Skip to main content

Hyperthermia Therapy Physics

  • Chapter
Radiation Therapy Physics

Part of the book series: Medical Radiology ((Med Radiol Radiat Oncol))

Abstract

Hyperthermia involves the use of heat as a cancer treatment modality. It is occasionally used alone, but most often is employed in conjunction with ionizing radiation, and more recently, with chemotherapy (Dahl and Mella 1990). The goal of hyperthermia is to raise the temperature of the targeted region to therapeutic levels (approximately 42°–45°C) while keeping adjacent normal tissues at subtherapeutic temperatures.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Allen S, Kantor G, Bassen H, Rugerra P (1988) CDRH Rï phantom for hyperthermia systems evaluation. Int J Hyper thermia 4: 17–24

    Article  CAS  Google Scholar 

  • Anhalt D, Hynynen K, Roemer RB, Nethonson SM, Stea B Cassady JR (1982) Scanned ultrasound hyperthermia foi treating superficial disease. In: Gerner EW (ed) Hyperthermic oncology 1992, vol 1. Arizona Board of Regents, Tucson, p 3

    Google Scholar 

  • Astrahan MA, Sapozink MD, Luxton G, Kampp TD, Petrovid Z (1989) A technique for combining microwave hyperthermia with intraluminal brachytherapy of the oesophagus. Int J Hyperthermia 5: 37–51

    Article  PubMed  CAS  Google Scholar 

  • Atkinson WJ, Brezovich I A, Chakraborty DP (1984) Usable frequencies in hyperthermia with thermal seeds. IEEE Trans Biomed Eng 31: 70–75

    Article  PubMed  CAS  Google Scholar 

  • Bach Andersen J, Baun A, Harmark K, Heinzl L, Raskmark P, Overgaard J (1984) A hyperthermia system using a new type ol inductive applicator. IEEE Trans Biomed Eng 31: 21–27

    Article  PubMed  CAS  Google Scholar 

  • Bardati F, Bertero M, Mongiardo M, Solimini D (1987) Singular system analysis of the inversion of microwave radiometric data: applications to biological temperature retrieval. Inverse Problems 3: 347–370

    Article  Google Scholar 

  • Bassen H, Allen S, Herman B, Kantor G, Robinson R (1985) Quality assurance of RF and ultrasound cancer hyperthermia systems. Proc 7th Annual Conference of the IEEE Engineering in Medicine and Biology Society. IEEE, New York, pp 346–351

    Google Scholar 

  • Benkeser PJ, Frizzell LA, Ocheltree KB, Cain CA (1987) A tapered pha d ar y ultraso d transdu r r hyperthermia treatment. IEEE Trans Ultrason Ferroelec Freq Contr 34: 446–453

    Article  CAS  Google Scholar 

  • Benkeser PJ, Frizzell LA, Goss SA, Cain CA (1989) Analysis of a multielement ultrasound hyperthermia applicator. IEEE Trans Ultrason Ferroelec Freq Contr 36: 319–325

    Article  CAS  Google Scholar 

  • Berntsen S, Bach Andersen J, Gross E (1991) A general formulation of applied potential tomography. Radio Sei 26: 535–540

    Article  Google Scholar 

  • Bini M, Ignesti A, Millanta L, Olmi R, Rubino N, Vanni R (1984) The Polyacrylamide as a phantom material for electromagnetic hyperthermia studies. IEEE Trans Biomed Eng 31: 317–322

    Article  PubMed  CAS  Google Scholar 

  • Bolomey JC, Hawley MS (1990) Noninvasive control of hyperthermia. In: Gautherie M (ed) Methods of hyperthermia control. Springer, Berlin Heidelberg New York, pp 35–111 (Clinical thermology, subseries thermotherapy)

    Chapter  Google Scholar 

  • Bowman RR (1976) A probe for measuring temperature in radio-frequency heated material. IEEE Trans Microwave Theory Tech MTT-24: 43–45

    Article  Google Scholar 

  • Brezovich IA (1988) Low frequency hyperthermia: capacitive and ferromagnetic seed metho. : Pali l , Hetl FW, Dewhirst MW (eds) Biological, physical and clinical aspects of hyperthermia. American Institute of Physics, New York, pp 82–110

    Google Scholar 

  • Brezovich I A, Atkinson WJ, Chakraborty DP (1984) Temperature distributions in tumor models heated by self-regulating nickel-copper alloy thermoseeds. Med Phys 11: 145–152

    Article  PubMed  CAS  Google Scholar 

  • Budihna M, Lesnicar H, Handl-Zeller L, Schreier K (1992) Animal experiments with interstitial water hyperthermia. In: Handl-Zeller (ed) Interstitial hyperthermia. Springer, Vienna, pp 155–163

    Chapter  Google Scholar 

  • Cain CA, Umemura SI (1986) Concentric-ring and sector vortex phased-array applicators for ultrasound hyperthermia. IEEE Trans Microwave Theory Tech MTT-34: 542–551

    Article  Google Scholar 

  • Cangellaris AC, Wright DB (1991) Analysis of the numerical error caused by the stair-stepped approximation of a conducting boundary in FDTD simulations of electromagnetic phenomena. IEEE Trans Antennas Propagat 39: 1518–1525

    Article  Google Scholar 

  • Carnochan P, Dickinson RJ, Joiner MC (1986) The practical use of thermocouples for temperature measurement in clinical hyperthermia. Int J Hyperthermia 2: 1–19

    Article  PubMed  CAS  Google Scholar 

  • Casey JP, Bansal R (1986) The near field of an insulated dipole in a dissipative dielectric medium. IEEE Trans Microwave Theory Tech 34: 459–463

    Article  Google Scholar 

  • Chan AK, Sigelmann RA, Guy AW (1974) Calculations of therapeutic heat generated by ultrasound in fat-muscle-bone layers. IEEE Trans Biomed Eng 21: 280–284

    Article  PubMed  CAS  Google Scholar 

  • Chan KW, Chou CK, McDougall JA, Luk KH, Vora NL, Forell BW (1989) Changes in heating patterns of interstitial microwave antenna arrays at different insertion depths. Int J Hyperthermia 5: 499–507

    Article  PubMed  CAS  Google Scholar 

  • Chato JC (1990) Fundamentals of bioheat transfer. In: Gautherie M (ed) Thermal dosimetry and treatment planning. Springer, Berlin Heidelberg New York, pp 1–56 (Clinical thermology, subseries thermotherapy)

    Chapter  Google Scholar 

  • Chen JS, Poirier DR, Damento MA, Demer LJ, Biencaniello F, Cetas TC (1988) Development of Ni-4wt%Si thermoseeds for hyperthermia cancer treatment. J Biomater Res 22: 303–319

    Article  Google Scholar 

  • Chen JY, Gandhi OP (1992) Numerical simulation of annular-phased arrays of dipoles for hyperthermia of deep-seated tumors. IEEE Trans Biomed Eng 39: 209–216

    Article  PubMed  CAS  Google Scholar 

  • Chitnalah A, Marchai C, Prieur G (1991) Sonde ultrasonore plane pour hyperthermic intracavitaire. Innovation et Technologie en Biologie et Medecine 12: 114–125

    Google Scholar 

  • Chive M (1990) Use of microwave radiometry for hyperthermia monitoring radiometry and as a basis for thermal dosimetry. In: Gautherie M (ed) Methods of hyperthermia control. Springer, Berlin Heidelberg New York, pp 113–128 (Clinical thermology, subseries thermotherapy)

    Chapter  Google Scholar 

  • Chou CK, Chen GW, Guy AW, Luk KH (1984) Formulas for preparing phantom muscle tissue at various radiofrequencies. Bioelectromagnetics 5: 435–441

    Article  PubMed  CAS  Google Scholar 

  • Chou CK, McDougall JA, Chan KW, Luk KH (1990) Effects of fat thickness on heating patterns of the microwave applicator MA-151 at 631 and 915 MHz. Int J Radiât Oncol Biol Physics 19: 1067–1070

    Article  CAS  Google Scholar 

  • Chou CK, McDougall JA, Chan KW, Luk KH (1991) Heating patterns of microwave applicators in inhomogeneous arm and thigh phantoms. Med Phys 18: 1164–1170

    Article  PubMed  CAS  Google Scholar 

  • Christensen DA (1977) A new non-perturbing temperature probe using semiconductor band edge shift. J Bioeng 1: 541–545

    Google Scholar 

  • Clegg ST, Roemer RB (1989) Towards the estimation of three-dimensional temperature fields from noisy temperature measurements during hyperthermia. Int J Hyperthermia 5:467–484

    Article  PubMed  CAS  Google Scholar 

  • Clibbon KL, McCowen A, Hand JW (1993) SAR distributions in interstitial microwave antennas with a single dipole displacement. IEEE Trans Biomed Eng 40: 925–932

    Article  PubMed  CAS  Google Scholar 

  • Conway J (1987) Electrical impedance tomography for thermal monitoring of hyperthermia treatment: an assessment using in vitro and in vivo measurements. Clin Phys Physiol 8 (Suppl A): 147–153

    Google Scholar 

  • Corry PM, Barlogie B (1982) Clinical application of high frequency methods for local hyperthermia. In: Nussbaum GH (ed) Phys al aspects of hyperther a. Amer an Insti te of Physics, New York, pp 307–328

    Google Scholar 

  • Corry PM, Jabboury K, Armour EP, Kong JS (1984) Human cancer treatment with ultrasound. IEEE Trans Sonics Ultrasonics 31: 444–455

    Article  Google Scholar 

  • Cosset JM (1990) Interstitial hyperthermia. In: Gautherie M (ed), Interstitial, endocavitary and perfusional hyperthermia, Springer, Berlin Heidelberg New York, pp 1–41

    Chapter  Google Scholar 

  • Crezee J, Mooibroek J, Lagendijk JJW (1993) Thermal model verification in interstitial hyperthermia. In: Seegenschmiedt MH, Sauer R (eds) Interstitial and intracavitary thermoradiotherapy. Springer, Heidelberg Berlin New York, pp 147–153

    Chapter  Google Scholar 

  • Dahl O, Mella O (1990) Hyperthermia and chemotherapeutic agents. In: Field SB, Hand JW (eds) An introduction to the practical aspects of clinical hyperthermia. Tay&or & Francis, London, pp 108–142

    Google Scholar 

  • DeFord JA, Babbs CF, Patel UH, Bleyer MW, Marchosky JA, Moran CJ (1991) Effective interstitial hyperthermia. Int J Hyperthermia 7: 441–453

    Article  PubMed  CAS  Google Scholar 

  • De Leeuw A AC, Crezee J, Lagendijk JJW (1993) Temperature and SAR measurements in deep-body hyperthermia with thermocouple thermometry. Int J Hyperthermia 9: 685–697

    Article  PubMed  Google Scholar 

  • De Leeuw AAC, Lagendijk JJW, Van den Berg PM (1990) SAR distribution of the ‘coaxial TEM’ system with variable aperture width: measurements and model computations. Int J Hyperthermia 6: 445–451

    Article  PubMed  Google Scholar 

  • De Leeuw AAC, Crezee J, Lagendijk JJW (1993) Temperature and SAR measurements in deep-body hyperthermia with thermocouple thermometry. Int J Hyperthermia 9: 685–697

    Article  PubMed  Google Scholar 

  • Delannoy J, LeBihan D, Hoult DI, Levin RL (1990) Hyperthermia system combined with a MRI unit. Med Phys 17: 855–860

    Article  PubMed  CAS  Google Scholar 

  • Denman DL, Foster AE, Cooper Lewis G et al. (1988) The distribution of power and heat produced by interstitial microwave antenna arrays. II. The role of antenna spacing and insertion depth. Int J Radiât Oncol Biol Phys 14: 537–545

    Article  PubMed  CAS  Google Scholar 

  • Deurloo IKK, Visser AG, Morawska M, van Geel CAJF, van Rhoon CG, Levendag PC (1991) Applications of a capacitive-coupling interstitial hyperthermia system at 27 MHz: study of different applicator configurations. Phys Med Biol 36:119–132

    Article  PubMed  CAS  Google Scholar 

  • Dewhirst MW, Philips TL, Samulski TV, et al. (1990) RTOG quality assurance guidelines for clinical trials using hyperthermia. Int J Radiat Oncol Biol Phys 18: 1249–1259

    Article  PubMed  CAS  Google Scholar 

  • Dickinson RJ (1984) A non-rigid mosaic applicator for local ultrasound hyperthermia. In: Overgaard J (ed) Hyperthermic oncology 1984, vol 1. Taylor and Francis, London, pp 671–674

    Google Scholar 

  • Dickinson RJ (1985) Thermal conduction errors of manganin-constantan thermocouple arrays. Phys Med Biol 30: 445–453

    Article  CAS  Google Scholar 

  • Diederich CJ, Hynynen K (1990) The development of intracavitary ultrasonic applicators for hyperthermia: a design and experimental study. Med Phys 17: 626–634

    Article  PubMed  CAS  Google Scholar 

  • Diederich CJ, Hynynen K (1991) The feasibility of using electrically focused ultrasound arrays to induce deep hyperthermia via body cavities. IEEE Trans Ultrason Ferroelec Freq Contr 38: 207–219

    Article  CAS  Google Scholar 

  • Dorr LN, Hynynen K (1992) The effects of tissue heterogeneities and large blood vessels on the thermal exposure induced by short high-power ultrasound pulses. Int J Hyperthermia 8: 45–60

    Article  PubMed  CAS  Google Scholar 

  • Doss JD (1982) Calculation of electric fields in conductive media. Med Phys 9: 566–573

    Article  PubMed  CAS  Google Scholar 

  • Dunn F, Frizzell LA (1982) Bioeffects of ultrasound. In: Lehman JF (ed) Theraputic heat and cold, 3rd edn. Williams & Wilkins, Baltimore, pp 388–390

    Google Scholar 

  • Dunscombe PB, Cetas TC, Connor WG, et al. (1989) Hyperthermia treatment planning (AAPM Report No 27). American Institute of Physics, New York

    Google Scholar 

  • Durney CH (1990) Electromagnetic field propagation and interaction with tissue. In: Field SB, Hand JW (eds) An introduction to the practical aspects of clinical hyperthermia. Taylor & Francis, London, pp 242–274

    Google Scholar 

  • Ebbini ES, Cain CA (1991a) Optimization of the intensity gain of multiple-focus phased-array heating patterns. Int J Hyperthermia 7: 953–973

    Article  PubMed  CAS  Google Scholar 

  • Ebbini ES, Cain CA (1991b) Experimental evaluation of a prototype cylindrical section ultrasound hyperthermia phased-array applicator. IEEE Trans Ultrason Ferroelec Freq Contr 38: 510–520

    Article  CAS  Google Scholar 

  • Edmonds PD, Ross WC, Lee ER, Fessenden P (1985) Spatial distributions of heating by ultrasound transducers in clinical use indicated in a tissue-equivalent phantom. Proc 1985 IEEE Ultrasonics Symposium, New York, IEEE, pp 908–912

    Google Scholar 

  • Emami B, Stauffer P, Dewhirst MW, et al. (1991) RTOG quality assurance guidelines for interstitial hyperthermia. Int J Radiat Oncol Biol Phys 20: 1117–1124

    Article  PubMed  CAS  Google Scholar 

  • Fessenden P, Lee ER, Anderson TL, Strohbehn JW, Meyer JL, Samulski TV, Marmor JB (1984a) Experience with a multi-transducer ultrasound system for localized hyperthermia of deep tissues. IEEE Trans Biomed Eng 31: 126–135

    Article  PubMed  CAS  Google Scholar 

  • Fessenden P, Lee ER, Samulski TV (1984b) Direct température measurement. Cancer Res (Suppl) 44:4799s–804s

    CAS  Google Scholar 

  • Fessenden P, Kapp DS, Lee ER, Samulski TV (1988) Clinical microwave applicator design. In: Paliwal BR, Hetzel FW, Dewhirst MW (eds) Biological, physical and clinical aspects of hyperthermia. AAPM Medical Physics Monograph 16. American Institute of Physics, New York, pp 123–131

    Google Scholar 

  • Fessenden P, Lee ER, Kapp DS, et al. (1993) Review of the Stanford experience developing non-focusing scanning and array surface microwave (MW) applicators. In: Gerner EW, Cetas TC (eds) Hyperthermic oncology 1992, vol 2. Arizona Board of Regents, Tucson, pp 183–186

    Google Scholar 

  • Franconi C, Tiberio CA, Raganella L, Begnozzi L (1986) Low frequency RF twin dipole applicator for intermediate depth hyperthermia. IEEE Trans Microwave Theory Tech 34: 612–619

    Article  Google Scholar 

  • Furse CM, Iskander MF (1989) Three-dimensional electromagnetic power deposition in tumors using interstitial antenna arrays. IEEE Trans Biomed Eng 36: 977–986

    Article  PubMed  CAS  Google Scholar 

  • Goffinet DR, Prionas SD, Kapp DS, et al. (1990) Interstitial 192Ir flexible catheter radiofrequency hyperthermia treatments of head and neck and recurrent pelvic carcinomas. Int J Radiât Oncol Biol Phys 18: 199–210

    Article  PubMed  CAS  Google Scholar 

  • Gopal MK, Hand JW, Lumori MLD, Alkhairi S, Paulsen KD, Cetas TC (1992) Current sheet applicator arrays for superficial hyperthermia of chestwall lesions. Int J Hyperthermia 8: 227–240

    Article  PubMed  CAS  Google Scholar 

  • Goss SA, Frizzell LA, Dunn F (1979) Ultrasonic absorption and attenuation in mammalian tissues. Ultrasound Med Biol 5: 181–186

    Article  PubMed  CAS  Google Scholar 

  • Griffiths H, Ahmed A (1987) Applied potential tomography for non-invasive temperature mapping in hyperthermia. Clin Phys Physiol 8 (Suppl. A): 147–153

    Article  Google Scholar 

  • Gross EJ, Cetas TC, Stauffer PR, Liu RL, Lumori MLD (1990) Experimental assessment of phased-array heating of neck tumors. Int J Hyperthermia 6: 453–474

    Article  PubMed  CAS  Google Scholar 

  • Hahn GM (1982) Hyperthermia and cancer. Plenum, New York

    Book  Google Scholar 

  • Haider SA, Chen ZP, Cetas TC, Roemer RB (1987) Interstitial ferromagnetic implant heating: practical guidelines for use. Proceedings 9th Annual Conference of IEEE Engineering in Medicine and Biology Society (vol 3). IEEE, New York, pp 1626–1628

    Google Scholar 

  • Hall EJ (1982) Hyperthermia: an overview. In: Dethlefsen LA, Dewey WC (eds) Third international symposium: cancer therapy by hyperthermia, drugs and radiation (NCI Monograph 61), National Cancer Institute, Bethesda, pp xv–xvi

    Google Scholar 

  • Hand JW (1990a) Biophysics and technology of electromagnetic hyperthermia. In: Gautherie M (ed) Methods of external hyperthermic heating. Springer, Berlin Heidelberg New York, pp 1–59 (Clinical thermology, subseries thermotherapy)

    Chapter  Google Scholar 

  • Hand JW (1990b) Quality assurance in hyperthermia. In: Field SB, Hand JW (eds) An introduction to the practical aspects of clinical hyperthermia. Taylor and Francis, London, pp 513–532

    Google Scholar 

  • Hand JW, Hind AJ (1986) A review of microwave and RF applicators for localised hyperthermia. In: Hand JW, James JR (eds) Physical techniques in clinical hyperthermia. Research Studies Press, Letchworth, Hertfordshire, England, pp 98–148

    Google Scholar 

  • Hand JW, Cheetham JL, Hind A J (1986) Absorbed power distributions from coherent microwave arrays for localized hyperthermia. IEEE Trans Microwave Theory Tech 34: 484–89

    Article  Google Scholar 

  • Hand JW, Lagendijk JJW, Andersen JB, Bolomey JC (1989) Quality assurance guidelines for ESHO protocols. Int J Hyperthermia 5: 421–428

    Article  PubMed  CAS  Google Scholar 

  • Hand JW, Trembly BS, Prior MV (1992a) Physics of interstitial hyperthermia: radiofrequency and hot water tube techniques. In: Urano M, Douple E (eds) Hyperthermia and oncology, vol 3. Interstitial hyperthermia: physics, biology and clinical aspects. VSP, Utrecht, pp 99–134

    Google Scholar 

  • Hand JW, Vernon CC, Prior MV (1992b) Early experience of a commercial scanned focused ultrasound hyperthermia system. Int J Hyperthermia 8: 587–607

    Article  PubMed  CAS  Google Scholar 

  • Hand JW, Ebbinni E, O’Keeffe D, Israel D, Mohammadtaghi S (1994) An ultrasound phased array for use in intracavitary applicators for thermotherapy of prostatic diseases. Proc IEEE Ultrasonics 1993 Symposium, vol 2, IEEE, NY, pp 1225–1228

    Google Scholar 

  • Handl-Zeller L, Handl O (1992) Simultaneous application of combined interstitial high-or low-dose rate irradiation with hot water hyperthermia. In: Handl-Zeller L (ed) Interstitial hyperthermia. Springer, Vienna, pp 165–170

    Chapter  Google Scholar 

  • Hartov A, Colacchio TA, Strohbehn JW, Ryan TP, Hoopes PJ (1993) Performance of an adaptive MIMO controller for a multiple-element ultrasound hyperthermia system. Int J Hyperthermia 9: 563–579

    Article  PubMed  CAS  Google Scholar 

  • Heinzl L, Hornsleth SN, Raskmark P, Andersen JB (1990) Electromagnetic applicators. In: Field SB, Hand JW (eds) An introduction to the practical aspects of clinical hyperthermia. Taylor & Francis, London, pp 275–304

    Google Scholar 

  • Hunt JW (1990) Principles of ultrasound used for generating localized hyperthermia. In: Field SB, Hand JW (eds) An introduction to the practical aspects of clinical hyperthermia. Taylor & Francis, London, pp 371–422

    Google Scholar 

  • Hunt JW, Lalonde R, Ginsberg H, Urchuk S, Worthington A (1991) Rapid heating: critical theoretical assessment of thermal gradients found in hyperthermia treatments. Int J Hyperthermia 7: 703–718

    Article  PubMed  CAS  Google Scholar 

  • Hurter W, Reinbold F, Lorenz WJ (1991) A dipole antenna for interstitial microwave hyperthermia. IEEE Trans Microwave Theory Tech 39: 1048–1054

    Article  Google Scholar 

  • Hynynen K (1990a) Biophysics and technology of ultrasound hyperthermia. In: Gautherie M (ed) Methods of external hyperthermic heating. Springer, Berlin Heidelberg New York, pp 61–115 (Clinical thermology, subseries thermotherapy)

    Chapter  Google Scholar 

  • Hynynen K (1990b) Hot spots created at skin-air interfaces during ultrasound hyperthermia. Int J Hyperthermia 6: 1005–1012

    Article  PubMed  CAS  Google Scholar 

  • Hynynen K (1992) The feasibility of interstitial ultrasound hyperthermia. Med Phys 19: 979–987

    Article  PubMed  CAS  Google Scholar 

  • Hynynen K, De Young D (1988) Temperature elevation at muscle-bone interface during scanned, focused ultrasound hyperthermia. Int J Hyperthermia 4: 267–279

    Article  PubMed  CAS  Google Scholar 

  • Hynynen K, Edwards DK (1989) Temperature measurements during ultrasound hyperthermia. Med Phys 16: 618–626

    Article  PubMed  CAS  Google Scholar 

  • Hynynen K, Watmough DJ, Mallard JR (1981) Design of ultrasonic transducers for local hyperthermia. Ultrasound Med Biol 7: 397–402

    Article  PubMed  CAS  Google Scholar 

  • Hynynen K, Roemer R, Moros E, Johnson C, Anhalt D (1986) The effect of scanning speed on temperature and equivalent thermal exposure distributions during ultrasound hyperthermia in vivo. IEEE Trans Microwave Theory Tech 34: 552–559

    Article  Google Scholar 

  • Hynynen K, Roemer RB, Anhalt D, Johnson C, Xu ZK, Swindell W, Cetas TC (1987) A scanned focused, multiple transducer ultrasonic system for localised hyperthermia treatments. Int J Hyperthermia 3: 21–35 reier ressenaen ana jenrey w. nana

    Article  PubMed  CAS  Google Scholar 

  • Hynynen K, Shimm D, Anhalt D, Stea B, Sykes H, Cassady JR, Roemer RB (1990) Temperature distributions during clinical scanned, focused ultrasound hyperthermia treatments. Int J Hyperthermia 6: 891–908

    Article  PubMed  CAS  Google Scholar 

  • Hynynen K, Frederiksen F, Gautherie M, et al. (1992) Ultrasound hyperthermia (Tor Vergata Medical Physics Monograph Series, vol 2). Postgraduate School of Medical Physics, II University of Rome, Rome, pp 24–25

    Google Scholar 

  • Ibbini MS, Cain CA (1989) A field conjugation method of direct synthesis of hyperthermia phased-array heating patterns. IEEE Trans Ultrason Ferroelec Freq Contr 36: 3–9

    Article  CAS  Google Scholar 

  • Ibbini MS, Cain CA (1990) The concentric-ring array for ultrasound hyperthermia: combined mechanical and electrical scanning. Int J Hyperthermia 6: 401–419

    Article  PubMed  CAS  Google Scholar 

  • Ibbini MS, Ebbini ES, Cain CA (1990) N x N square-element ultrasound phased array applicator: simulated temperature distributions associated with directly synthesized heating patterns. IEEE Trans Ultrason Ferroelec Freq Contr 37: 491–500

    Article  CAS  Google Scholar 

  • Ibbott GS, Brezovich I, Fessenden P, et al. (1989) Performance evaluation of hyperthermia equipment (AAPM Report No 26). American Institute of Physics, New York

    Google Scholar 

  • Iskander MF, Tumeh AM (1989) Design optimization of interstitial antennas. IEEE Trans Biomed Eng 36: 238–246

    Article  PubMed  CAS  Google Scholar 

  • James BJ, Sullivan DM (1992) Direct use of CT scans for hyperthermia treatment planning. IEEE Trans Biomed Eng 39: 845–851

    Article  PubMed  CAS  Google Scholar 

  • James BJ, Strohbehn JW, Mechling JA, Trembly BS (1989) The effect of insertion depth on the theoretical SAR patterns of 915 MHz dipole antenna arrays for hyperthermia. Int J Hyperthermia 5: 733–747

    Article  PubMed  CAS  Google Scholar 

  • Johnson CC, Guy AW (1972) Nonionizing electromagnetic wave effects in biological materials and systems. Proc IEEE 60: 692–717

    Article  Google Scholar 

  • Johnson RH (1986) New type of compact electromagnetic applicator for hyperthermia in the treatment of cancer. Proc IEE 22: 591–593

    Google Scholar 

  • Johnson RH, James JR, Hand JW, Hopewell JW, Dunlop PRC, Dickinson RJ (1984) New low-profile applicators for local heating of tissues. IEEE Trans Biomed Eng 31: 28–37

    Article  PubMed  CAS  Google Scholar 

  • Johnson RH, Preece AW, Hand JW, James JR (1987) A new type of lightweight low-frequency electromagnetic hyperthermia applicator. IEEE Trans microwave Theory Tech 35:1317–1321

    Article  Google Scholar 

  • Jones KM, Mechling JA, Trembly BS, Strohbehn JW (1988) SAR distributions for 915 MHz interstitial microwave antennas used in hyperthermia for cancer therapy. IEEE Trans Biomed Eng 35: 851–857

    Article  PubMed  CAS  Google Scholar 

  • Jones KM, Mechling J A, Strohbehn JW, Trembly BS (1989) Theoretical and experimental SAR distributions for interstitial dipole arrays used in hyperthermia. IEEE Trans Microwave Theory Tech 37: 1200–1209

    Article  Google Scholar 

  • Kapp DS, Prionas SD (1992) Experience with radiofrequency-local current field interstitial hyperthermia: biological rationale, equipment development and clinical results. In: Handl-Zeller L (ed) Interstitial hyperthermia. Springer, Vienna, pp 95–119

    Chapter  Google Scholar 

  • Kapp DS, Fressenden P, Samulski TV, et al. (1988) Stanford University institutional report. Phase I evaluation of equipment for hyperthermia treatment of cancer. Int J Hyperthermia 4: 75–115

    Article  PubMed  CAS  Google Scholar 

  • Kapp DS, Peters Brown AN, Cox W, Cox RS (1993) Temperature differentials between treatment and pretreatment temperatures correlate with local control following radiotherapy and hyperthermia. Int J Radiat Oncol Biol Phys 27: 331–344

    Article  PubMed  CAS  Google Scholar 

  • King RWP, Shen LC, Wu TT (1981) Embedded insulated antennas for communication and heating. Electromagnetics 1: 115–117

    Article  Google Scholar 

  • King RWP, Trembly BS, Strohbehn JW (1983) Electromagnetic field of an insulated antenna in a conducting or dielectric medium. IEEE Trans Microwave Theory Tech 31: 574–583

    Article  Google Scholar 

  • Kobayashi T, Kida Y, Tanaka T, Hattori K, Matsui M, Amemiya Y (1991) Interstitial hyperthermia for brain tumors using ferromagnetic implants with low Curie temperature. J Neuro-oncol 4: 153–163

    Article  Google Scholar 

  • Lagendijk JJW (1990) Thermal models: principles and implementation. In: Field SB, Hand JW (eds) An introduction to the practical aspects of clinical hyperthermia. Taylor & Frances, London, pp 478–512

    Google Scholar 

  • Lagendijk JJW, Visser AG, Kaatee RSJP et al. (1994) The 27 MHz multi-electrode current source interstitial hyperthermia method. Activity, International Selectron Brachytherapy Journal 8(3)

    Google Scholar 

  • Lagendijk JJW, De Leeuw AAC (1993) Technical note. Temperature errors using multi-sensor thermocouple probes with a common constantan wire. Int J Hyperthermia 9: 763–764

    Article  PubMed  CAS  Google Scholar 

  • Lagendijk JJW, Hofman P, Schippr J (1988) Perfusion analysis in advanced breast carcinoma during hyperthermia. Int J Hyperthermia 4: 479–495

    Article  PubMed  CAS  Google Scholar 

  • Lagendijk JJW, van den Berg PM, Hand JW, et al. (1992) Task Group Report 4: treatment planning and modelling in hyperthermia. (Tor Vergata Medical Physics Monograph Series) Postgraduate School of Medical Physics, II University of Rome, Rome

    Google Scholar 

  • Lau RWM, Sheppard RJ, Howard G, Bleehen NM (1986) The modelling of biological systems in three dimensions using the time domain finite-difference method. II. The application and experimental evaluation of the method in hyperthermia applicator design. Phys Med Biol 31: 1257–1266

    Article  PubMed  CAS  Google Scholar 

  • LeBihan D, Turner R, Moonen CTW, Pekar J (1991) Imaging of diffusion and microcirculation with gradient sensitization: design, strategy and significance. J Magn Reson Imaging 1: 7–28

    Article  CAS  Google Scholar 

  • Lee DJ, O’Neill MJ, Lam KS, Rostock R, Lam WC (1986) A new design of microwave interstitial applicator for hyperthermia with improved treatment volume. Int J Radiat Oncol Biol Phys 12: 2003–2008

    Article  PubMed  CAS  Google Scholar 

  • Lee ER, Wilsey TR, Tarczy-Hornoch P, Kapp DS, Fessenden P, Lohrbach A, Prionas SD (1992) Body conformable 915 MHz microstrip array applicators for large surface area hyperthermia. IEEE Trans Biomed Eng 39: 470–483

    Article  PubMed  CAS  Google Scholar 

  • Lele PP (1983) Physical aspects and clinical studies with ultrasonic hyperthermia. In: Storm FK (ed) Hyperthermia in cancer therapy. G.K. Hall, Boston, pp 333–367

    Google Scholar 

  • Leopold KA, Dewhirst MW, Samulski TV, et al. (1993) Cumulative minutes with T90 greater than TEMP index is predictive of response of superficial malignancies to hyperthermia and radiation. Int J Radiat Oncol Biol Phys 25: 841–847

    Article  PubMed  CAS  Google Scholar 

  • Leybovich LB, Emami B, Myerson R J, Straube WL, Sathiaseelan V (1991) Dual-antenna applicators for hyperthermia of tumors at intermediate depth. Int J Hyperthermia 7:455–464

    Article  PubMed  CAS  Google Scholar 

  • Lin JC, Wang YJ (1987) Interstitial microwave antennas for thermal therapy. Int J Hyperthermia 3: 37–47

    Article  PubMed  CAS  Google Scholar 

  • Lockwood JC, Willette JG (1973) High-speed method for computing the exact solution for the pressure variations in the nearfield of a baffled piston. J Acoust Soc Am 53: 735–741

    Article  Google Scholar 

  • Lyons M, Parker KJ (1988) Absorption and attenuation in soft tissues. II. Experimental results. IEEE Trans Ultrason Ferroelec Freq Contr 35: 511–521

    Article  CAS  Google Scholar 

  • Magin RL, Peterson AF (1989) Noninvasive microwave phased arrays for local hyperthermia: a review. Int J Hyperthermia 5: 429–450

    Article  PubMed  CAS  Google Scholar 

  • Marchal C, Bey P, Metz R, Gaulard ML, Robert J (1982) Treatment of superficial human cancerous nodules by local ultrasound hyperthermia. Br J Cancer 45 (Suppl V): 243–245

    Google Scholar 

  • McGough RJ, Ebbini ES, Cain CA (1992) Direct computation of ultrasound phased-array driving signals from a specified temperature distribution for hyperthermia. IEEE Trans Biomed Eng 39: 825–835

    Article  PubMed  CAS  Google Scholar 

  • Mechling J A, Strohbehn JW, Ryan TP (1992) Three-dimensional theoretical temperature distributions produced by 915 MHz dipole antenna arrays with varying insertion depths in muscle tissue. Int J Radiat Oncol Biol Phys 22: 131–138

    Article  PubMed  CAS  Google Scholar 

  • Mizushina S, Hamamura Y, Sugiura T (1989) A, method of solution for a class of inverse problems involving measurement errors and its application to medical microwave radiometry. IEEE MTT-S International Symposium Digest 171–174

    Google Scholar 

  • Mizushina S, Shimizu T, Sugiura T (1992) Non-invasive thermometry with multi-frequency microwave radiometry. Front Med Biol Eng 4: 129–133

    PubMed  CAS  Google Scholar 

  • Morita N, Bach Andersen J (1982) Near field absorption in a circular cylinder from electric and magnetic line sources. Bioelectromagnetics 3: 253–274

    Article  PubMed  CAS  Google Scholar 

  • Nasoni RL, Bowen T (1989) Ultrasonic speed as a parameter for non-invasive thermometry. In: Mizushina S (ed) Non-invasive temperature measurement. Gordon and Breach, New York, pp 95–107

    Google Scholar 

  • NCRP (1981) NCRP Report No. 67. Radiofrequency electromagnetic fields: properties, quantities and units, biophysical interaction and measurements. National Council on Radiation Protection and Measurements, Washington, D.C., pp 25–44

    Google Scholar 

  • NCRP (1986) NCRP Report No. 86. Biological effects and exposure criteria for radiofrequency electromagnetic fields. National Council on Radiation Protection and Measurements, Bethesda, Maryland, pp 38–39

    Google Scholar 

  • Nikawa Y, Kikuchi M, Kaneko R, Matsuda T (1993) Design and evaluation of a lens applicator for a 430 MHz heating system. In: Gerner EW, Cetas TC (eds) Hyperthermic oncology 1992, vol 2. Arizona Board of Regents, Tucson, pp 199–202

    Google Scholar 

  • Nussbaum GH, Side J, Rouhanizadeh N, et al. (1986) Manipulation of central axis heating patterns with a prototype, three-electrode capacitive device for deep-tumor hyperthermia. IEEE Trans Microwave Theory Tech 34: 620–625

    Article  Google Scholar 

  • Nussbaum GH, Straube WL, Drag MD, et al. (1991) Potential for localized, adjustable deep heating in soft-tissue environments with a 30-beam ultrasonic hyperthermia system. Int J Hyperthermia 7: 279–299

    Article  PubMed  CAS  Google Scholar 

  • Nyborg WL, Steele RB (1985) Nearfield of a piston source of ultrasound in an absorbing medium. J Acoust Soc Am 78: 1882–1891

    Article  PubMed  CAS  Google Scholar 

  • Ocheltree KB, Frizzell LA (1989) Sound field calculation for rectangular sources. IEEE Trans Ultrason Ferroelec Freq Contr 36: 242–248

    Article  CAS  Google Scholar 

  • Ocheltree KB, Benkeser PJ, Frizzell LA, Cain CA (1984) An ultrasonic phased array applicator for hyperthermia. IEEE Trans Sonics Ultrasonics 31: 526–531

    Article  Google Scholar 

  • Oleson JR, Samulski TV, Leopold KA, Clegg ST, Dewhirst MW, Dodge RK, George SL (1993) Sensitivity of hyperthermia trial outcomes to temperature and time: implications for thermal goals of treatment. Int J Radiat Oncol Biol Phys 25: 289–297

    Article  PubMed  CAS  Google Scholar 

  • Overgaard J (1993) The future of hyperthermic oncology. In: Gerner EW, Cetas TC (eds) Hyperthermic oncology 1992, vol 2. Arizona Board of Regents, Tucson, pp 87–92

    Google Scholar 

  • Paulsen KD (1990) Calculation of power deposition patterns in hyperthermia. In: Gautherie M (ed) Thermal dosimetry and treatment planning. Springer, Berlin Heidelberg New York, pp 57–117 (Clinical thermology, subseries thermotherapy)

    Chapter  Google Scholar 

  • Paulsen KD, Lynch DR, Stronbehn JW (1988) Three dimensional finite boundary and hybrid element solutions of the Maxwell equations for lossy dielectric media. IEEE Trans Microwave Theory Tech 36: 682–693

    Article  Google Scholar 

  • Paulsen KD, Strohbehn JW, Lynch DR (1985) Comparative theoretical performance for two types of hyperthermia systems. Int J Radiat Oncol Biol Phys 11: 1659–1671

    Article  PubMed  CAS  Google Scholar 

  • Pennes HH (1948) Analysis of tissue and arterial blood temperatures in the human resting forearm. J Appl Physiol 1: 93–122

    PubMed  CAS  Google Scholar 

  • Picket-May MJ, Taflove A, Lin WC, Katz DS, Sathiaseelan V, Mital BB (1992) Initial results for automated computational modeling of patient-specific electromagnetic hyperthermia. IEEE Trans Biomed Eng 39: 226–236

    Article  Google Scholar 

  • Pounds DW, Britt RH (1984) Single ultrasonic crystal techniques for generating uniform temperature distributions in homogeneously perfused tissues. IEEE Trans Sonics Ultrasonics 31: 482–496

    Article  Google Scholar 

  • Prionas SD, Hahn GM (1985) Noninvasive thermometry using ultiple frequency-band ra om ry: a fe ibility study. Bioelectromagnetics 6: 391–404

    Article  PubMed  CAS  Google Scholar 

  • Prionas SD, Kapp DS, Sokol JL, Fessenden P (1990) Absorption of ultrasound (US) near tissue to air interfaces. Abstracts of papers for the tenth annual meeting of the North American Hyperthermia Group, New Orleans, Louisiana, p 18

    Google Scholar 

  • Prionas SD, Kapp DS, Goffient DR, Bagshaw MA, Ben-Yosef R, Sokol JL, Fessenden P (1993) Interstitial radiofrequency-induced hype her a. In: Gner EW, Tas TC (eds) Hyperthermic oncology 1992, vol 2. Arizona Board of Regents, Tucson, pp 249–253

    Google Scholar 

  • Prionas SD, Kapp DS, Goffinet DR, Ben-Yosef R, Fessen P and Bagaw MA (1994) Thmomry of interstitial hyperthermia given as an adjuvant to brachytherapy for the treatment of carcinoma of the prostate. Int J Radiat Oncol Biol Phys 28(1): 151–162

    Article  PubMed  CAS  Google Scholar 

  • Rine GP, Dewhirst MW, Cobb ED, Clegg ST, Coleman EN, Samulski TV, Wallen CA (1992) Feasibility of estimating the temperature distribution in a tumor heated by a waveguide applicator. Int J Radiat Oncol Biol Phys 23: 1009–1019

    Article  PubMed  CAS  Google Scholar 

  • Robins HI, Dennis WH, Neville AJ, et al. (1985) A non-toxic system for 41.8°C whole body hyperthermia: results of a phase I study using a radiant heat device. Cancer Res 45: 3937–3944

    PubMed  CAS  Google Scholar 

  • Roemer RB (1990) Thermal dosimetry. In: Gautheric M (ed) Thermal dosimetry and treatment planning. Springer, Berlin Heidelberg New York, pp 119–214 (Clinical thermology, subseries thermotherapy)

    Chapter  Google Scholar 

  • Roemer RB, Cetas TC (1984) Applications of bioheat transfer simulations in hyperthermia. Cancer Res 44: 4788S-4798S

    PubMed  CAS  Google Scholar 

  • Roemer RB, Fletcher AM, Cetas TC (1985) Obtaining local SAR and blood perfusion data from temperature measurements: steady-state and transient techniques compared. Int J Radiat Oncol Biol Phys 11: 1539–1550

    Article  PubMed  CAS  Google Scholar 

  • Roos D, Hugander A (1988) Microwave interstitial applicators with improved longitudinal heating patterns. Int J Hyperthermia 4: 609–615

    Article  PubMed  CAS  Google Scholar 

  • Ryan TP (1991) Comparison of six microwave antennas for hyperthermia treatment of cancer: SAR results for single antennas and arrays. Int J Radiat Oncol Biol Phys 21:403–413

    Article  PubMed  CAS  Google Scholar 

  • Ryan TP, Mechling J A, Strohbehn JW (1990) Absorbed power deposition for various insertion depths for 915 MHz interstitial dipole antenna arrays: experiment versus theory. Int J Radiat Oncol Biol Phys 19: 377–387

    Article  PubMed  CAS  Google Scholar 

  • Ryan TP, Hoopes PJ, Taylor JH, Strohbehn JW, Roberts DW, Douple EB, Coughlin CT (1991) Experimental brain hyperthermia: techniques for heat delivery and thermometry. Int J Radiat Oncol Biol Phys 20: 739–750

    Article  PubMed  CAS  Google Scholar 

  • Samulski TV, Clegg ST, Das S, MacFall J, Prescott DM (1994) Application of new technology in clinical hyperthermia. Int J Hyperthermia 10: 389–394

    Article  PubMed  CAS  Google Scholar 

  • Samulski TV, Fessenden P (1990) Thermometry in therapeutic hyperthermia. In: Gautherie M (ed) Methods of hyperthermia control. Springer, Berlin Heidelberg New York, pp 1–34 (Clinical thermology, subseries thermotherapy)

    Chapter  Google Scholar 

  • Samulski TV, Chopping PT, Haas B (1982) Photoluminescent thermometry based on europium-activated calcium sulfide. Phys Med Biol 27: 107–114

    Article  PubMed  CAS  Google Scholar 

  • Samulski TV, Lyons BE, Britt RH (1985) Temperature measurements in high thermal gradients. II. Analysis of conduction effects. Int J Radiat Oncol Biol Phys 11: 963–971

    Article  PubMed  CAS  Google Scholar 

  • Samulski TV, Kapp DS, Fessenden P, Lohrbach A (1987a) Heating deep seated eccentrically located tumors with an annular phased array system: a comparative clinical study using two annular array operating configurations. Int J Radiat Oncol Biol Phys 13: 83–94

    Article  PubMed  CAS  Google Scholar 

  • Samulski TV, Fessenden P, Valdagni R, Kapp DS (1987b) Correlations of thermal washout rate, steady-state temperatures and tissue type in deep seated recurrent or metastatic tumors. Int J Radiat Oncol Biol Phys 13: 907–916

    Article  PubMed  CAS  Google Scholar 

  • Samulski TV, Fessenden P, Lee ER, Kapp DS, Tanabe E, McEuen A (1990a) Spiral microstrip hyperthermia applicators: technical design and clinical performance. Int J Radiat Oncol Biol Phys 18: 233–242

    Article  PubMed  CAS  Google Scholar 

  • Samulski TV, Grant WJ, Oleson JR, Leopold KA, Dewhirst MW, Vallario P, Blivin J (1990b) Clinical experience with a multielement ultrasonic hyperthermia system: analysis of treatment temperatures. Int J Hyperthermia 6: 909–922

    Article  PubMed  CAS  Google Scholar 

  • Samulski TV, MacFall J, Zhang Y, Grant W, Charles C (1992) Non-invasive thermometry using magnetic resonance diffusion imaging: potential for application in hyperthermic oncology. Int J Hyperthermia 8: 819–829

    Article  PubMed  CAS  Google Scholar 

  • Sandhu TS, Kowal HS, Johnson RJR (1978) The development of microwave hyperthermia applicators. Int J Radiat Oncol Biol Phys 4: 515–519

    Article  PubMed  CAS  Google Scholar 

  • Sapozink MD, Corry PM, Kapp DS, et al. (1991) Quality assurance guidelines for clinical trials using hyperthermia for deep seated malignancy. Int J Radiat Oncol Biol Phys 20: 1109–1115

    Article  PubMed  CAS  Google Scholar 

  • Sathiaseelan V, Leybovich L, Emami MS, Stauffer P, Straube W (1991) Characteristics of improved microwave interstitial antennas for local hyperthermia. Int J Radiat Oncol Biol Phys 20: 531–539

    Article  PubMed  CAS  Google Scholar 

  • Satoh T, Stauffer PR, Fike JR (1988) Thermal distribution studies of helical coil microwave antennas for interstitial hyperthermia. Int J Radiat Oncol Biol Phys 15: 1209–1218

    Article  PubMed  CAS  Google Scholar 

  • Schneider C, van Dijk JDP (1991) Visualization with a matrix of LEDs of interference effects from a radiative four applicator hyperthermia system. Int J Hyperthermia 7: 355–366

    Article  PubMed  CAS  Google Scholar 

  • Schreier K, Budhina M, Lesnicar H, et al. (1990) Preliminary studies of interstitial hyperthermia using hot water. Int J Hyperthermia 6: 431–434

    Article  PubMed  CAS  Google Scholar 

  • Sekins KM, Emery AF (1982) Thermal science for physical medicine. In: Lehmann JF (ed) Therapeutic heat and cold, 3rd edn. Williams & Wilkins, Baltimore, pp 70–132

    Google Scholar 

  • Seppi E, Shapiro E, Zitelli L, Henderson S, Wehlau A, Wu G, Dittmer C (1985) A large aperture ultrasonic array system for hyperthermia treatment of a deep seated tumors. In: Proceedings IEEE Ultrasonics Symposium, IEEE, New York, pp 942–948

    Google Scholar 

  • Shrivastava P, Luk K, Oleson JR, et al. (1989) Hyperthermia quality assurance guidelines. Int J Radiat Oncol Biol Phys 16: 571–587

    Article  PubMed  CAS  Google Scholar 

  • Storm FK, Harrison WH, Elliott RS, Kaiser LR, Silberman AW, Morton DL (1981) Clinical radiofrequency hyperthermia by magnetic loop induction. J Microwave Power 16: 179–184

    CAS  Google Scholar 

  • Strohbehn JW (1982) Theoretical temperature distributions forsolenoidal-type hyperthermia systems. Med Phys 9: 673–682

    Article  PubMed  CAS  Google Scholar 

  • Strohbehn JW, Roemer RB (1984) A survey of computer simulations of hyperthermia treatments. IEEE Trans Biomed Eng 31: 136–149

    Article  PubMed  CAS  Google Scholar 

  • Strohbehn JW, Paulsen KD, Lynch DR (1986) Use of the finite element method in computerized thermal dosimetry. In: Hand JW, James JR (eds) Physical techniques in clinical hyperthermia. Research Studies Press, Letchworth, Hertfordshire, England, pp 383–451

    Google Scholar 

  • Strutt JW (1945) Theory of sound, vol 2. Dover, New York

    Google Scholar 

  • Sugimachi K, Matsuda H (1990) Experimental and clinical studies of hyperthermia for carcinomas of the esophagus. In: Gautherie M (ed) Interstitial, endocavitary and perfusional hyperthermia. Springer, Berlin Heidelberg New York, pp 59–76

    Chapter  Google Scholar 

  • Sullivan D (1990) Three-dimensional computer simulation in deep regional hyperthermia using the finite-difference time-domain method. IEEE Trans Microwave Theory Tech 38: 204–211

    Article  Google Scholar 

  • Sullivan DM (1992) A frequency-dependent FDTD method for biological applications. IEEE Trans Microwave Theory Tech 40: 532–539

    Article  Google Scholar 

  • Sullivan DM, Buechler D, Gibbs FA (1992) Comparison of measured and simulated data in an annular phased array using an inhomogeneous phantom. IEEE Trans Microwave Theory Tech 40: 600–604

    Article  Google Scholar 

  • Sullivan DM, Ben-Yosef R, Kapp DS (1993) Standford 3-D hyperthermia treatment planning system. Int J Hyperthermia 9: 627–643

    Article  PubMed  CAS  Google Scholar 

  • Swindell W (1986) Ultrasonic hyperthermia. In: Hand JW, James JR (eds) Physical techniques in clinical hyperthermia. Research Studies Press, Letchworth, Hertfordshire, England, pp 288–326

    Google Scholar 

  • Tanabe E, McEuen A, Norris CS, Fessenden P, Samulski TV (1983) A multi-element microstrip antenna for local hyperthermia. IEEE MTT-S International Microwave Symposium Digest, pp 183–185

    Google Scholar 

  • Tarczy-Hornoch P, Lee ER, Sokol JL, Prionas SD, Lohrbach AW, Kapp DS (1992) Automated mechanical thermometry probe mapping systems for hyperthermia. Int J Hyperthermia 8: 543–554

    Article  PubMed  CAS  Google Scholar 

  • Trembly BS (1985) The effects of driving frequency and antenna length on power deposition within a microwave antenna array used for hyperthermia. IEEE Trans Microwave Theory Tech 32: 152–157

    CAS  Google Scholar 

  • Trembly BS, Wilson AH, Sullivan MJ, Stein AD, Wong TZ, Strohbehn JW (1986) Control of the SAR pattern within an interstitial mocrowave array through variation of antenna driving phase. IEEE Trans Microwave Theory Tech 34: 568–571

    Article  Google Scholar 

  • Trembly BS, Douple EB, Hoopes PJ (1991) The effect of air cooling on the radial temperature distribution of a single microwave hyperthermia antenna in vivo. Int J Hyperthermia 7: 343–354

    Article  PubMed  CAS  Google Scholar 

  • Tumeh AM, Iskander MF (1989) Performance comparison of available interstitial antennas for microwave hyperthermia. IEEE Trans Microwave Theory Tech 37: 1126–1133

    Article  Google Scholar 

  • Turner PF (1984) Regional hyperthermia with an annular phased array. IEEE Trans Biomed Eng 31: 106–114

    Article  PubMed  CAS  Google Scholar 

  • Turner PF (1986) Interstitial equal-phased arrays for EM hyperthermia. IEEE Trans Microwave Theory Tech 34: 572–578

    Article  Google Scholar 

  • Umemura S, Cain CA (1989) The sector-vortex phased array: acoustic field synthesis for hyperthermia. IEEE Trans Ultrason Ferroelec Freq Contr 36: 249–257

    Article  CAS  Google Scholar 

  • Umemura S, Cain C A (1992) Acoustical evaluation of a prototype sector-vortex phased-array applicator. IEEE Trans Ultrason Ferroelec Freq Contr 39: 32–38

    Article  CAS  Google Scholar 

  • van der Zee J (1988) ESHO 5–88: protocol for phase III trial involving reirradiation of recurrent breast cancer with or without hyperthermia. Dr. Daniel den Hoed Cancer Center, Rotterdam

    Google Scholar 

  • van der Zee J, van Rhoon GC (1993) Eindverslag Ontwikkelingsgeneeskunde project OG 89–23: de waarde van hyperthermic bij toevoeging aan radiotherapie bij de behandeling van inoperabele en stralingsresistente tumoren. A report to the Dutch Ministry of Health Care

    Google Scholar 

  • van Dijk JDP, Schneider C, van Os R, Blank LE, Gonzalez DG (1990) Results of deep body hyperthermia with large waveguide radiators. Adv Exp Med Biol 267: 315–319

    Article  PubMed  Google Scholar 

  • van Rhoon GC, Rietveld PJM, Broekmeyer-Reurink MP, Verloopvan’t Hof EM, van der Ploeg SK, van der Zee J (1993) DUD A 433 MHz waveguide applicator system with an improved effective field size for hyperthermia treatment of superficial tumors on the chest wall. In: Gerner EW, Cetas TC (eds) Hyperthermic oncology 1992, vol 2. Arizona Board of Regents, Tucson, pp 187–190

    Google Scholar 

  • Vernon CC, Hand JW, Field SB, Machin D (1990) A study of the use of hyperthermia in the treatment of breast and head and neck tumours: a MRC multi-centre phase III trial. Trial closed for accrual Dec 1993. Results to be published in 1994

    Google Scholar 

  • Visser AG, Deurloo IKK, Levendag PC, Ruifrok ACC, Cornet B, van Rhoon GC (1989) An interstitial hyperthermia system at 27 MHz. Int J Hyperthermia 5: 265–276

    Article  PubMed  CAS  Google Scholar 

  • Visser AG, Chive M, Hand JW, et al. (1992) Interstitial and intracavitary hyperthermia: a task group report of the European Society for Hyperthermic Oncology, Postgraduate School of Medical Physics, University of Rome. Tor Vergata, Rome

    Google Scholar 

  • Visser AG, Kaatee RSJP, Levendag PC (1993) Radiofrequency techniques for interstitial hyperthermia. In: Seegenschmiedt MH, Sauer R (eds) Interstitial and intracavitary thermoradiotherapy. Springer, Berlin Heidelberg New York, pp 35–41

    Chapter  Google Scholar 

  • Waterman FM, Hoh LLS (1994) A rcommended revision in the RTOG thermometry guidelines for hyperthermia administered by ultrasound. Int J Hyperthermia

    Google Scholar 

  • Waterman FM, Leeper JB (1990) Temperature artifacts produced by thermocouples used in conjunction with 1 and 3 MHz ultrasound. Int J Hyperthermia 6: 383–399

    Article  PubMed  CAS  Google Scholar 

  • Wickersheim KA (1986) A new fiberoptic thermometry system for use in medical hyperthermia. SPIE Proceedings, vol 713

    Google Scholar 

  • Williams RA (1983) Ultrasound: biological effects and potential hazards. Academic, London, pp 107–110

    Google Scholar 

  • Wu A, Watson ML, Sternick ES, Bielawa RJ, Carr KL (1987) Performance characteristics of a helical coil microwave interstitial antenna for local hyperthermia. Med Phys 14: 235–237

    Article  PubMed  CAS  Google Scholar 

  • Wust P, Fahling H, Nadobny J, Felix R, Seebass M (1993) Potential of radiofrequency hyperthermia: planning, optimization, technological development. In: Gerner EW, Cetas TC (eds) Hyperthermia oncology 1992 vol 2. Arizona Board of Regents, pp 65–72

    Google Scholar 

  • Young IR, Hand JW, Oatridge A, Prior M, Forse G (1994) Further observations of the measurement of tissue Tl to monitor temperature in vivo by MR. Magn Reson Med 31: 342–345

    Article  PubMed  CAS  Google Scholar 

  • Yuan X, Strohbehn W, Lynch DR, Johnsen M (1990) Theoretical investigation of a phased-array hyperthermia system with moveable aperatures. Int J Hyperthermia 6: 227–240

    Article  PubMed  CAS  Google Scholar 

  • Zemanek J (1971) Beam behaviour within the nearfield of a vibrating piston. J Acoust Soc Am 49: 181–191

    Article  Google Scholar 

  • Zhang Y, Dubai NV, Takemoto-Hambleton R, Joines WT (1988) The determination of the electromagnetic field and SAR pattern of an interstitial applicator in a dissipative medium. IEEE Trans Microwave Theory Tech 36: 1438–1443

    Article  Google Scholar 

  • Zhang Y, Joines WT, Oleson JR (1990a) The calculated and measured temperature distribution of a phased interstitial antenna array. IEEE Trans Microwave Theory Tech 38: 69–77

    Article  Google Scholar 

  • Zhang Y, Joines WT, Oleson JR (1990b) Microwave hyperthermia induced by a phased interstitial antenna array. IEEE Trans Microwave Theory Tech 38: 217–221

    Article  CAS  Google Scholar 

  • Zhang Y, Joines WT, Oleson JR (1991a) Heating patterns generated by phase modulation of a hexagonal array of interstitial antennas. IEEE Trans Biomed Eng 38: 92–97

    Article  PubMed  CAS  Google Scholar 

  • Zhang Y, Joines WT, Oleson JR (1991b) Prediction of heating patterns of a microwave interstitial array at various insertion depths. Int J Hyperthermia 7: 197–207

    Article  PubMed  CAS  Google Scholar 

  • Zhou LJ, Fessenden P (1993) Automation of temperature control for large-array microwave surface applicators. Int J Hyperthermia 9: 479–490

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Fessenden, P., Hand, J.W. (1995). Hyperthermia Therapy Physics. In: Smith, A.R. (eds) Radiation Therapy Physics. Medical Radiology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-03107-0_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-03107-0_14

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-03109-4

  • Online ISBN: 978-3-662-03107-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics