Advertisement

Hyperthermia Therapy Physics

  • Peter Fessenden
  • Jeffrey W. Hand
Chapter
Part of the Medical Radiology book series (MEDRAD)

Abstract

Hyperthermia involves the use of heat as a cancer treatment modality. It is occasionally used alone, but most often is employed in conjunction with ionizing radiation, and more recently, with chemotherapy (Dahl and Mella 1990). The goal of hyperthermia is to raise the temperature of the targeted region to therapeutic levels (approximately 42°–45°C) while keeping adjacent normal tissues at subtherapeutic temperatures.

Keywords

Insertion Depth Power Deposition Hyperthermia Treatment Microwave Hyperthermia Hyperthermia System 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Allen S, Kantor G, Bassen H, Rugerra P (1988) CDRH Rï phantom for hyperthermia systems evaluation. Int J Hyper thermia 4: 17–24CrossRefGoogle Scholar
  2. Anhalt D, Hynynen K, Roemer RB, Nethonson SM, Stea B Cassady JR (1982) Scanned ultrasound hyperthermia foi treating superficial disease. In: Gerner EW (ed) Hyperthermic oncology 1992, vol 1. Arizona Board of Regents, Tucson, p 3Google Scholar
  3. Astrahan MA, Sapozink MD, Luxton G, Kampp TD, Petrovid Z (1989) A technique for combining microwave hyperthermia with intraluminal brachytherapy of the oesophagus. Int J Hyperthermia 5: 37–51PubMedCrossRefGoogle Scholar
  4. Atkinson WJ, Brezovich I A, Chakraborty DP (1984) Usable frequencies in hyperthermia with thermal seeds. IEEE Trans Biomed Eng 31: 70–75PubMedCrossRefGoogle Scholar
  5. Bach Andersen J, Baun A, Harmark K, Heinzl L, Raskmark P, Overgaard J (1984) A hyperthermia system using a new type ol inductive applicator. IEEE Trans Biomed Eng 31: 21–27PubMedCrossRefGoogle Scholar
  6. Bardati F, Bertero M, Mongiardo M, Solimini D (1987) Singular system analysis of the inversion of microwave radiometric data: applications to biological temperature retrieval. Inverse Problems 3: 347–370CrossRefGoogle Scholar
  7. Bassen H, Allen S, Herman B, Kantor G, Robinson R (1985) Quality assurance of RF and ultrasound cancer hyperthermia systems. Proc 7th Annual Conference of the IEEE Engineering in Medicine and Biology Society. IEEE, New York, pp 346–351Google Scholar
  8. Benkeser PJ, Frizzell LA, Ocheltree KB, Cain CA (1987) A tapered pha d ar y ultraso d transdu r r hyperthermia treatment. IEEE Trans Ultrason Ferroelec Freq Contr 34: 446–453CrossRefGoogle Scholar
  9. Benkeser PJ, Frizzell LA, Goss SA, Cain CA (1989) Analysis of a multielement ultrasound hyperthermia applicator. IEEE Trans Ultrason Ferroelec Freq Contr 36: 319–325CrossRefGoogle Scholar
  10. Berntsen S, Bach Andersen J, Gross E (1991) A general formulation of applied potential tomography. Radio Sei 26: 535–540CrossRefGoogle Scholar
  11. Bini M, Ignesti A, Millanta L, Olmi R, Rubino N, Vanni R (1984) The Polyacrylamide as a phantom material for electromagnetic hyperthermia studies. IEEE Trans Biomed Eng 31: 317–322PubMedCrossRefGoogle Scholar
  12. Bolomey JC, Hawley MS (1990) Noninvasive control of hyperthermia. In: Gautherie M (ed) Methods of hyperthermia control. Springer, Berlin Heidelberg New York, pp 35–111 (Clinical thermology, subseries thermotherapy)CrossRefGoogle Scholar
  13. Bowman RR (1976) A probe for measuring temperature in radio-frequency heated material. IEEE Trans Microwave Theory Tech MTT-24: 43–45CrossRefGoogle Scholar
  14. Brezovich IA (1988) Low frequency hyperthermia: capacitive and ferromagnetic seed metho. : Pali l , Hetl FW, Dewhirst MW (eds) Biological, physical and clinical aspects of hyperthermia. American Institute of Physics, New York, pp 82–110Google Scholar
  15. Brezovich I A, Atkinson WJ, Chakraborty DP (1984) Temperature distributions in tumor models heated by self-regulating nickel-copper alloy thermoseeds. Med Phys 11: 145–152PubMedCrossRefGoogle Scholar
  16. Budihna M, Lesnicar H, Handl-Zeller L, Schreier K (1992) Animal experiments with interstitial water hyperthermia. In: Handl-Zeller (ed) Interstitial hyperthermia. Springer, Vienna, pp 155–163CrossRefGoogle Scholar
  17. Cain CA, Umemura SI (1986) Concentric-ring and sector vortex phased-array applicators for ultrasound hyperthermia. IEEE Trans Microwave Theory Tech MTT-34: 542–551CrossRefGoogle Scholar
  18. Cangellaris AC, Wright DB (1991) Analysis of the numerical error caused by the stair-stepped approximation of a conducting boundary in FDTD simulations of electromagnetic phenomena. IEEE Trans Antennas Propagat 39: 1518–1525CrossRefGoogle Scholar
  19. Carnochan P, Dickinson RJ, Joiner MC (1986) The practical use of thermocouples for temperature measurement in clinical hyperthermia. Int J Hyperthermia 2: 1–19PubMedCrossRefGoogle Scholar
  20. Casey JP, Bansal R (1986) The near field of an insulated dipole in a dissipative dielectric medium. IEEE Trans Microwave Theory Tech 34: 459–463CrossRefGoogle Scholar
  21. Chan AK, Sigelmann RA, Guy AW (1974) Calculations of therapeutic heat generated by ultrasound in fat-muscle-bone layers. IEEE Trans Biomed Eng 21: 280–284PubMedCrossRefGoogle Scholar
  22. Chan KW, Chou CK, McDougall JA, Luk KH, Vora NL, Forell BW (1989) Changes in heating patterns of interstitial microwave antenna arrays at different insertion depths. Int J Hyperthermia 5: 499–507PubMedCrossRefGoogle Scholar
  23. Chato JC (1990) Fundamentals of bioheat transfer. In: Gautherie M (ed) Thermal dosimetry and treatment planning. Springer, Berlin Heidelberg New York, pp 1–56 (Clinical thermology, subseries thermotherapy)CrossRefGoogle Scholar
  24. Chen JS, Poirier DR, Damento MA, Demer LJ, Biencaniello F, Cetas TC (1988) Development of Ni-4wt%Si thermoseeds for hyperthermia cancer treatment. J Biomater Res 22: 303–319CrossRefGoogle Scholar
  25. Chen JY, Gandhi OP (1992) Numerical simulation of annular-phased arrays of dipoles for hyperthermia of deep-seated tumors. IEEE Trans Biomed Eng 39: 209–216PubMedCrossRefGoogle Scholar
  26. Chitnalah A, Marchai C, Prieur G (1991) Sonde ultrasonore plane pour hyperthermic intracavitaire. Innovation et Technologie en Biologie et Medecine 12: 114–125Google Scholar
  27. Chive M (1990) Use of microwave radiometry for hyperthermia monitoring radiometry and as a basis for thermal dosimetry. In: Gautherie M (ed) Methods of hyperthermia control. Springer, Berlin Heidelberg New York, pp 113–128 (Clinical thermology, subseries thermotherapy)CrossRefGoogle Scholar
  28. Chou CK, Chen GW, Guy AW, Luk KH (1984) Formulas for preparing phantom muscle tissue at various radiofrequencies. Bioelectromagnetics 5: 435–441PubMedCrossRefGoogle Scholar
  29. Chou CK, McDougall JA, Chan KW, Luk KH (1990) Effects of fat thickness on heating patterns of the microwave applicator MA-151 at 631 and 915 MHz. Int J Radiât Oncol Biol Physics 19: 1067–1070CrossRefGoogle Scholar
  30. Chou CK, McDougall JA, Chan KW, Luk KH (1991) Heating patterns of microwave applicators in inhomogeneous arm and thigh phantoms. Med Phys 18: 1164–1170PubMedCrossRefGoogle Scholar
  31. Christensen DA (1977) A new non-perturbing temperature probe using semiconductor band edge shift. J Bioeng 1: 541–545Google Scholar
  32. Clegg ST, Roemer RB (1989) Towards the estimation of three-dimensional temperature fields from noisy temperature measurements during hyperthermia. Int J Hyperthermia 5:467–484PubMedCrossRefGoogle Scholar
  33. Clibbon KL, McCowen A, Hand JW (1993) SAR distributions in interstitial microwave antennas with a single dipole displacement. IEEE Trans Biomed Eng 40: 925–932PubMedCrossRefGoogle Scholar
  34. Conway J (1987) Electrical impedance tomography for thermal monitoring of hyperthermia treatment: an assessment using in vitro and in vivo measurements. Clin Phys Physiol 8 (Suppl A): 147–153Google Scholar
  35. Corry PM, Barlogie B (1982) Clinical application of high frequency methods for local hyperthermia. In: Nussbaum GH (ed) Phys al aspects of hyperther a. Amer an Insti te of Physics, New York, pp 307–328Google Scholar
  36. Corry PM, Jabboury K, Armour EP, Kong JS (1984) Human cancer treatment with ultrasound. IEEE Trans Sonics Ultrasonics 31: 444–455CrossRefGoogle Scholar
  37. Cosset JM (1990) Interstitial hyperthermia. In: Gautherie M (ed), Interstitial, endocavitary and perfusional hyperthermia, Springer, Berlin Heidelberg New York, pp 1–41CrossRefGoogle Scholar
  38. Crezee J, Mooibroek J, Lagendijk JJW (1993) Thermal model verification in interstitial hyperthermia. In: Seegenschmiedt MH, Sauer R (eds) Interstitial and intracavitary thermoradiotherapy. Springer, Heidelberg Berlin New York, pp 147–153CrossRefGoogle Scholar
  39. Dahl O, Mella O (1990) Hyperthermia and chemotherapeutic agents. In: Field SB, Hand JW (eds) An introduction to the practical aspects of clinical hyperthermia. Tay&or & Francis, London, pp 108–142Google Scholar
  40. DeFord JA, Babbs CF, Patel UH, Bleyer MW, Marchosky JA, Moran CJ (1991) Effective interstitial hyperthermia. Int J Hyperthermia 7: 441–453PubMedCrossRefGoogle Scholar
  41. De Leeuw A AC, Crezee J, Lagendijk JJW (1993) Temperature and SAR measurements in deep-body hyperthermia with thermocouple thermometry. Int J Hyperthermia 9: 685–697PubMedCrossRefGoogle Scholar
  42. De Leeuw AAC, Lagendijk JJW, Van den Berg PM (1990) SAR distribution of the ‘coaxial TEM’ system with variable aperture width: measurements and model computations. Int J Hyperthermia 6: 445–451PubMedCrossRefGoogle Scholar
  43. De Leeuw AAC, Crezee J, Lagendijk JJW (1993) Temperature and SAR measurements in deep-body hyperthermia with thermocouple thermometry. Int J Hyperthermia 9: 685–697PubMedCrossRefGoogle Scholar
  44. Delannoy J, LeBihan D, Hoult DI, Levin RL (1990) Hyperthermia system combined with a MRI unit. Med Phys 17: 855–860PubMedCrossRefGoogle Scholar
  45. Denman DL, Foster AE, Cooper Lewis G et al. (1988) The distribution of power and heat produced by interstitial microwave antenna arrays. II. The role of antenna spacing and insertion depth. Int J Radiât Oncol Biol Phys 14: 537–545PubMedCrossRefGoogle Scholar
  46. Deurloo IKK, Visser AG, Morawska M, van Geel CAJF, van Rhoon CG, Levendag PC (1991) Applications of a capacitive-coupling interstitial hyperthermia system at 27 MHz: study of different applicator configurations. Phys Med Biol 36:119–132PubMedCrossRefGoogle Scholar
  47. Dewhirst MW, Philips TL, Samulski TV, et al. (1990) RTOG quality assurance guidelines for clinical trials using hyperthermia. Int J Radiat Oncol Biol Phys 18: 1249–1259PubMedCrossRefGoogle Scholar
  48. Dickinson RJ (1984) A non-rigid mosaic applicator for local ultrasound hyperthermia. In: Overgaard J (ed) Hyperthermic oncology 1984, vol 1. Taylor and Francis, London, pp 671–674Google Scholar
  49. Dickinson RJ (1985) Thermal conduction errors of manganin-constantan thermocouple arrays. Phys Med Biol 30: 445–453CrossRefGoogle Scholar
  50. Diederich CJ, Hynynen K (1990) The development of intracavitary ultrasonic applicators for hyperthermia: a design and experimental study. Med Phys 17: 626–634PubMedCrossRefGoogle Scholar
  51. Diederich CJ, Hynynen K (1991) The feasibility of using electrically focused ultrasound arrays to induce deep hyperthermia via body cavities. IEEE Trans Ultrason Ferroelec Freq Contr 38: 207–219CrossRefGoogle Scholar
  52. Dorr LN, Hynynen K (1992) The effects of tissue heterogeneities and large blood vessels on the thermal exposure induced by short high-power ultrasound pulses. Int J Hyperthermia 8: 45–60PubMedCrossRefGoogle Scholar
  53. Doss JD (1982) Calculation of electric fields in conductive media. Med Phys 9: 566–573PubMedCrossRefGoogle Scholar
  54. Dunn F, Frizzell LA (1982) Bioeffects of ultrasound. In: Lehman JF (ed) Theraputic heat and cold, 3rd edn. Williams & Wilkins, Baltimore, pp 388–390Google Scholar
  55. Dunscombe PB, Cetas TC, Connor WG, et al. (1989) Hyperthermia treatment planning (AAPM Report No 27). American Institute of Physics, New YorkGoogle Scholar
  56. Durney CH (1990) Electromagnetic field propagation and interaction with tissue. In: Field SB, Hand JW (eds) An introduction to the practical aspects of clinical hyperthermia. Taylor & Francis, London, pp 242–274Google Scholar
  57. Ebbini ES, Cain CA (1991a) Optimization of the intensity gain of multiple-focus phased-array heating patterns. Int J Hyperthermia 7: 953–973PubMedCrossRefGoogle Scholar
  58. Ebbini ES, Cain CA (1991b) Experimental evaluation of a prototype cylindrical section ultrasound hyperthermia phased-array applicator. IEEE Trans Ultrason Ferroelec Freq Contr 38: 510–520CrossRefGoogle Scholar
  59. Edmonds PD, Ross WC, Lee ER, Fessenden P (1985) Spatial distributions of heating by ultrasound transducers in clinical use indicated in a tissue-equivalent phantom. Proc 1985 IEEE Ultrasonics Symposium, New York, IEEE, pp 908–912Google Scholar
  60. Emami B, Stauffer P, Dewhirst MW, et al. (1991) RTOG quality assurance guidelines for interstitial hyperthermia. Int J Radiat Oncol Biol Phys 20: 1117–1124PubMedCrossRefGoogle Scholar
  61. Fessenden P, Lee ER, Anderson TL, Strohbehn JW, Meyer JL, Samulski TV, Marmor JB (1984a) Experience with a multi-transducer ultrasound system for localized hyperthermia of deep tissues. IEEE Trans Biomed Eng 31: 126–135PubMedCrossRefGoogle Scholar
  62. Fessenden P, Lee ER, Samulski TV (1984b) Direct température measurement. Cancer Res (Suppl) 44:4799s–804sGoogle Scholar
  63. Fessenden P, Kapp DS, Lee ER, Samulski TV (1988) Clinical microwave applicator design. In: Paliwal BR, Hetzel FW, Dewhirst MW (eds) Biological, physical and clinical aspects of hyperthermia. AAPM Medical Physics Monograph 16. American Institute of Physics, New York, pp 123–131Google Scholar
  64. Fessenden P, Lee ER, Kapp DS, et al. (1993) Review of the Stanford experience developing non-focusing scanning and array surface microwave (MW) applicators. In: Gerner EW, Cetas TC (eds) Hyperthermic oncology 1992, vol 2. Arizona Board of Regents, Tucson, pp 183–186Google Scholar
  65. Franconi C, Tiberio CA, Raganella L, Begnozzi L (1986) Low frequency RF twin dipole applicator for intermediate depth hyperthermia. IEEE Trans Microwave Theory Tech 34: 612–619CrossRefGoogle Scholar
  66. Furse CM, Iskander MF (1989) Three-dimensional electromagnetic power deposition in tumors using interstitial antenna arrays. IEEE Trans Biomed Eng 36: 977–986PubMedCrossRefGoogle Scholar
  67. Goffinet DR, Prionas SD, Kapp DS, et al. (1990) Interstitial 192Ir flexible catheter radiofrequency hyperthermia treatments of head and neck and recurrent pelvic carcinomas. Int J Radiât Oncol Biol Phys 18: 199–210PubMedCrossRefGoogle Scholar
  68. Gopal MK, Hand JW, Lumori MLD, Alkhairi S, Paulsen KD, Cetas TC (1992) Current sheet applicator arrays for superficial hyperthermia of chestwall lesions. Int J Hyperthermia 8: 227–240PubMedCrossRefGoogle Scholar
  69. Goss SA, Frizzell LA, Dunn F (1979) Ultrasonic absorption and attenuation in mammalian tissues. Ultrasound Med Biol 5: 181–186PubMedCrossRefGoogle Scholar
  70. Griffiths H, Ahmed A (1987) Applied potential tomography for non-invasive temperature mapping in hyperthermia. Clin Phys Physiol 8 (Suppl. A): 147–153CrossRefGoogle Scholar
  71. Gross EJ, Cetas TC, Stauffer PR, Liu RL, Lumori MLD (1990) Experimental assessment of phased-array heating of neck tumors. Int J Hyperthermia 6: 453–474PubMedCrossRefGoogle Scholar
  72. Hahn GM (1982) Hyperthermia and cancer. Plenum, New YorkCrossRefGoogle Scholar
  73. Haider SA, Chen ZP, Cetas TC, Roemer RB (1987) Interstitial ferromagnetic implant heating: practical guidelines for use. Proceedings 9th Annual Conference of IEEE Engineering in Medicine and Biology Society (vol 3). IEEE, New York, pp 1626–1628Google Scholar
  74. Hall EJ (1982) Hyperthermia: an overview. In: Dethlefsen LA, Dewey WC (eds) Third international symposium: cancer therapy by hyperthermia, drugs and radiation (NCI Monograph 61), National Cancer Institute, Bethesda, pp xv–xviGoogle Scholar
  75. Hand JW (1990a) Biophysics and technology of electromagnetic hyperthermia. In: Gautherie M (ed) Methods of external hyperthermic heating. Springer, Berlin Heidelberg New York, pp 1–59 (Clinical thermology, subseries thermotherapy)CrossRefGoogle Scholar
  76. Hand JW (1990b) Quality assurance in hyperthermia. In: Field SB, Hand JW (eds) An introduction to the practical aspects of clinical hyperthermia. Taylor and Francis, London, pp 513–532Google Scholar
  77. Hand JW, Hind AJ (1986) A review of microwave and RF applicators for localised hyperthermia. In: Hand JW, James JR (eds) Physical techniques in clinical hyperthermia. Research Studies Press, Letchworth, Hertfordshire, England, pp 98–148Google Scholar
  78. Hand JW, Cheetham JL, Hind A J (1986) Absorbed power distributions from coherent microwave arrays for localized hyperthermia. IEEE Trans Microwave Theory Tech 34: 484–89CrossRefGoogle Scholar
  79. Hand JW, Lagendijk JJW, Andersen JB, Bolomey JC (1989) Quality assurance guidelines for ESHO protocols. Int J Hyperthermia 5: 421–428PubMedCrossRefGoogle Scholar
  80. Hand JW, Trembly BS, Prior MV (1992a) Physics of interstitial hyperthermia: radiofrequency and hot water tube techniques. In: Urano M, Douple E (eds) Hyperthermia and oncology, vol 3. Interstitial hyperthermia: physics, biology and clinical aspects. VSP, Utrecht, pp 99–134Google Scholar
  81. Hand JW, Vernon CC, Prior MV (1992b) Early experience of a commercial scanned focused ultrasound hyperthermia system. Int J Hyperthermia 8: 587–607PubMedCrossRefGoogle Scholar
  82. Hand JW, Ebbinni E, O’Keeffe D, Israel D, Mohammadtaghi S (1994) An ultrasound phased array for use in intracavitary applicators for thermotherapy of prostatic diseases. Proc IEEE Ultrasonics 1993 Symposium, vol 2, IEEE, NY, pp 1225–1228Google Scholar
  83. Handl-Zeller L, Handl O (1992) Simultaneous application of combined interstitial high-or low-dose rate irradiation with hot water hyperthermia. In: Handl-Zeller L (ed) Interstitial hyperthermia. Springer, Vienna, pp 165–170CrossRefGoogle Scholar
  84. Hartov A, Colacchio TA, Strohbehn JW, Ryan TP, Hoopes PJ (1993) Performance of an adaptive MIMO controller for a multiple-element ultrasound hyperthermia system. Int J Hyperthermia 9: 563–579PubMedCrossRefGoogle Scholar
  85. Heinzl L, Hornsleth SN, Raskmark P, Andersen JB (1990) Electromagnetic applicators. In: Field SB, Hand JW (eds) An introduction to the practical aspects of clinical hyperthermia. Taylor & Francis, London, pp 275–304Google Scholar
  86. Hunt JW (1990) Principles of ultrasound used for generating localized hyperthermia. In: Field SB, Hand JW (eds) An introduction to the practical aspects of clinical hyperthermia. Taylor & Francis, London, pp 371–422Google Scholar
  87. Hunt JW, Lalonde R, Ginsberg H, Urchuk S, Worthington A (1991) Rapid heating: critical theoretical assessment of thermal gradients found in hyperthermia treatments. Int J Hyperthermia 7: 703–718PubMedCrossRefGoogle Scholar
  88. Hurter W, Reinbold F, Lorenz WJ (1991) A dipole antenna for interstitial microwave hyperthermia. IEEE Trans Microwave Theory Tech 39: 1048–1054CrossRefGoogle Scholar
  89. Hynynen K (1990a) Biophysics and technology of ultrasound hyperthermia. In: Gautherie M (ed) Methods of external hyperthermic heating. Springer, Berlin Heidelberg New York, pp 61–115 (Clinical thermology, subseries thermotherapy)CrossRefGoogle Scholar
  90. Hynynen K (1990b) Hot spots created at skin-air interfaces during ultrasound hyperthermia. Int J Hyperthermia 6: 1005–1012PubMedCrossRefGoogle Scholar
  91. Hynynen K (1992) The feasibility of interstitial ultrasound hyperthermia. Med Phys 19: 979–987PubMedCrossRefGoogle Scholar
  92. Hynynen K, De Young D (1988) Temperature elevation at muscle-bone interface during scanned, focused ultrasound hyperthermia. Int J Hyperthermia 4: 267–279PubMedCrossRefGoogle Scholar
  93. Hynynen K, Edwards DK (1989) Temperature measurements during ultrasound hyperthermia. Med Phys 16: 618–626PubMedCrossRefGoogle Scholar
  94. Hynynen K, Watmough DJ, Mallard JR (1981) Design of ultrasonic transducers for local hyperthermia. Ultrasound Med Biol 7: 397–402PubMedCrossRefGoogle Scholar
  95. Hynynen K, Roemer R, Moros E, Johnson C, Anhalt D (1986) The effect of scanning speed on temperature and equivalent thermal exposure distributions during ultrasound hyperthermia in vivo. IEEE Trans Microwave Theory Tech 34: 552–559CrossRefGoogle Scholar
  96. Hynynen K, Roemer RB, Anhalt D, Johnson C, Xu ZK, Swindell W, Cetas TC (1987) A scanned focused, multiple transducer ultrasonic system for localised hyperthermia treatments. Int J Hyperthermia 3: 21–35 reier ressenaen ana jenrey w. nanaPubMedCrossRefGoogle Scholar
  97. Hynynen K, Shimm D, Anhalt D, Stea B, Sykes H, Cassady JR, Roemer RB (1990) Temperature distributions during clinical scanned, focused ultrasound hyperthermia treatments. Int J Hyperthermia 6: 891–908PubMedCrossRefGoogle Scholar
  98. Hynynen K, Frederiksen F, Gautherie M, et al. (1992) Ultrasound hyperthermia (Tor Vergata Medical Physics Monograph Series, vol 2). Postgraduate School of Medical Physics, II University of Rome, Rome, pp 24–25Google Scholar
  99. Ibbini MS, Cain CA (1989) A field conjugation method of direct synthesis of hyperthermia phased-array heating patterns. IEEE Trans Ultrason Ferroelec Freq Contr 36: 3–9CrossRefGoogle Scholar
  100. Ibbini MS, Cain CA (1990) The concentric-ring array for ultrasound hyperthermia: combined mechanical and electrical scanning. Int J Hyperthermia 6: 401–419PubMedCrossRefGoogle Scholar
  101. Ibbini MS, Ebbini ES, Cain CA (1990) N x N square-element ultrasound phased array applicator: simulated temperature distributions associated with directly synthesized heating patterns. IEEE Trans Ultrason Ferroelec Freq Contr 37: 491–500CrossRefGoogle Scholar
  102. Ibbott GS, Brezovich I, Fessenden P, et al. (1989) Performance evaluation of hyperthermia equipment (AAPM Report No 26). American Institute of Physics, New YorkGoogle Scholar
  103. Iskander MF, Tumeh AM (1989) Design optimization of interstitial antennas. IEEE Trans Biomed Eng 36: 238–246PubMedCrossRefGoogle Scholar
  104. James BJ, Sullivan DM (1992) Direct use of CT scans for hyperthermia treatment planning. IEEE Trans Biomed Eng 39: 845–851PubMedCrossRefGoogle Scholar
  105. James BJ, Strohbehn JW, Mechling JA, Trembly BS (1989) The effect of insertion depth on the theoretical SAR patterns of 915 MHz dipole antenna arrays for hyperthermia. Int J Hyperthermia 5: 733–747PubMedCrossRefGoogle Scholar
  106. Johnson CC, Guy AW (1972) Nonionizing electromagnetic wave effects in biological materials and systems. Proc IEEE 60: 692–717CrossRefGoogle Scholar
  107. Johnson RH (1986) New type of compact electromagnetic applicator for hyperthermia in the treatment of cancer. Proc IEE 22: 591–593Google Scholar
  108. Johnson RH, James JR, Hand JW, Hopewell JW, Dunlop PRC, Dickinson RJ (1984) New low-profile applicators for local heating of tissues. IEEE Trans Biomed Eng 31: 28–37PubMedCrossRefGoogle Scholar
  109. Johnson RH, Preece AW, Hand JW, James JR (1987) A new type of lightweight low-frequency electromagnetic hyperthermia applicator. IEEE Trans microwave Theory Tech 35:1317–1321CrossRefGoogle Scholar
  110. Jones KM, Mechling JA, Trembly BS, Strohbehn JW (1988) SAR distributions for 915 MHz interstitial microwave antennas used in hyperthermia for cancer therapy. IEEE Trans Biomed Eng 35: 851–857PubMedCrossRefGoogle Scholar
  111. Jones KM, Mechling J A, Strohbehn JW, Trembly BS (1989) Theoretical and experimental SAR distributions for interstitial dipole arrays used in hyperthermia. IEEE Trans Microwave Theory Tech 37: 1200–1209CrossRefGoogle Scholar
  112. Kapp DS, Prionas SD (1992) Experience with radiofrequency-local current field interstitial hyperthermia: biological rationale, equipment development and clinical results. In: Handl-Zeller L (ed) Interstitial hyperthermia. Springer, Vienna, pp 95–119CrossRefGoogle Scholar
  113. Kapp DS, Fressenden P, Samulski TV, et al. (1988) Stanford University institutional report. Phase I evaluation of equipment for hyperthermia treatment of cancer. Int J Hyperthermia 4: 75–115PubMedCrossRefGoogle Scholar
  114. Kapp DS, Peters Brown AN, Cox W, Cox RS (1993) Temperature differentials between treatment and pretreatment temperatures correlate with local control following radiotherapy and hyperthermia. Int J Radiat Oncol Biol Phys 27: 331–344PubMedCrossRefGoogle Scholar
  115. King RWP, Shen LC, Wu TT (1981) Embedded insulated antennas for communication and heating. Electromagnetics 1: 115–117CrossRefGoogle Scholar
  116. King RWP, Trembly BS, Strohbehn JW (1983) Electromagnetic field of an insulated antenna in a conducting or dielectric medium. IEEE Trans Microwave Theory Tech 31: 574–583CrossRefGoogle Scholar
  117. Kobayashi T, Kida Y, Tanaka T, Hattori K, Matsui M, Amemiya Y (1991) Interstitial hyperthermia for brain tumors using ferromagnetic implants with low Curie temperature. J Neuro-oncol 4: 153–163CrossRefGoogle Scholar
  118. Lagendijk JJW (1990) Thermal models: principles and implementation. In: Field SB, Hand JW (eds) An introduction to the practical aspects of clinical hyperthermia. Taylor & Frances, London, pp 478–512Google Scholar
  119. Lagendijk JJW, Visser AG, Kaatee RSJP et al. (1994) The 27 MHz multi-electrode current source interstitial hyperthermia method. Activity, International Selectron Brachytherapy Journal 8(3)Google Scholar
  120. Lagendijk JJW, De Leeuw AAC (1993) Technical note. Temperature errors using multi-sensor thermocouple probes with a common constantan wire. Int J Hyperthermia 9: 763–764PubMedCrossRefGoogle Scholar
  121. Lagendijk JJW, Hofman P, Schippr J (1988) Perfusion analysis in advanced breast carcinoma during hyperthermia. Int J Hyperthermia 4: 479–495PubMedCrossRefGoogle Scholar
  122. Lagendijk JJW, van den Berg PM, Hand JW, et al. (1992) Task Group Report 4: treatment planning and modelling in hyperthermia. (Tor Vergata Medical Physics Monograph Series) Postgraduate School of Medical Physics, II University of Rome, RomeGoogle Scholar
  123. Lau RWM, Sheppard RJ, Howard G, Bleehen NM (1986) The modelling of biological systems in three dimensions using the time domain finite-difference method. II. The application and experimental evaluation of the method in hyperthermia applicator design. Phys Med Biol 31: 1257–1266PubMedCrossRefGoogle Scholar
  124. LeBihan D, Turner R, Moonen CTW, Pekar J (1991) Imaging of diffusion and microcirculation with gradient sensitization: design, strategy and significance. J Magn Reson Imaging 1: 7–28CrossRefGoogle Scholar
  125. Lee DJ, O’Neill MJ, Lam KS, Rostock R, Lam WC (1986) A new design of microwave interstitial applicator for hyperthermia with improved treatment volume. Int J Radiat Oncol Biol Phys 12: 2003–2008PubMedCrossRefGoogle Scholar
  126. Lee ER, Wilsey TR, Tarczy-Hornoch P, Kapp DS, Fessenden P, Lohrbach A, Prionas SD (1992) Body conformable 915 MHz microstrip array applicators for large surface area hyperthermia. IEEE Trans Biomed Eng 39: 470–483PubMedCrossRefGoogle Scholar
  127. Lele PP (1983) Physical aspects and clinical studies with ultrasonic hyperthermia. In: Storm FK (ed) Hyperthermia in cancer therapy. G.K. Hall, Boston, pp 333–367Google Scholar
  128. Leopold KA, Dewhirst MW, Samulski TV, et al. (1993) Cumulative minutes with T90 greater than TEMP index is predictive of response of superficial malignancies to hyperthermia and radiation. Int J Radiat Oncol Biol Phys 25: 841–847PubMedCrossRefGoogle Scholar
  129. Leybovich LB, Emami B, Myerson R J, Straube WL, Sathiaseelan V (1991) Dual-antenna applicators for hyperthermia of tumors at intermediate depth. Int J Hyperthermia 7:455–464PubMedCrossRefGoogle Scholar
  130. Lin JC, Wang YJ (1987) Interstitial microwave antennas for thermal therapy. Int J Hyperthermia 3: 37–47PubMedCrossRefGoogle Scholar
  131. Lockwood JC, Willette JG (1973) High-speed method for computing the exact solution for the pressure variations in the nearfield of a baffled piston. J Acoust Soc Am 53: 735–741CrossRefGoogle Scholar
  132. Lyons M, Parker KJ (1988) Absorption and attenuation in soft tissues. II. Experimental results. IEEE Trans Ultrason Ferroelec Freq Contr 35: 511–521CrossRefGoogle Scholar
  133. Magin RL, Peterson AF (1989) Noninvasive microwave phased arrays for local hyperthermia: a review. Int J Hyperthermia 5: 429–450PubMedCrossRefGoogle Scholar
  134. Marchal C, Bey P, Metz R, Gaulard ML, Robert J (1982) Treatment of superficial human cancerous nodules by local ultrasound hyperthermia. Br J Cancer 45 (Suppl V): 243–245Google Scholar
  135. McGough RJ, Ebbini ES, Cain CA (1992) Direct computation of ultrasound phased-array driving signals from a specified temperature distribution for hyperthermia. IEEE Trans Biomed Eng 39: 825–835PubMedCrossRefGoogle Scholar
  136. Mechling J A, Strohbehn JW, Ryan TP (1992) Three-dimensional theoretical temperature distributions produced by 915 MHz dipole antenna arrays with varying insertion depths in muscle tissue. Int J Radiat Oncol Biol Phys 22: 131–138PubMedCrossRefGoogle Scholar
  137. Mizushina S, Hamamura Y, Sugiura T (1989) A, method of solution for a class of inverse problems involving measurement errors and its application to medical microwave radiometry. IEEE MTT-S International Symposium Digest 171–174Google Scholar
  138. Mizushina S, Shimizu T, Sugiura T (1992) Non-invasive thermometry with multi-frequency microwave radiometry. Front Med Biol Eng 4: 129–133PubMedGoogle Scholar
  139. Morita N, Bach Andersen J (1982) Near field absorption in a circular cylinder from electric and magnetic line sources. Bioelectromagnetics 3: 253–274PubMedCrossRefGoogle Scholar
  140. Nasoni RL, Bowen T (1989) Ultrasonic speed as a parameter for non-invasive thermometry. In: Mizushina S (ed) Non-invasive temperature measurement. Gordon and Breach, New York, pp 95–107Google Scholar
  141. NCRP (1981) NCRP Report No. 67. Radiofrequency electromagnetic fields: properties, quantities and units, biophysical interaction and measurements. National Council on Radiation Protection and Measurements, Washington, D.C., pp 25–44Google Scholar
  142. NCRP (1986) NCRP Report No. 86. Biological effects and exposure criteria for radiofrequency electromagnetic fields. National Council on Radiation Protection and Measurements, Bethesda, Maryland, pp 38–39Google Scholar
  143. Nikawa Y, Kikuchi M, Kaneko R, Matsuda T (1993) Design and evaluation of a lens applicator for a 430 MHz heating system. In: Gerner EW, Cetas TC (eds) Hyperthermic oncology 1992, vol 2. Arizona Board of Regents, Tucson, pp 199–202Google Scholar
  144. Nussbaum GH, Side J, Rouhanizadeh N, et al. (1986) Manipulation of central axis heating patterns with a prototype, three-electrode capacitive device for deep-tumor hyperthermia. IEEE Trans Microwave Theory Tech 34: 620–625CrossRefGoogle Scholar
  145. Nussbaum GH, Straube WL, Drag MD, et al. (1991) Potential for localized, adjustable deep heating in soft-tissue environments with a 30-beam ultrasonic hyperthermia system. Int J Hyperthermia 7: 279–299PubMedCrossRefGoogle Scholar
  146. Nyborg WL, Steele RB (1985) Nearfield of a piston source of ultrasound in an absorbing medium. J Acoust Soc Am 78: 1882–1891PubMedCrossRefGoogle Scholar
  147. Ocheltree KB, Frizzell LA (1989) Sound field calculation for rectangular sources. IEEE Trans Ultrason Ferroelec Freq Contr 36: 242–248CrossRefGoogle Scholar
  148. Ocheltree KB, Benkeser PJ, Frizzell LA, Cain CA (1984) An ultrasonic phased array applicator for hyperthermia. IEEE Trans Sonics Ultrasonics 31: 526–531CrossRefGoogle Scholar
  149. Oleson JR, Samulski TV, Leopold KA, Clegg ST, Dewhirst MW, Dodge RK, George SL (1993) Sensitivity of hyperthermia trial outcomes to temperature and time: implications for thermal goals of treatment. Int J Radiat Oncol Biol Phys 25: 289–297PubMedCrossRefGoogle Scholar
  150. Overgaard J (1993) The future of hyperthermic oncology. In: Gerner EW, Cetas TC (eds) Hyperthermic oncology 1992, vol 2. Arizona Board of Regents, Tucson, pp 87–92Google Scholar
  151. Paulsen KD (1990) Calculation of power deposition patterns in hyperthermia. In: Gautherie M (ed) Thermal dosimetry and treatment planning. Springer, Berlin Heidelberg New York, pp 57–117 (Clinical thermology, subseries thermotherapy)CrossRefGoogle Scholar
  152. Paulsen KD, Lynch DR, Stronbehn JW (1988) Three dimensional finite boundary and hybrid element solutions of the Maxwell equations for lossy dielectric media. IEEE Trans Microwave Theory Tech 36: 682–693CrossRefGoogle Scholar
  153. Paulsen KD, Strohbehn JW, Lynch DR (1985) Comparative theoretical performance for two types of hyperthermia systems. Int J Radiat Oncol Biol Phys 11: 1659–1671PubMedCrossRefGoogle Scholar
  154. Pennes HH (1948) Analysis of tissue and arterial blood temperatures in the human resting forearm. J Appl Physiol 1: 93–122PubMedGoogle Scholar
  155. Picket-May MJ, Taflove A, Lin WC, Katz DS, Sathiaseelan V, Mital BB (1992) Initial results for automated computational modeling of patient-specific electromagnetic hyperthermia. IEEE Trans Biomed Eng 39: 226–236CrossRefGoogle Scholar
  156. Pounds DW, Britt RH (1984) Single ultrasonic crystal techniques for generating uniform temperature distributions in homogeneously perfused tissues. IEEE Trans Sonics Ultrasonics 31: 482–496CrossRefGoogle Scholar
  157. Prionas SD, Hahn GM (1985) Noninvasive thermometry using ultiple frequency-band ra om ry: a fe ibility study. Bioelectromagnetics 6: 391–404PubMedCrossRefGoogle Scholar
  158. Prionas SD, Kapp DS, Sokol JL, Fessenden P (1990) Absorption of ultrasound (US) near tissue to air interfaces. Abstracts of papers for the tenth annual meeting of the North American Hyperthermia Group, New Orleans, Louisiana, p 18Google Scholar
  159. Prionas SD, Kapp DS, Goffient DR, Bagshaw MA, Ben-Yosef R, Sokol JL, Fessenden P (1993) Interstitial radiofrequency-induced hype her a. In: Gner EW, Tas TC (eds) Hyperthermic oncology 1992, vol 2. Arizona Board of Regents, Tucson, pp 249–253Google Scholar
  160. Prionas SD, Kapp DS, Goffinet DR, Ben-Yosef R, Fessen P and Bagaw MA (1994) Thmomry of interstitial hyperthermia given as an adjuvant to brachytherapy for the treatment of carcinoma of the prostate. Int J Radiat Oncol Biol Phys 28(1): 151–162PubMedCrossRefGoogle Scholar
  161. Rine GP, Dewhirst MW, Cobb ED, Clegg ST, Coleman EN, Samulski TV, Wallen CA (1992) Feasibility of estimating the temperature distribution in a tumor heated by a waveguide applicator. Int J Radiat Oncol Biol Phys 23: 1009–1019PubMedCrossRefGoogle Scholar
  162. Robins HI, Dennis WH, Neville AJ, et al. (1985) A non-toxic system for 41.8°C whole body hyperthermia: results of a phase I study using a radiant heat device. Cancer Res 45: 3937–3944PubMedGoogle Scholar
  163. Roemer RB (1990) Thermal dosimetry. In: Gautheric M (ed) Thermal dosimetry and treatment planning. Springer, Berlin Heidelberg New York, pp 119–214 (Clinical thermology, subseries thermotherapy)CrossRefGoogle Scholar
  164. Roemer RB, Cetas TC (1984) Applications of bioheat transfer simulations in hyperthermia. Cancer Res 44: 4788S-4798SPubMedGoogle Scholar
  165. Roemer RB, Fletcher AM, Cetas TC (1985) Obtaining local SAR and blood perfusion data from temperature measurements: steady-state and transient techniques compared. Int J Radiat Oncol Biol Phys 11: 1539–1550PubMedCrossRefGoogle Scholar
  166. Roos D, Hugander A (1988) Microwave interstitial applicators with improved longitudinal heating patterns. Int J Hyperthermia 4: 609–615PubMedCrossRefGoogle Scholar
  167. Ryan TP (1991) Comparison of six microwave antennas for hyperthermia treatment of cancer: SAR results for single antennas and arrays. Int J Radiat Oncol Biol Phys 21:403–413PubMedCrossRefGoogle Scholar
  168. Ryan TP, Mechling J A, Strohbehn JW (1990) Absorbed power deposition for various insertion depths for 915 MHz interstitial dipole antenna arrays: experiment versus theory. Int J Radiat Oncol Biol Phys 19: 377–387PubMedCrossRefGoogle Scholar
  169. Ryan TP, Hoopes PJ, Taylor JH, Strohbehn JW, Roberts DW, Douple EB, Coughlin CT (1991) Experimental brain hyperthermia: techniques for heat delivery and thermometry. Int J Radiat Oncol Biol Phys 20: 739–750PubMedCrossRefGoogle Scholar
  170. Samulski TV, Clegg ST, Das S, MacFall J, Prescott DM (1994) Application of new technology in clinical hyperthermia. Int J Hyperthermia 10: 389–394PubMedCrossRefGoogle Scholar
  171. Samulski TV, Fessenden P (1990) Thermometry in therapeutic hyperthermia. In: Gautherie M (ed) Methods of hyperthermia control. Springer, Berlin Heidelberg New York, pp 1–34 (Clinical thermology, subseries thermotherapy)CrossRefGoogle Scholar
  172. Samulski TV, Chopping PT, Haas B (1982) Photoluminescent thermometry based on europium-activated calcium sulfide. Phys Med Biol 27: 107–114PubMedCrossRefGoogle Scholar
  173. Samulski TV, Lyons BE, Britt RH (1985) Temperature measurements in high thermal gradients. II. Analysis of conduction effects. Int J Radiat Oncol Biol Phys 11: 963–971PubMedCrossRefGoogle Scholar
  174. Samulski TV, Kapp DS, Fessenden P, Lohrbach A (1987a) Heating deep seated eccentrically located tumors with an annular phased array system: a comparative clinical study using two annular array operating configurations. Int J Radiat Oncol Biol Phys 13: 83–94PubMedCrossRefGoogle Scholar
  175. Samulski TV, Fessenden P, Valdagni R, Kapp DS (1987b) Correlations of thermal washout rate, steady-state temperatures and tissue type in deep seated recurrent or metastatic tumors. Int J Radiat Oncol Biol Phys 13: 907–916PubMedCrossRefGoogle Scholar
  176. Samulski TV, Fessenden P, Lee ER, Kapp DS, Tanabe E, McEuen A (1990a) Spiral microstrip hyperthermia applicators: technical design and clinical performance. Int J Radiat Oncol Biol Phys 18: 233–242PubMedCrossRefGoogle Scholar
  177. Samulski TV, Grant WJ, Oleson JR, Leopold KA, Dewhirst MW, Vallario P, Blivin J (1990b) Clinical experience with a multielement ultrasonic hyperthermia system: analysis of treatment temperatures. Int J Hyperthermia 6: 909–922PubMedCrossRefGoogle Scholar
  178. Samulski TV, MacFall J, Zhang Y, Grant W, Charles C (1992) Non-invasive thermometry using magnetic resonance diffusion imaging: potential for application in hyperthermic oncology. Int J Hyperthermia 8: 819–829PubMedCrossRefGoogle Scholar
  179. Sandhu TS, Kowal HS, Johnson RJR (1978) The development of microwave hyperthermia applicators. Int J Radiat Oncol Biol Phys 4: 515–519PubMedCrossRefGoogle Scholar
  180. Sapozink MD, Corry PM, Kapp DS, et al. (1991) Quality assurance guidelines for clinical trials using hyperthermia for deep seated malignancy. Int J Radiat Oncol Biol Phys 20: 1109–1115PubMedCrossRefGoogle Scholar
  181. Sathiaseelan V, Leybovich L, Emami MS, Stauffer P, Straube W (1991) Characteristics of improved microwave interstitial antennas for local hyperthermia. Int J Radiat Oncol Biol Phys 20: 531–539PubMedCrossRefGoogle Scholar
  182. Satoh T, Stauffer PR, Fike JR (1988) Thermal distribution studies of helical coil microwave antennas for interstitial hyperthermia. Int J Radiat Oncol Biol Phys 15: 1209–1218PubMedCrossRefGoogle Scholar
  183. Schneider C, van Dijk JDP (1991) Visualization with a matrix of LEDs of interference effects from a radiative four applicator hyperthermia system. Int J Hyperthermia 7: 355–366PubMedCrossRefGoogle Scholar
  184. Schreier K, Budhina M, Lesnicar H, et al. (1990) Preliminary studies of interstitial hyperthermia using hot water. Int J Hyperthermia 6: 431–434PubMedCrossRefGoogle Scholar
  185. Sekins KM, Emery AF (1982) Thermal science for physical medicine. In: Lehmann JF (ed) Therapeutic heat and cold, 3rd edn. Williams & Wilkins, Baltimore, pp 70–132Google Scholar
  186. Seppi E, Shapiro E, Zitelli L, Henderson S, Wehlau A, Wu G, Dittmer C (1985) A large aperture ultrasonic array system for hyperthermia treatment of a deep seated tumors. In: Proceedings IEEE Ultrasonics Symposium, IEEE, New York, pp 942–948Google Scholar
  187. Shrivastava P, Luk K, Oleson JR, et al. (1989) Hyperthermia quality assurance guidelines. Int J Radiat Oncol Biol Phys 16: 571–587PubMedCrossRefGoogle Scholar
  188. Storm FK, Harrison WH, Elliott RS, Kaiser LR, Silberman AW, Morton DL (1981) Clinical radiofrequency hyperthermia by magnetic loop induction. J Microwave Power 16: 179–184Google Scholar
  189. Strohbehn JW (1982) Theoretical temperature distributions forsolenoidal-type hyperthermia systems. Med Phys 9: 673–682PubMedCrossRefGoogle Scholar
  190. Strohbehn JW, Roemer RB (1984) A survey of computer simulations of hyperthermia treatments. IEEE Trans Biomed Eng 31: 136–149PubMedCrossRefGoogle Scholar
  191. Strohbehn JW, Paulsen KD, Lynch DR (1986) Use of the finite element method in computerized thermal dosimetry. In: Hand JW, James JR (eds) Physical techniques in clinical hyperthermia. Research Studies Press, Letchworth, Hertfordshire, England, pp 383–451Google Scholar
  192. Strutt JW (1945) Theory of sound, vol 2. Dover, New YorkGoogle Scholar
  193. Sugimachi K, Matsuda H (1990) Experimental and clinical studies of hyperthermia for carcinomas of the esophagus. In: Gautherie M (ed) Interstitial, endocavitary and perfusional hyperthermia. Springer, Berlin Heidelberg New York, pp 59–76CrossRefGoogle Scholar
  194. Sullivan D (1990) Three-dimensional computer simulation in deep regional hyperthermia using the finite-difference time-domain method. IEEE Trans Microwave Theory Tech 38: 204–211CrossRefGoogle Scholar
  195. Sullivan DM (1992) A frequency-dependent FDTD method for biological applications. IEEE Trans Microwave Theory Tech 40: 532–539CrossRefGoogle Scholar
  196. Sullivan DM, Buechler D, Gibbs FA (1992) Comparison of measured and simulated data in an annular phased array using an inhomogeneous phantom. IEEE Trans Microwave Theory Tech 40: 600–604CrossRefGoogle Scholar
  197. Sullivan DM, Ben-Yosef R, Kapp DS (1993) Standford 3-D hyperthermia treatment planning system. Int J Hyperthermia 9: 627–643PubMedCrossRefGoogle Scholar
  198. Swindell W (1986) Ultrasonic hyperthermia. In: Hand JW, James JR (eds) Physical techniques in clinical hyperthermia. Research Studies Press, Letchworth, Hertfordshire, England, pp 288–326Google Scholar
  199. Tanabe E, McEuen A, Norris CS, Fessenden P, Samulski TV (1983) A multi-element microstrip antenna for local hyperthermia. IEEE MTT-S International Microwave Symposium Digest, pp 183–185Google Scholar
  200. Tarczy-Hornoch P, Lee ER, Sokol JL, Prionas SD, Lohrbach AW, Kapp DS (1992) Automated mechanical thermometry probe mapping systems for hyperthermia. Int J Hyperthermia 8: 543–554PubMedCrossRefGoogle Scholar
  201. Trembly BS (1985) The effects of driving frequency and antenna length on power deposition within a microwave antenna array used for hyperthermia. IEEE Trans Microwave Theory Tech 32: 152–157Google Scholar
  202. Trembly BS, Wilson AH, Sullivan MJ, Stein AD, Wong TZ, Strohbehn JW (1986) Control of the SAR pattern within an interstitial mocrowave array through variation of antenna driving phase. IEEE Trans Microwave Theory Tech 34: 568–571CrossRefGoogle Scholar
  203. Trembly BS, Douple EB, Hoopes PJ (1991) The effect of air cooling on the radial temperature distribution of a single microwave hyperthermia antenna in vivo. Int J Hyperthermia 7: 343–354PubMedCrossRefGoogle Scholar
  204. Tumeh AM, Iskander MF (1989) Performance comparison of available interstitial antennas for microwave hyperthermia. IEEE Trans Microwave Theory Tech 37: 1126–1133CrossRefGoogle Scholar
  205. Turner PF (1984) Regional hyperthermia with an annular phased array. IEEE Trans Biomed Eng 31: 106–114PubMedCrossRefGoogle Scholar
  206. Turner PF (1986) Interstitial equal-phased arrays for EM hyperthermia. IEEE Trans Microwave Theory Tech 34: 572–578CrossRefGoogle Scholar
  207. Umemura S, Cain CA (1989) The sector-vortex phased array: acoustic field synthesis for hyperthermia. IEEE Trans Ultrason Ferroelec Freq Contr 36: 249–257CrossRefGoogle Scholar
  208. Umemura S, Cain C A (1992) Acoustical evaluation of a prototype sector-vortex phased-array applicator. IEEE Trans Ultrason Ferroelec Freq Contr 39: 32–38CrossRefGoogle Scholar
  209. van der Zee J (1988) ESHO 5–88: protocol for phase III trial involving reirradiation of recurrent breast cancer with or without hyperthermia. Dr. Daniel den Hoed Cancer Center, RotterdamGoogle Scholar
  210. van der Zee J, van Rhoon GC (1993) Eindverslag Ontwikkelingsgeneeskunde project OG 89–23: de waarde van hyperthermic bij toevoeging aan radiotherapie bij de behandeling van inoperabele en stralingsresistente tumoren. A report to the Dutch Ministry of Health CareGoogle Scholar
  211. van Dijk JDP, Schneider C, van Os R, Blank LE, Gonzalez DG (1990) Results of deep body hyperthermia with large waveguide radiators. Adv Exp Med Biol 267: 315–319PubMedCrossRefGoogle Scholar
  212. van Rhoon GC, Rietveld PJM, Broekmeyer-Reurink MP, Verloopvan’t Hof EM, van der Ploeg SK, van der Zee J (1993) DUD A 433 MHz waveguide applicator system with an improved effective field size for hyperthermia treatment of superficial tumors on the chest wall. In: Gerner EW, Cetas TC (eds) Hyperthermic oncology 1992, vol 2. Arizona Board of Regents, Tucson, pp 187–190Google Scholar
  213. Vernon CC, Hand JW, Field SB, Machin D (1990) A study of the use of hyperthermia in the treatment of breast and head and neck tumours: a MRC multi-centre phase III trial. Trial closed for accrual Dec 1993. Results to be published in 1994Google Scholar
  214. Visser AG, Deurloo IKK, Levendag PC, Ruifrok ACC, Cornet B, van Rhoon GC (1989) An interstitial hyperthermia system at 27 MHz. Int J Hyperthermia 5: 265–276PubMedCrossRefGoogle Scholar
  215. Visser AG, Chive M, Hand JW, et al. (1992) Interstitial and intracavitary hyperthermia: a task group report of the European Society for Hyperthermic Oncology, Postgraduate School of Medical Physics, University of Rome. Tor Vergata, RomeGoogle Scholar
  216. Visser AG, Kaatee RSJP, Levendag PC (1993) Radiofrequency techniques for interstitial hyperthermia. In: Seegenschmiedt MH, Sauer R (eds) Interstitial and intracavitary thermoradiotherapy. Springer, Berlin Heidelberg New York, pp 35–41CrossRefGoogle Scholar
  217. Waterman FM, Hoh LLS (1994) A rcommended revision in the RTOG thermometry guidelines for hyperthermia administered by ultrasound. Int J HyperthermiaGoogle Scholar
  218. Waterman FM, Leeper JB (1990) Temperature artifacts produced by thermocouples used in conjunction with 1 and 3 MHz ultrasound. Int J Hyperthermia 6: 383–399PubMedCrossRefGoogle Scholar
  219. Wickersheim KA (1986) A new fiberoptic thermometry system for use in medical hyperthermia. SPIE Proceedings, vol 713Google Scholar
  220. Williams RA (1983) Ultrasound: biological effects and potential hazards. Academic, London, pp 107–110Google Scholar
  221. Wu A, Watson ML, Sternick ES, Bielawa RJ, Carr KL (1987) Performance characteristics of a helical coil microwave interstitial antenna for local hyperthermia. Med Phys 14: 235–237PubMedCrossRefGoogle Scholar
  222. Wust P, Fahling H, Nadobny J, Felix R, Seebass M (1993) Potential of radiofrequency hyperthermia: planning, optimization, technological development. In: Gerner EW, Cetas TC (eds) Hyperthermia oncology 1992 vol 2. Arizona Board of Regents, pp 65–72Google Scholar
  223. Young IR, Hand JW, Oatridge A, Prior M, Forse G (1994) Further observations of the measurement of tissue Tl to monitor temperature in vivo by MR. Magn Reson Med 31: 342–345PubMedCrossRefGoogle Scholar
  224. Yuan X, Strohbehn W, Lynch DR, Johnsen M (1990) Theoretical investigation of a phased-array hyperthermia system with moveable aperatures. Int J Hyperthermia 6: 227–240PubMedCrossRefGoogle Scholar
  225. Zemanek J (1971) Beam behaviour within the nearfield of a vibrating piston. J Acoust Soc Am 49: 181–191CrossRefGoogle Scholar
  226. Zhang Y, Dubai NV, Takemoto-Hambleton R, Joines WT (1988) The determination of the electromagnetic field and SAR pattern of an interstitial applicator in a dissipative medium. IEEE Trans Microwave Theory Tech 36: 1438–1443CrossRefGoogle Scholar
  227. Zhang Y, Joines WT, Oleson JR (1990a) The calculated and measured temperature distribution of a phased interstitial antenna array. IEEE Trans Microwave Theory Tech 38: 69–77CrossRefGoogle Scholar
  228. Zhang Y, Joines WT, Oleson JR (1990b) Microwave hyperthermia induced by a phased interstitial antenna array. IEEE Trans Microwave Theory Tech 38: 217–221CrossRefGoogle Scholar
  229. Zhang Y, Joines WT, Oleson JR (1991a) Heating patterns generated by phase modulation of a hexagonal array of interstitial antennas. IEEE Trans Biomed Eng 38: 92–97PubMedCrossRefGoogle Scholar
  230. Zhang Y, Joines WT, Oleson JR (1991b) Prediction of heating patterns of a microwave interstitial array at various insertion depths. Int J Hyperthermia 7: 197–207PubMedCrossRefGoogle Scholar
  231. Zhou LJ, Fessenden P (1993) Automation of temperature control for large-array microwave surface applicators. Int J Hyperthermia 9: 479–490PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1995

Authors and Affiliations

  • Peter Fessenden
    • 1
  • Jeffrey W. Hand
    • 2
  1. 1.Department of Radiation OncologyStanford University School of MedicineStanfordUSA
  2. 2.Department of Medical Physics, Royal Postgraduate Medical SchoolHammersmith HospitalLondonUK

Personalised recommendations