Skip to main content

Sound Perception in Aquatic Crustaceans

  • Conference paper
The Crustacean Nervous System

Abstract

In order to understand the function of the crustacean brain, it is necessary to know what kind of stimuli the animals filter from their natural environment. In crustaceans the classical five senses cannot be identified easily. Only the sense of vision can be attributed to a specific prominent structure, the eye. However, for the vertebrate senses olfaction, gustation and audition we do not have discrete and prominent counterparts in crustaceans (for a discussion of olfactory abilities see Derby, this Vol.). With respect to audition in crustaceans (and other aquatic invertebrates), we face the additional problem that there are no obvious reactions of crustaceans to sound stimuli. In the past there was a debate about hearing abilities of aquatic invertebrates (Moynihan 1985; Hanlon and Budelmann 1987; Packard et al. 1990; Budelmann 1992b). In contrast to fish and aquatic mammals, no structures have been discovered in the aquatic invertebrates (with the exception of aquatic insects) that could be stimulated by the pressure component of sound. However, sound waves not only consist of pressure oscillations but also contain medium vibrations. Aquatic crustaceans are known to be sensitive to water vibrations (see Breithaupt and Tautz 1990). Does this mean that they can hear? Various definitions of hearing exist; some are based on the presence of a tympanic hearing organ, others on the reception of the pressure component of sound, while other definitions include just the perception of water vibrations (see Budelmann 1992b, for review).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Aicher B, Markl H, Masters WM, Kirschenlohr HL (1982) Vibration transmission through the walking legs of the fiddler crab, Ucapugilator (Brachyura, Ocypodidae) as measured by laser Doppler vibrometry. J Comp Physiol 150: 483–491

    Article  Google Scholar 

  • Bleckmann H, Breithaupt T, Blickhan R, Tautz J (1991) The time course and frequency content of hydrodynamic events caused by moving fish, frogs, and crustaceans. J Comp Physiol A 168:749–757

    PubMed  CAS  Google Scholar 

  • Breithaupt T, Ayers J (1996) Visualization and quantitative analysis of biological flow fields using suspended particles. In: Lenz PH, Hartline DK, Purcell JE, Macmillan DL (eds) Zooplankton: sensory ecology and physiology. Gordon and Breach, Amsterdam, pp 117–129

    Google Scholar 

  • Breithaupt T, Tautz J (1988) Vibration sensitivity of the crayfish statocyst. Naturwissenschaften 75:310–312

    Article  Google Scholar 

  • Breithaupt T, Tautz J (1990) The sensitivity of crayfish mechanoreceptors to hydrodynamic and acoustic stimuli. In: Wiese K, Krenz W-D, Tautz J, Reichert H, Mulloney B (eds) Frontiers in crustacean neurobiology. Birkhäuser, Basel, pp 114–120

    Google Scholar 

  • Budelmann BU (1992a) Hearing in Crustacea. In: Webster DB, Fay RR, Popper AN (eds) The evolutionary biology of hearing. Springer Berlin Heidelberg New York, pp 131–139

    Chapter  Google Scholar 

  • Budelmann BU (1992b) Hearing in nonarthropod invertebrates. In: Webster DB, Fay RR, Popper AN (eds) The evolutionary biology of hearing. Springer Berlin Heidelberg New York, pp 141–155

    Chapter  Google Scholar 

  • Camhi JM (1984) Auditory Worlds. In: Camhi JM (ed) Neuroethology. Sinauer, Sunderland, Massachusetts, pp 157–180

    Google Scholar 

  • Cornsweet TN (1962) The staircase-method in psychophysics. Am J Psychol 75: 485–491

    Article  PubMed  CAS  Google Scholar 

  • Dijkgraaf S (1955) Lauterzeugung und Schallwahrnehmung bei der Languste (Palinurus vulgaris). Experientia 11: 330–331

    Article  Google Scholar 

  • Dumortier B (1963) Morphology of sound emission apparatus in arthropoda. In: Busnel RG (ed) Acoustic behaviour of animals. Elsevier, Amsterdam, pp 277–345

    Google Scholar 

  • Dusenbery DB (1992) Sensory ecology: how organisms acquire and respond to information. WH Freeman, New York

    Google Scholar 

  • Fay RR, Simmons AM (1998) The sense of hearing in fishes and amphibians. In: Fay RR, Popper AN (eds) Comparative hearing: fish and amphibians, vol 11., Springer Berlin Heidelberg New York, pp 269–318

    Google Scholar 

  • Fish JF (1966) Sound production in the American lobster, Homarus americanus H. Milne Edwards (Decapoda Reptantia). Crustaceana 11: 105–106

    Article  Google Scholar 

  • Freytag G (1967) Zur Frage der Meßgenauigkeit bei hydrobioakustischen Untersuchungen in Aquarien und Flachwassergebieten. Helgol Wiss Meeresunters 15: 47–63

    Article  Google Scholar 

  • Goodall C, Chapman C, Neil D (1990) The acoustic response threshold of the Norway lobster, Nephrops norvegicus (L.) in a free sound field. Frontiers in Crustacean Neurobiology. Birkhäuser, Basel, pp 106–113

    Google Scholar 

  • Hagenv H-O (1975) Klassifikation und phylogenetische Einordnung der Lautäußerung von Ocypodiden und Grapsiden (Crustacea Brachyura). Z Zool Syst Evolutionsforsch 13: 300–316

    Article  Google Scholar 

  • Hanlon RT, Budelmann BU (1987) Why cephalopods are probably not “deaf”. Am Nat 129: 312–317

    Article  Google Scholar 

  • Harris GG (1963) Considerations on the physics of sound production by fishes. In: Marine bio-acoustics. Proceedings of a Symposium. Pergamon Press, Oxford, pp 233–248

    Google Scholar 

  • Hawkins AD, Myrberg AD (1983) Hearing and sound communication under water. In: Lewis B (ed) Bioacoustics, a comparative approach. Academic Press, London, pp 347–405

    Google Scholar 

  • Hazlett BA (1972) Ritualization in marine Crustacea. In: Winn HE, Olla BL (eds) Behavior of marine animals. Vol 1: Invertebrates. Plenum Press, New York, pp 97–125

    Chapter  Google Scholar 

  • Hazlett BA, Winn HE (1962) Sound production and associated behavior of Bermuda crustaceans (Panulirus, Gonodactylus, Alpheus, and Synalpheus). Crustaceana 4: 25–38

    Article  Google Scholar 

  • Herberholz J, Schmitz B (1999) Flow visualisation and high speed video analysis of water jets in the snapping shrimp (Alpheus heterochaelis). J Comp Physiol A 185: 41–49

    Article  Google Scholar 

  • Kalmijn AJ (1988) Hydrodynamic and acoustic field detection. In: Atema J, Fay RR, Popper AN, Tavolga WN (eds) Sensory biology of aquatic animals. Springer Berlin Heidelberg New York, pp 83–130

    Chapter  Google Scholar 

  • Markl H (1983) Vibrational communication. In: Huber F, Markl H (eds) Neuroethology and behavioral physiology. Springer Berlin Heidelberg New York, pp 332–353

    Chapter  Google Scholar 

  • Masters WM (1979) Insect disturbance stridulation: its defensive role. Behav Ecol Sociobiol 5: 187–200

    Article  Google Scholar 

  • Mendelson M (1969) Electrical and mechanical characteristics of a very fast lobster muscle. J. Cell Biol 42: 549–563

    Article  Google Scholar 

  • Meyer-Rochow VB (1976) Sound production by the western rock lobster Panulurus longipes (Milne Edwards). J Exp Mar Biol Ecol 23: 191–209

    Article  Google Scholar 

  • Meyer-Rochow VB, Penrose DJ, Oldfield BP (1982) Phonoresponses in the rock lobster Panulirus longipes (Milne Edwards). Behav Neural Biol 34: 331–336

    Article  PubMed  CAS  Google Scholar 

  • Moynihan M (1985) Why are cephalopods deaf? Am Nat 125: 465–469

    Article  Google Scholar 

  • Offutt GC (1970) Acoustic stimulus preception by the American lobster Homarus americanus (Decapoda). Experientia 26: 1276–1278

    Article  PubMed  CAS  Google Scholar 

  • Packard A, Karlsen HE, Sand O (1990) Low frequency hearing in cephalopods. J Comp Physiol A 166:501–505

    Article  Google Scholar 

  • Payne R, Webb D (1971) Orientation by means of long range acoustic signalling in baleen whales. Annu Rev NY Acad Sci 188: 110–141

    Article  CAS  Google Scholar 

  • Salmon M, Hyatt GW (1983) Communication. In: Bliss DE (ed) The biology of Crustacea, vol 7. Academic Press, New York, pp 1–40

    Google Scholar 

  • Sandeman DC, Wilkens LA (1982) Sound production by abdominal stridulation in the Australian Murray River crayfish, Euastacus armatus. J Exp Biol 99: 469–472

    Google Scholar 

  • Schmitz B, Herberholz J (1998) Snapping behaviour in intraspecific agonistic encounters in the snapping shrimp (Alpheus heterochaelis). J Biosci 23: 623–632

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Breithaupt, T. (2002). Sound Perception in Aquatic Crustaceans. In: Wiese, K. (eds) The Crustacean Nervous System. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-04843-6_41

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-04843-6_41

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-08618-2

  • Online ISBN: 978-3-662-04843-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics