circulation des masses d'eaux (fractionnement de bassin à bassin, développement d'un niveau à minimum d'oxygène), et 4) les effets de fractionnement propres aux organismes, dûs à des changements de micro-habitat et/ou à un fractionnement au cours de l'ontogénie (»effet vital«). La préservation différentielle ajoute certaines difficultés d'interprétation. Il n'est pas possible d'isoler entièrement chacun de ces différents facteurs. D'une manière générale les signaux à longue période dont les variations sont parallèles pour les données planctoniques et benthiques correspondent à un fractionnement dû à des facteurs externes (globaux), alors que les signaux à courte période sont plus vraisemblablement liés à des facteurs internes (fractionnement des masses d'eaux). Trois cas étudiés permettent d'illustrer ces différents types d'interprétation: la transition Glaciaire/Holocène, le »décrochement Messinien« et l'»enrichissement de Monterey« au Miocène.

Краткое содержание

Соотношения изотопо в углерода в глубоков одных океанических отложе ниях отображают взаимодействие, кото рое: 1) регулируется гло бальным обменом океаническо го резервуара углеро да с биосферой, дном водо емов и их седиментами; 2) выражается глобальн ой и региональной сме ной продуктивности пове рхностных вод, а также 3) изменениями в структуре и циркуля ции водных масс (фракционирование в з ависимости от бассей на к бассейну, минимальное образов ание кислорода) и 4) проявляется специфи ческим фракциониров анием, вызванным изменения ми окружающей среды в жизненном пространстве органи змов и/или онтогенети ческим фракционированием э тих изотопов — “жизне нный эффект”. Трудности пр едоставляет различн ая степень сохранности исходного состава из отопов. Разделить все эти фак торы полностью не уда ется; как правило, можно гов орить о том, что соотно шение изотопов в глобально м масштабе, протекающ ее параллельно с развит ием планктона и бенто са, отображают внешние г лобальные тенденции фракционирования, в т о время, как локальные связаны скорее всего с местны м фракционированием в водных массах. Дискут ируется возможность различной интерпретации отдел ьных частных случаев: например, на рубеже плейстоцен а и голоцена; а также изменение соотношен ия стабильных изотоп ов в мессинском веке и эфф ект Монтери в миоцено вых отложениях.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  • Adam, C. G., Benson, R. H., Kidd, R. B., Ryan, W. B. F. &Wright, R. C. (1977): The Messinian salinity crisis and evidence of late Miocene eustatic changes in the world ocean. - Nature,269, 383–386.

    Google Scholar 

  • Arthur, M. A. (1982): The carbon cycle — controls on atmospheric CO2 and climate in the geologic past. - In:Berger, W. H. &:Crowell, D. C. (eds.): Climate in Earth History. - National Academy Press, Washington, D.C., 55–67.

    Google Scholar 

  • -,Anderson, T. F.,Kaplan, I. R.,Veizer, J. &Land, L. S. (1983): Stable isotopes in sedimentary geology. - SEPM Short Coure No. 10, Dallas, 1983.

  • Bainbridge, A. E. (ed.) (1981): GEOSECS Atlantic Expedition. Volume 1 Hydrographic Data. - National Science Foundation, Washington, D.C., 121 pp.

    Google Scholar 

  • Barron, E. J &Washington, W. M. (1985): Warm Cretaceous climates: high atmospheric CO2 as a plausible mechanism. -In:Sundquist, E. T. &Broecker, W. S. (eds.), The Carbon Cycle and Atmospheric CO2: Natural Variations Archaen to Present. - Amer. Geophys. Union, Geophys. Monograph32, 546–553.

  • Barron, J. A. &Keller G. (1982): Widespread Miocene deep sea hiatuses: coincidence with periods of global cooling. - Geology,10: 577–581.

    Google Scholar 

  • -,Keller, G. &Dunn, D. A. (1985): A multiple microfossil biochronology for the Miocene. - In:Kennett, J. P. (ed.), The Miocene Ocean: Paleoceanography and Biogeography. - Mem. Geol. Soc. Am.,163, 21–36.

  • Bender, M. L. &Graham, D. W. (1981): On late Miocene abyssal hydrography. - Micropaleontology,6, 451–464.

    Google Scholar 

  • Bender, L. &Keigwin, L. D., Jr. (1979): Speculations about the upper Miocene change in abyssal Pacific dissolved bicarbonate δ13C. - Earth Planet. Sci. Lett.,45, 383–393.

    Google Scholar 

  • Berger, W. H. (1971): Sedimentation of planktonic foraminifera. - Marine Geology,11, 325–358.

    Google Scholar 

  • — (1977): Carbon dioxide excursions and the deep sea record: aspects of the problem. - In:N. R. Andersen &A. Malahoff (eds.), The Fate of Fossil Fuel CO2 in the Oceans, Plenum Press, New York, 505–542.

    Google Scholar 

  • - &Keir, R. S. (1984): Glacial-Holocene changes in atmospheric CO2 and the deep sea record. - In: J. E.Hansen & T.Takahashi (eds.), Climate Processes and Climate Sensitivity, Amer. Geophys. Union Geophys. Monograph29, 337–351.

  • - &Vincent, E. (1981): Chemostratigraphy and biostratigraphic correlation: excercises in systemic stratigraphy. Proc. 26th Internat. Geol. Congress, Geology of Oceans Symposium (Paris, 1980) - Spec. Publ. Oceanologica Acta, 115–127.

  • —,Killingley, J. S. &Vincent, E. (1978): Stable isotopes in deep-sea carbonates: Box Core ERDC-92, west equatorial Pacific. - Oceanologica Acta, 1, 203–216.

    Google Scholar 

  • -,Be, A. W. H. &Vincent, E. (eds.) (1981): Oxygen and carbon isotopes in foraminifera. - Palaeogeogr., Palaeoclimatol., Palaeoecol.,33, 1–277 (special issue).

  • —,Killingley, J. S., Metzler, C. V. &Vincent, E. (1985): Two-step deglaciation:14C-dated high resolution δ18O records from the tropical Atlantic Ocean. - Quaternary Research,23, 258–271.

    Google Scholar 

  • Berggren, W. A. &Haq, B. U. (1976): The Andalusian Stage (Late Miocene): biostratigraphy, biochronology and paleoecology. - Palaeogeogr., Palaeoclimatol., Palaeoecol.,20, 67–129.

    Google Scholar 

  • -,Kent, D. V. &Van Couvering, J. A. (in press): Neogene geochronology and chronostratigraphy. In:Snelling, N. J., ed., Geochronology and the geological record. - Geological Society of London Special Paper.

  • Berner, R. A. &Raiswell, R. (1983): Burial of organic carbon and pyrite sulfur m sediments over Phanerozoic time: a new theory. - Geochim. Cosmochim. Acta,47, 855–862.

    Google Scholar 

  • —,Lasaga, A. C. &Garrels, R. M. (1983): The carbonate-silicate geochemical cycle and its effect on atmospheric carbon dioxide over the past 100 million years. - Amer. Jour. Sci.,283, 641–683.

    Google Scholar 

  • Berner, W., Oeschger, H. &Stauffer, B. (1980): Information on the CO2 cycle from ice core studies: Radiocarbon,22, 227–235.

    Google Scholar 

  • Boersma, A. &Shackleton, N. (1977): Tertiary oxygen and carbon isotope stratigraphy, Site 357 (Mid-latitude South Atlantic). - Init. Repts. DSDP,39, 911–924.

    Google Scholar 

  • Boyle, E. A. &Keigwin, L. D. (1982): Deep circulation of the North Atlantic over the last 200,000 years: geochemical evidence. - Science,218, 784–787.

    Google Scholar 

  • Bramlette, M. N. (1946): Monterey Formation of California and orgin of its siliceous rocks. U.S. Geol. Surv. Prof. Pap.212, 1–57.

    Google Scholar 

  • Broecker, W. S. (1973): Factors controlling CO2 content in the oceans and atmosphere. - In: G. M.Woodwell & E. V.Pecan (eds.), Carbon and the Biosphere, AEC Symposium,30, 32–50.

  • - (1974): Chemical oceanography. - Hartcourt Brace Jovanovich, New York.

  • — (1982): Ocean chemistry during glacial time. - Geochim. Cosmochim. Acta.46, 1689–1705.

    Google Scholar 

  • — &Peng, T. H. (1982): Tracers in the Sea. - Eldigio Press, Palisades, New York, 690 pp.

    Google Scholar 

  • —,Spencer, D. W. &Craig, H. (eds.) (1982): GEO-SECS Pacific Expedition, Volume 3, Hydrographic Data. - National Science Foundation, Washington, D.C., 137 pp.

    Google Scholar 

  • —,Peteet, D. &Rind, D. (1985): Does the ocean-atmosphere system have more than one stable mode of operation? - Nature,315, 21–26.

    Google Scholar 

  • Calvert, S. E. (1966): Origin of diatom-rich, varved sediments from the Gulf of California. - Jour. Geol.,74, (5), Part 1, 546–565.

    Google Scholar 

  • Corliss, B. H. (1985): Microhabitats of benthic foraminifera within deep-sea sediment. - Nature,314, 435–438.

    Google Scholar 

  • Curry, W. B. &Lohmann, G. P. (1982): Carbon isotopic changes in benthic foraminifera from the western South Atlantic: reconstruction of glacial abyssal circulation patterns. - Quat. Res.,18, 218–235.

    Google Scholar 

  • —, (1983): Reduced advection into Atlantic Ocean deep eastern basins during last glacial maximum.- Nature,306, 577–580.

    Google Scholar 

  • Delmas, R. J., Ascencio, J. M. &Legrand, M. (1980): Polar ice evidence that atmospheric CO2 20,000 years BP was 50% of present. - Nature,284, 155–157.

    Google Scholar 

  • Duplessy, J. C., Chenouard, L. &Vila, F. (1975): Weyl's theory of glaciation supported by isotopic study of Norwegian Cove Kll. - Science,188, 1208–1209.

    Google Scholar 

  • —,Moyes, J. &Pujol, C. (1980): Deep water formation in the North Atlantic during the last ice age. - Nature,286, 479–482.

    Google Scholar 

  • Fischer, A. G. &Arthur, M. A. (1977): Secular variations in the pelagic realm. - Soc. Econ. Paleontol. Mineral. Spec. Publ.25, 19–50.

    Google Scholar 

  • Ganssen, G. (1983): Dokumentation von küstennahem Auftrieb anhand stabiler Isotope in rezenten Foraminiferen vor Nordwest-Afrika. - Meteor. Forsch.-Ergebnisse, C.37, 1–46.

    Google Scholar 

  • Ganssen, G. &Sarnthein, M. (1983): Stable-isotope composition of foraminifers: the surface and bottom water record of coastal upwelling. - In:Suess, E. &Thiede, J. (eds.), Coastal Upwelling, Part A, 99–121, Plenum Press, New York.

    Google Scholar 

  • Grossman, E. L. (1984): Carbon isotopic fractionation in live benthic foraminifera — comparison with inorganic precipitate studies. - Geochim. Cosmochim. Acta,48, 1505–1512.

    Google Scholar 

  • Haq, B. R., Worsley, T. R., Burckle, L. H., Douglas, R. G., Keigwin, L. D., Jr.,Opdyke, N. D., Savins, S. M., Sommer, M. A. (1980): Late Miocene marine carbon-isotope shift and synchroneity of some phytoplanktonic biostratigraphic events. - Geology,8, 427–431.

    Google Scholar 

  • Holser, W. T. (1984): Gradual and abrupt shifts in ocean chemistry during Phanerozoic time. - In:Holland, H. &Trendall (eds.), Patterns of Change in Earth Evolution, 123–143, Berlin (Dahlem Konferenzen, Springer-Verlag).

    Google Scholar 

  • Jansen, E. &Erlenkeuser, H. (1985): Ocean circulation in the Norwegian Sea during the last deglaciation; isotopic evidence. - Palaeogeog., Palaeoclimatol., Palaeoecol.,49, 189–206.

    Google Scholar 

  • Keigwin, L. D., Jr. (1979): Late Cenozoic stable isotope stratigraphy and paleoceanography of DSDP Sites from the east equatorial and north central Pacific Ocean. - Earth Planet. Sci. Letts.45, 361–382.

    Google Scholar 

  • — &Shackleton, N. J. (1980): Uppermost Miocene carbon isotope stratigraphy of a piston core in the equatorial Pacific. - Nature,284, 613–614.

    Google Scholar 

  • Killingley, J. S. (1983): Effects of diagenetic recrystallization on18O/16O values of deep-sea sediments.- Nature,301, 594–597.

    Google Scholar 

  • Kroopnick, P. M. (1985): The distribution of13C of ∑CO2 in the world oceans. - Deep-Sea Res.,32 (1), 57–84.

    Google Scholar 

  • —,Margolis, S. V. &Wong, C. S. (1977): δ13C variations in marine carbonate sediments as indicators of the CO2 balance between the atmosphere and oceans. - In:Andersen, N. R. &Malahoff, A. (eds.), The Fate of Fossil Fuel CO2 in the Oceans, 295–321, Plenum Press, New York.

    Google Scholar 

  • Loutit, T. S. &Keigwin, L. D., Jr (1982): Stable isotopic evidence for latest Miocene sea level fall in the Mediterranean region. - Nature,300, 163–166.

    Google Scholar 

  • —,Kennett, J. P. &Savin, S. M. (1983): Miocene equatorial and southwest Pacific paleoceanography from stable isotope evidence. - Marine Micropaleontology,8, 215–233.

    Google Scholar 

  • McCorkle, D. C., Emerson, S. R., andQuay, P. D. (1985): Stable carbon isotopes in marine pore waters. - Earth Planet. Sci. Letters,74, 13–26.

    Google Scholar 

  • Miller, K. G. &Fairbanks, R. G. (1983): Evidence for Oligocene-Middle Miocene abyssal circulation changes in the western North Atlantic. - Nature,306, 250–253.

    Google Scholar 

  • - &Fairbanks, R. G. (1985): Oligocene-Miocene global carbon and abyssal circulation changes. - In:Sundquist, E. &Broecker, W. (eds.), The Carbon Cycle and Atmospheric CO2: Natural variations Archaean to present, Amer. Geophys. Union Geophys. Monograph,32, 469– 486.

  • — &Thomas, E. (1985): Late Eocene to Oligocene benthic foraminiferal isotopic record, Site 574 equatorial Pacific. - Init. Rpts. DSDP,85, 771–777.

    Google Scholar 

  • Neftel, A., Oeschger, H., Schwander, J., Stauffer, B. &Zumbrunn, R. (1982): Ice core sample measurements give atmospheric CO2 content during the past 40,000 years. - Nature,295, 220–223.

    Google Scholar 

  • Oeschger, H.,Beer, J.,Siegenthaler, U.,Stauffer, B.,Dansgaard, W.Si Langway, C. C. (1984): Late glacial climate history from ice cores. - In: J.Hansen & T.Takahashi (eds.), Climate Processes and Climate sensitivity, Amer. Geophys. Union, Geophys, Monograph29, 299–306.

  • Redfield, A. C., Ketchum, B. H. &Richards, F. A. (1963): The influence of organisms on the low position of sea water.-In:Hill, M. N. (ed.), The Low Position of Sea Water Comparative and Descriptive Oceanography, The Sea, 2, Wiley and Sons, New York, 26–77.

    Google Scholar 

  • Reimers, R. E., Kalhorn, S., Emerson, S. R. &Nealson, K. H. (1984): Oxygen consumption rates in pelagic sediments from the Central Pacific: first estimates from microelectrode profiles. - Geochim. Cosmochim. Acta,48, 903–910.

    Google Scholar 

  • Riedel, W. R. &Saito, T. (eds.) (1979): Marine Plankton and Sediments. - Micropaleontology, Special Pub. No. 3, Micropaleontology Press, New York, 159 pp.

    Google Scholar 

  • Savin, S. M. &Douglas, R. G. (1973): Stable isotope and magnesium geochemistry of Recent planktonic Foraminifera from the South Pacific. - Geol. Soc. Am. Bull.,84, 2327–2342.

    Google Scholar 

  • —, — &Stehli, F. G. (1975): Tertiary marine paleotemperatures. - Geol. Soc. Am. Bull.,86, 1499–1510.

    Google Scholar 

  • —, —,Keller, G., Killingley, J. S., Shaughnessy, J. L., Sommer, M. A., Vincent, E. &Woodruff, F. (1981): Miocene benthic foraminiferal isotope records: a synthesis. - Mar. Micropaleontol.,6, 423–450.

    Google Scholar 

  • Scholle, P. A. &Arthur, M. A. (1980): Carbon isotopic fluctuations in pelagic limestones: potential stratigraphic and petroleum exploration tool. - Amer. Assoc. Petrol. Geol. Bull.,64, 65–87.

    Google Scholar 

  • Shackleton, N. (1977): Carbon-13 in Uvigerina: tropical rainforest history and the equatorial Pacific carbonate dissolution cycles. - In:N. R. Andersen &A. Malahoff (eds.) The Fate of Fossil Fuel CO2 in the Oceans:- Plenum Press, New York, 401–427.

    Google Scholar 

  • — &Kennett, J. P. (1975): Paleotemperature history of the Cenozoic and initiation of Antarctic glaciation: oxygen and carbon isotope analyses in DSDP Sites 277, 279 and 281. - Init. Repts. DSDP29, 743–755.

    Google Scholar 

  • —,Hall, M. A., Line &Shuxi, C. (1983a): Carbon isotope data in core V19-30 confirm reduced carbon dioxide concentration in the ice age atmosphere. - Nature,306, 319–322.

    Google Scholar 

  • —,Imbrie, J. &Hall, M. A. (1983b): Oxygen and carbon isotope record of east Pacific core V19-30: Implications for formation of deep water in the Pleistocene North Atlantic. - Earth Planet. Sci. Lett.,65, 233–244.

    Google Scholar 

  • —,Hall, M. A. &Boersma, A. (1984): Oxygen and carbon isotope data from Leg 74 foraminifera. - Init. Repts. DSDP,74, 599–612.

    Google Scholar 

  • Tappan, H. (1968): Primary production, isotopes, extinctions and the atmosphere: Palaeogeog., Palaeoclim., Palaeoec,4, 187–210.

    Google Scholar 

  • Vail, P. R. &Hardenbol, J. (1979): Sea level changes during the Tertiary: - Oceanus,22, 71–79.

    Google Scholar 

  • Van Andel, T. H.,Heath, G. R. &Moore, T. C., JR. (1975): Cenozoic history and paleoceanography of the central equatorial Pacific.-Mem. Geol. Soc. Am.,143.

  • Vergnaud-Grazzini, C. &Rabussier-Lointier, D. (1980): Essai de corrélation stratigraphique par le moyen des isotopes de l'oxygène et du carbone. - Bull. Soc. Geól. France, (7)22, 719–730.

    Google Scholar 

  • Vincent, E. &Berger, W. H. (1985): Carbon dioxide and polar cooling in the Miocene: the Monterey Hypothesis. - In:Sundquist, E. T. &Broecker, W. S. (eds.), The Carbon Cycle and Atmospheric CO2; Natural Variations Archean to Present. Am. Geophys. Union, Geophys. Monograph32, 455–468.

  • — &Killingley, J. S. (1985): Oxygen and carbon isotope record for the Early and Middle Miocene in the Central Equatorial Pacific (DSDP Leg 85) and paleoceanographic implications. - In: Init. Repts. DSDP,85, 749–769.

    Google Scholar 

  • —, — (1980): The Magnetic Epoch-6 carbon shift: a change in the ocean's13C/12C ratio 6.2 million years ago. - Mar. Micropaleontol.,5, 185–203.

    Google Scholar 

  • —, — (1981a): Stable isotope composition of benthic foraminifera from the equatorial Pacific. - Nature,289, 639–643.

    Google Scholar 

  • —, — (1981b): Stable isotopes in benthic foraminifera from Ontong-Java-Plateau. Box Cores ERDC 112 and 123. - Palaeogeogr., Palaeoclimatol., Palaeoecol.,33, 221–230.

    Google Scholar 

  • -, -& - (1985): Miocene oxygen and carbon isotope stratigraphy of the tropical Indian Ocean. - In:Kennett, J. (ed.), The Miocene Ocean: Paleoceanography and Biogeography, Mem. Geol. Soc. Am.,163, 103–130.

  • Weyl, P. K. (1968): The role of the oceans in climatic change: a theory of the ice ages. - Met. Monogr.8 (30), 37–62.

    Google Scholar 

  • Woodruff, F. &Savin, S. M. (1985): σ13C values of Miocene Pacific benthic foraminifera: correlations with sea level and productivity. - Geology,13, 119–122.

    Google Scholar 

  • —, — &Douglas, R. G. (1981): Miocene stable isotope record: a detailed deep Pacific Ocean study and its paleoclimatic implications. - Science,212, 665–668.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Berger, W.H., Vincent, E. Deep-sea carbonates: Reading the carbon-isotope signal. Geol Rundsch 75, 249–269 (1986). https://doi.org/10.1007/BF01770192

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01770192

Keywords

Navigation