Skip to main content

Thermal Model Verification in Interstitial Hyperthermia

  • Chapter
Interstitial and Intracavitary Thermoradiotherapy

Part of the book series: Medical Radiology ((Med Radiol Radiat Oncol))

Abstract

In vivo tests are essential for the development and evaluation of interstitial hyperthermia systems, especially because determination of the threedimensional temperature distribution during clinical treatment is impossible: Minimal temperatures are expected to occur somewhere between the needles, requiring an extensive set of thermocouple catheters in addition to the applicator catheters. Usually the number of catheters implanted is already a compromise between the need for a small catheter spacing to ensure uniform temperatures and the wish to prevent excessive trauma to the patient. Any extra catheters available one might prefer to use for extra interstitial needles to improve temperature homogeneity. One must therefore be able to rely on the accuracy and correctness of the computed small scale temperature distribution.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Babbs CF, Fearnot NE, Marchosky JA, Moran CJ, Jones JT, Plantenga TD (1990) Theoretical basis for controlling minimal tumor temperature during interstitial conductive heat therapy. IEEE Trans Biomed Eng 37: 662–672

    Article  PubMed  CAS  Google Scholar 

  • Bos CK, Crezee J, Mooibroek J, Lagendijk JJW (1991) A perfusion technique for tongues to be used in bioheat transfer studies. Phys Med Biol 36: 843–846

    Article  PubMed  CAS  Google Scholar 

  • Brezovich IA, Atkinson WJ (1984) Temperature distributions in tumor models heated by self-regulating nickel-copper alloy thermoseeds. Med Phys 11: 145–152

    Article  PubMed  CAS  Google Scholar 

  • Chen MM, Holmes KR (1980) Micro vascular contributions in tissue heat transfer. Ann NY Acad Sci 335: 137–151

    Article  PubMed  CAS  Google Scholar 

  • Cosset JM, Bichler K-H, Strohmaier WL et al. (1990) Interstitial, endocavitary and perfusional hyperthermia. Methods and clinical trials. Springer, Berlin Heidelberg New York, pp 1–41

    Book  Google Scholar 

  • Crezee J, Lagendijk JJW (1990) Experimental verification of bioheat transfer theories: measurement of temperature profiles around large artificial vessels in perfused tissue. Phys Med Biol 35: 905–923

    Article  PubMed  CAS  Google Scholar 

  • Crezee J, Lagendijk JJW (1992) Temperature uniformity during hyperthermia: the impact of large vessels. Phys Med Biol 37: 1321–1337

    Article  PubMed  CAS  Google Scholar 

  • Crezee J, Mooibroek J, Bos CK, Lagendijk JJW (1991) Interstitial heating: experiments in artificially perfused bovine tongues. Phys Med Biol 36: 823–833

    Article  PubMed  CAS  Google Scholar 

  • Deford JA, Babbs CF, Patel UH, Bleyer MW, Marchosky JA, Moran CJ (1991) Effective estimation and computer control of minimum tumour temperature during conductive interstitial hyperthermia. Int J Hyperthermia 7: 441–454

    Article  PubMed  CAS  Google Scholar 

  • DeYoung DW, Kundrat MA, Cetas TC (1986) In vivo kidneys as preclinical thermal models for hyperthermia. Proceedings of the IEEE/9th Annual Conference of the Medical and Biological Society (Boston: IEEE No. 87CH2513–0): 994–996

    Google Scholar 

  • Goffinet DR, Prionas SD, Kapp DS et al. (1990) Interstitial 192Ir flexible catheter radiofrequency hyperthermia treatments of head and recurrent pelvic carcinomas. Int J Radiat Oncol Biol Phys 18: 199–210

    Article  PubMed  CAS  Google Scholar 

  • Hand JW, Trembly BS, Prior MV (1992) Physics of interstitial hyperthermia. Radiofrequency and hot water tube techniques. In: Urano M, Douple E (eds) Hyperthermia and oncology, vol 3: Interstitial hyperthermia. European Book Service, de Meern, pp 99–134

    Google Scholar 

  • Handl-Zeller L, Karcher KH, Schreier K, Handl O (1986) Beitrag zur optimierung interstitieller hyperthermie-systeme. Strahlentherapie 163: 460–463

    Google Scholar 

  • Holmes KR, Ryan W, Weinstein P, Chem MM (1984) A fixation technique for organs to be used as perfused tissue phantoms in bioheat transfer studies. Adv Bioeng ASME WAM: 9–10

    Google Scholar 

  • Lagendijk JJW (1982) The influence of blood flow in large vessels on the temperature distribution in hyperthermia. Phys Med Biol 27: 17–23

    Article  PubMed  CAS  Google Scholar 

  • Lagendijk JJW (1984) A new theory to calculate temperature distributions in tissues, or why the “bioheat transfer” equation does not work. In: Overgaard J (ed) Hyperthermic oncology 1984. Taylor & Francis, London, pp 507–510

    Google Scholar 

  • Lagendijk JJW (1990) Thermal models: principles and implementation. In: Field SB, Hand JW (eds) An introduction to the practical aspects of clinical hyperthermia. Taylor & Francis, London, pp 478–512

    Google Scholar 

  • Mechling JA, Strohbehn JW (1986) A theoretical comparison of the temperature distributions produced by three interstitial hyperthermia systems. Int J Radiat Oncol Biol Phys 12: 2137–2149

    Article  PubMed  CAS  Google Scholar 

  • Milligan AJ, Conran PB, Ropar MA, McCulloch HA, Ahuja RK, Dobelbower RR (1983) Predictions of blood flow from thermal clearance during regional hyperthermia. Int J Radiat Oncol Biol Phys 9: 1335–1343

    Article  PubMed  CAS  Google Scholar 

  • Mooibroek J, Lagendijk JJW (1991) A fast and simple algorithm for the calculation of convective heat transfer by large vessels in three dimensional inhomogeneous tissues. IEEE Trans Biomed Eng 38: 490–501

    Article  PubMed  CAS  Google Scholar 

  • Pennes HH (1948) Analysis of tissue and arterial blood temperatures in the resting human forearm. J Appl Physiol 1: 93–122

    PubMed  CAS  Google Scholar 

  • Schreier K, Budihna M, Lesnicar H et al. (1990) Preliminary studies of interstitial 1 hyperthermia using hot water. Int J Hyperthermia 6: 431–444

    Article  PubMed  CAS  Google Scholar 

  • Stauffer PR, Sneed PK, Suen SA, Satoh T, Matsumoto K, Fike JR, Philips TL (1989) Comparative thermal dosimetry of interstitial microwave and radiofrequency-LCF hyperthermia. Int J Hyperthermia 5: 307–318

    Article  PubMed  CAS  Google Scholar 

  • Strohbehn JW (1983) Temperature distributions from interstitial rf electrode hyperthermia systems: theoretical predictions. Int J Radiat Oncol Biol Phys 9: 1655–1667

    PubMed  CAS  Google Scholar 

  • Strohbehn JW, Trembly BS, Douple EB (1982) Blood flow effects on the temperature distributions from an invasive microwave antenna array used in cancer therapy. IEEE Trans Biomed Eng 29: 649–661

    Article  PubMed  CAS  Google Scholar 

  • Uzunoglu NK, Nikita KS (1988) Estimation of temperature distribution inside tissues heated by interstitial RF electrode hyperthermia systems. IEEE Trans Biomed Eng 35: 250–256

    Article  PubMed  CAS  Google Scholar 

  • Weinbaum S, Jiji LM (1985) A new simplified bioheat equation for the effect of blood flow on local average tissue temperature. AS ME J Biomech Eng 107: 131–139

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1993 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Crezee, J., Mooibroek, J., Lagendijk, J.J.W. (1993). Thermal Model Verification in Interstitial Hyperthermia. In: Seegenschmiedt, M.H., Sauer, R. (eds) Interstitial and Intracavitary Thermoradiotherapy. Medical Radiology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-84801-8_19

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-84801-8_19

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-84803-2

  • Online ISBN: 978-3-642-84801-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics