Skip to main content

Abstract

Crustaceans are the only invertebrates besides insects and spiders in which communication via acoustic signals is well known (e.g., Horch and Salmon 1969; Altevogt 1970; Salmon and Horch 1972; Markl 1983, for general aspects of vibrational communication; Salmon 1983; Aicher and Tautz 1990; Römer and Tautz 1991, for a recent review). Acoustic communication necessarily includes both effector structures to produce sound and sensory structures to receive sound. In the different crustacean species, these structures show a variety of morphological expressions, depending on whether the animals are aquatic (such as lobsters and shrimps) or semiterrestrial (such as ghost and fiddler crabs.)

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Aicher B, Tautz J (1990) Vibrational communication in the fiddler crab, Uca pugilator, I. Signal transmission through the substratum. J Comp Physiol A 166:345–353.

    Article  Google Scholar 

  • Altevogt R (1970) Form und Funktion der vibratorischen Signale von Uca tangeri und Uca inaequalis (Crustacea, Ocypodidae). Forma Functio 2:178–187.

    Google Scholar 

  • Ball EE, Cowan AN (1977) Ultrastructure of the antennal sensilla of Acetes (Crustacea, Decapoda, Natantia, Sergestidae). Phil Trans R Soc Lond B 277:429–456.

    Article  CAS  Google Scholar 

  • Balss H (1921) Ăœber Stridulationsorgane bei dekapoden Crustaceen. Naturw Wochenschr 36:697–701.

    Google Scholar 

  • Barth G (1934) Untersuchungen Ă¼ber Myochor-dotonalorgane bei dekapoden Krebsen. Z Wiss Zool 145:576–624.

    Google Scholar 

  • Bender M, Gnatzy W, Tautz J (1984) The antennal feathered hairs in the crayfish: a non-innervated stimulus transmitting system. J Comp Physiol A 154:45–47.

    Article  Google Scholar 

  • Breithaupt T, Tautz J (1988) Vibration sensitivity of the crayfish statocyst. Naturwissenschaften 75:310–312.

    Article  Google Scholar 

  • Breithaupt T, Tautz J (1990) The sensitivity of crayfish mechanoreceptors to hydrodynamic and acoustic stimuli. In: Wiese K, Krenz WD, Tautz J, Reichert H, Mulloney B (eds) Frontiers in Crustacean Neurobiology. Basel, Boston, Berlin: Birkhäuser Verlag, pp. 114–120.

    Google Scholar 

  • Budelmann BU (1988) Morphological diversity of equilibrium receptor systems in aquatic invertebrates. In: Atema J, Fay RR, Popper AN, Tavolga WN (eds) Sensory Biology of Aquatic Animals. New York: Springer-Verlag, pp. 757–782.

    Google Scholar 

  • Budelmann BU (1989) Hydrodynamic receptor systems in invertebrates. In: Coombs S, Görner P, MĂ¼nz H (eds), The Mechanosensory Lateral Line: Neurobiology and Evolution. New York: Springer-Verlag, pp. 607–631.

    Chapter  Google Scholar 

  • Bush BMH, Laverack MS (1982) Mechanoreception. In: Atwood HL, Sandeman DC (eds). The Biology of Crustacea, Vol. 3. Neurobiology: Structure and Function. New York: Academic Press, pp. 399–468.

    Google Scholar 

  • Busnel RG, Dziedzic A (1962) Rythme du bruit de fond de la mer a proximite des cötes et relations avec l’activite acoustique des populations d’un cirripede fixe immerge. Cahiers Ocean, XIVe annee 5:293–322.

    Google Scholar 

  • Cohen MJ (1955) The function of receptors in the statocyst of the lobster Homarus americanus. J Physiol 130:9–34.

    PubMed  CAS  Google Scholar 

  • Cohen MJ (1960) The response pattern of single receptors in the crustacean statocyst. Proc R Soc Lond B 152:30–49.

    Article  PubMed  CAS  Google Scholar 

  • Cohen MJ, Katsuki Y, Bullock TH (1953) Oscillographic analysis of equilibrium receptors in Crustacea. Experientia 9:434–435.

    Article  Google Scholar 

  • Crouau Y (1985) Étude du comportement rhĂ©otaxique d’un mysidacĂ© cavernicole. Crustaceana 50:7–10.

    Article  Google Scholar 

  • Crouau Y (1986) Antennular mechanosensitivity in a cavernicolous mysid crustacean. J Crustac Biol 6:158–165.

    Article  Google Scholar 

  • Derby CD (1982) Structure and function of the cuticular sensilla of the lobster Homarus americanus. J Crustac Biol 2:1–21.

    Article  Google Scholar 

  • Dijkgraaf S (1955) Lauterzeugung und Schallwahrneh-mung bei der Languste (Palinurus vulgaris). Experientia 11:330–331.

    Article  Google Scholar 

  • Espeel M (1985) Fine structure of the statocyst sensilla of the mysid shrimp Neomysis integer (Leach, 1814) (Crustacea, Mysidacea). J Morphol 186:149–165.

    Article  Google Scholar 

  • Fish MP (1967) Biological source of sustained ambient sea noise. In: Tavolga WN (ed) Marine Bio-Acoustics, Vol. 2. Oxford, U.K.: Pergamon Press, pp. 175–194.

    Google Scholar 

  • Frings H (1964) Problems and prospects in research on marine invertebrate sound production and reception. In: Tavolga WN (ed) Marine Bio-Acoustics, Oxford, U.K.: Pergamon Press, pp. 155–173.

    Google Scholar 

  • Goodall C, Chapman C, Neil D (1990) The acoustic response threshold of the Norway lobster, Nephrops norvegicus (L.) in a free sound field. In: Wiese K, Krenz WD, Tautz J, Reichert H, Mulloney B (eds) Frontiers in Crustacean Neurobiology. Basel, Boston, Berlin: Birkhäuser Verlag, pp. 106–113.

    Google Scholar 

  • Hall J (1985) Neuroanatomical and neurophysiological aspects of vibrational processing in the central nervous system of semi-terrestrial crabs. J Comp Physiol A 157:91–104.

    Article  Google Scholar 

  • Hartman HB, Austin WD (1972) Proprioceptor organs in the antenna of decapod Crustacea. J Comp Physiol 81:187–202.

    Article  Google Scholar 

  • Hawkins AD, Myrberg A A (1983) Hearing and sound communication under water, In: Lewis B (ed) Bio-Acoustics, A Comparative Approach, London: Academic Press, pp. 347–405.

    Google Scholar 

  • Hazlett BA, Winn HE (1962) Characteristics of a sound produced by the lobster Justitia longimanus. Ecology 43:741–742.

    Article  Google Scholar 

  • Heinisch P, Wiese K (1987) Sensitivity to movement and vibration of water in the north sea shrimp Crangon crangon L. J Crustac Biol 7:401–413.

    Article  Google Scholar 

  • Horch K (1971) An organ for hearing and vibration sense in the ghost crab Ocypode. Z Vergl Physiol 73:1–21.

    Article  Google Scholar 

  • Horch K (1975) Acoustic behavior of the ghost crab Ocypode cordimana Latreille, 1818 (Decapoda, Brachy-ura). Crustaceana 29:193–205.

    Article  Google Scholar 

  • Horch K, Salmon M (1969) Production, perception and reception of acoustic stimuli by semiterrestrial crabs (Genus Ocypode and Uca, Family Ocypodidae). Forma Functio 1:1–25.

    Google Scholar 

  • Janse C (1980) The function of the statolith-hair and free-hook-hair receptors in the statocyst of the crab, Scylla serrata. J Comp Physiol 137:51–62.

    Article  Google Scholar 

  • Johnson MW, Everest FA, Young RW (1947) The role of snapping shrimp (Crangon and Synalpheus) in the production of underwater noise in the sea. Biol Bull 93:122–138.

    Article  PubMed  CAS  Google Scholar 

  • Knowlton RE, Moulton JM (1963) Sound production in the snapping shrimps Alpheus (Crangon) and Synalpheus. Biol Bull 125:311–331.

    Article  Google Scholar 

  • Laverack MS (1962a) Response of cuticular sense organs of the lobster, Homarus vulgaris (Crustacea), I. Hair-peg organs as water current receptors. Comp Biochem Physiol 5:319–325.

    Article  Google Scholar 

  • Laverack MS (1962b) Response of cuticular sense organs of the lobster, Homarus vulgaris (Crustacea), II. Hair-fan organs as pressure receptors. Comp Biochem Physiol 6:137–145.

    Article  Google Scholar 

  • Laverack MS (1963) Response of cuticular sense organs of the lobster, Homarus vulgaris (Crustacea), III. Activity invoked in sense organs of the carapace. Comp Biochem Physiol 10:261–272.

    Article  PubMed  CAS  Google Scholar 

  • Laverack MS (1964) The antennular sense organs of Panulirus argus. Comp Biochem Physiol 13:301–321.

    Article  PubMed  CAS  Google Scholar 

  • Laverack MS (1968) On the receptors of marine invertebrates. Oceanogr Mar Biol Annu Rev 6:249–324.

    Google Scholar 

  • Laverack MS (1976) External proprioceptors. In: Mill PJ (ed) Structure and Function of Proprioceptors in the Invertebrates, London: Chapman and Hall, pp. 1–63.

    Google Scholar 

  • Markl H (1983) Vibrational communication. In: Huber F, Markl H (eds) Neuroethology and Behavioral Physiology. Berlin, Heidelberg: Springer-Verlag, pp. 332–353.

    Google Scholar 

  • Masters WM, Aicher B, Tautz J, Markl H (1982) A new type of water vibration receptor on the crayfish antenna. J Comp Physiol A 149:409–422.

    Article  Google Scholar 

  • Mellon D (1963) Electrical responses from dually innervated tactile receptors on the thorax of the crayfish. J Exp Biol 40:137–148.

    Google Scholar 

  • Neil DM (1975) The mechanism of statocyst operation in the mysid shrimp Praunus flexuosus. J Exp Biol 62:685–700.

    Google Scholar 

  • Offutt GC (1970) Acoustic stimulus perception by the American Lobster Homarus americanus (Decapoda). Experientia 26:1276–1278.

    Article  PubMed  CAS  Google Scholar 

  • Plummer MR, Tautz J, Wine JJ (1986) Frequency coding of waterborne vibrations by abdominal mechanosensory interneurons in the crayfish, Procambarus clarkii. J Comp Physiol A 158:751–764.

    Article  PubMed  CAS  Google Scholar 

  • Phillips BF, Macmillan DL (1987) Antennal receptors in puerulus and postpuerulus stages of the rock lobster Panulirus cygnus (Decapoda: Palinuridae) and their potential role in puerulus navigation. J Crustac Biol 7:122–135.

    Article  Google Scholar 

  • Ritzmann RE (1974) Mechanisms for the snapping behavior of two alpheid shrimp, Alpheus californiensis and Alpheus heterochelis. J Comp Physiol 95:217–236.

    Article  Google Scholar 

  • Römer H, Tautz J (1991) Invertebrate auditory receptors. In: Ito F (ed) Comparative Aspects of Mechano-receptor Systems, New York: Springer-Verlag (in press).

    Google Scholar 

  • Rose RD, Stokes DR (1981) A crustacean statocyst with only three hairs: light and scanning microscopy. J Morphol 169:21–28.

    Article  Google Scholar 

  • Rossi-Durand C, Vedel JP (1982) Antennal propriocep-tion in the rock lobster Palinurus vulgaris: Anatomy and physiology of a bi-articular chordotonal organ. J Comp Physiol A 145:505–516.

    Article  Google Scholar 

  • Roye DB (1986) The central distribution of movement sensitive afferent fibers from the antennular short hair sensilla of Callinectes sapidus. Mar Behav Physiol 12:181–196.

    Article  Google Scholar 

  • Salmon M (1965) Waving display and sound production in Uca pugilator, with comparison to U. minax and U. pugnax. Zoologica 50:123–150.

    Google Scholar 

  • Salmon M (1983) Acoustic ‘calling’ by fiddler and ghost crabs. Ree Me Aust Mus 18:63–76.

    Article  Google Scholar 

  • Salmon M, Atsaides SP (1968) Visual and acoustical signalling during courtship by fiddler crabs (Genus Uca). Am Zool 8:623–639.

    Google Scholar 

  • Salmon M, Horch K (1972) Sound production and acoustic detection by Ocypodid crabs. In: Winn HE, Olla B (eds) Recent Advances in the Behavior of Marine Organisms, Vol. 1. New York: Plenum Press, pp. 60–96.

    Google Scholar 

  • Salmon M, Horch K, Hyatt GW (1977) Barth’s myochor-dotonal organ as a receptor for auditory and vibrational stimuli in fiddler crabs (Uca pugilator and U. minax). Mar Behav Physiol 4:187–194.

    Article  Google Scholar 

  • Sandeman DC (1976) Spatial equilibrium in the arthropods. In: Mill PJ (ed) Structure and Function of Proprioceptors in the Invertebrates. London: Chapman and Hall, pp. 485–527.

    Google Scholar 

  • Sandeman DC (1983) The balance and visual systems of the swimming crab: their morphology and interaction. Fortschr Zool 28:213–229.

    Google Scholar 

  • Sandeman DC, Okajima A (1972) Statocyst-induced eye movements in the crab Scylla serrata. I. The sensory input from the statocyst. J Exp Biol 57:187–204.

    PubMed  CAS  Google Scholar 

  • Sandeman DC, Okajima A (1973) Statocyst-induced eye movements in the crab Scylla serrata. Ill The anatomical projections of sensory and motor neurons and the responses of the motor neurons. J Exp Biol 59:17–38.

    Google Scholar 

  • Sandeman DC, Wilkens LA (1982) Sound production by abdominal stridulation in the Australian Murray-river crayfish, Euastacus armatus. J Exp Biol 99:469–472.

    Google Scholar 

  • Schöne H (1954) Statocystenfunktion und statische Lageorientierung bei dekapoden Krebsen. Z Vergl Physiol 36:241–260.

    Article  Google Scholar 

  • Schöne H (1971) Gravity receptors and gravity orientation in Crustacea. In: Gordon SA, Cohen MJ (eds) Gravity and the Organism. Chicago: University of Chicago Press, pp. 223–235.

    Google Scholar 

  • Schöne H, Steinbrecht RA (1968) Fine structure of stato-cyst receptor of Astacus fluviatilis, Nature 220: 184–186.

    Article  PubMed  Google Scholar 

  • Solon MH, Cobb JS (1980) The external morphology and distribution of cuticular hair organs on the claws of the American lobster, Homarus americanus (Milne-Edwards). J Exp Mar Biol Ecol 48:205–215.

    Article  Google Scholar 

  • Stein A (1975) Attainment of positional information in the crayfish statocyst. Fortschr Zool 23:109–119.

    PubMed  CAS  Google Scholar 

  • Sugawara K (1965) Electrical responses of the statocysts and the central transmission of impulses in the crayfish. Zool Magazine 74:295–304.

    Google Scholar 

  • Takahata M, Hisada M (1979) Functional polarization of statocyst receptors in the crayfish Procambarus clarkii Girard. J Comp Physiol 130:201–207.

    Article  Google Scholar 

  • Takemura A (1971) Studies on underwater sounds, III. On the mechanism of sound production and the underwater sounds produced by Linuparus trigonus. Marine Biol 9:87–91.

    Article  Google Scholar 

  • Takemura A, Mizue K (1968) Studies on the underwater sound, I. On the underwater sound of the genus Alpheus fabricus in the costal waters of Japan. Bull Fac Fish Nagasaki Univ 26:37–48.

    Google Scholar 

  • Tautz J (1990) Coding of mechanical stimuli in crustaceana—what and why? In: Wiese K, Krenz WD, Tautz J, Reichert H, Mulloney B. (eds) Frontiers in Crustacean Neurobiology. Basel, Boston, Berlin: Birkhäuser Verlag, pp. 200–206.

    Google Scholar 

  • Tautz J, Sandeman DC (1980) The detection of water-borne vibration by sensory hairs on the chelae of the crayfish. J Exp Biol 88:351–356.

    Google Scholar 

  • Tautz J, Tautz JM (1983) Antennal neuropile in the brain of the crayfish: morphology of neurons. J Comp Neurol 218:415–425.

    Article  PubMed  CAS  Google Scholar 

  • Tautz J, Masters WM, Aicher B, Markl H (1981) A new type of water vibration receptor on the crayfish antenna. I. Sensory physiology, J Comp Physiol A 144:533–541.

    Article  Google Scholar 

  • Taylor RC (1967) The anatomy and adequate stimulation of a chordotonal organ in the antennae of a hermit crab. Comp Biochem Physiol 20:709–717.

    Article  Google Scholar 

  • Tazaki K (1977) Nervous responses from mechano-sensory hairs on the antennal flagellum in the lobster, Homarus americanus (L.). Mar Behav Physiol 5:1–18.

    Article  Google Scholar 

  • Tazaki K, Ohnishi M (1974) Responses from the tactile receptors in the antenna of the spiny lobster Panulirus japonicus. Comp Biochem Physiol 47A: 1323–1327.

    Google Scholar 

  • Vedel JP (1985) Cuticular mechanoreception in the antennal flagellum of the rock lobster Palinurus vulgaris. Comp Biochem Physiol 80A: 151–158.

    Article  Google Scholar 

  • Vedel JP, Clarac F (1976) Hydrodynamic sensitivity by cuticular organs in the rock lobster Palinurus vulgaris. Morphological and physiological aspects. Mar Behav Physiol 3:235–251.

    Article  Google Scholar 

  • von Hagen HO (1985) Visual and acoustic display in Uca mordox and U. burgersi, sibling species of neotropical fiddler crabs, II. Vibration signals. Behaviour 85: 204–228.

    Google Scholar 

  • Wiese K (1976) Mechanoreceptors for near-field water displacements in the crayfish. J Neurophysiol 39: 816–833.

    PubMed  CAS  Google Scholar 

  • Wiese K, Marschall HP (1990) Sensitivity to vibration and turbulence of water in context with schooling in antarctic krill Euphausia superba. In: Wiese K, Krenz WD, Tautz J, Reichert H, Mulloney B (eds). Frontiers in Crustacean Neurobiology, Basel, Boston, Berlin: Birkhäuser Verlag, pp. 121–130.

    Google Scholar 

  • Yoshino M, Kondoh Y, Hisada M (1983) Projection of statocyst sensory neurons associated with crescent hairs in the crayfish Procambarus clarkii Girard. Cell Tissue Res 230:37–48.

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1992 Springer-Verlag New York Inc.

About this chapter

Cite this chapter

Budelmann, B.U. (1992). Hearing in Crustacea. In: Webster, D.B., Popper, A.N., Fay, R.R. (eds) The Evolutionary Biology of Hearing. Springer, New York, NY. https://doi.org/10.1007/978-1-4612-2784-7_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-2784-7_9

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4612-7668-5

  • Online ISBN: 978-1-4612-2784-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics