Skip to main content

Human Focused Development of a Manoeuvre Prediction in Urban Traffic Situations Based on Behavioural Sequences

  • Chapter
  • First Online:
UR:BAN Human Factors in Traffic

Part of the book series: ATZ/MTZ-Fachbuch ((ATZMTZ))

Abstract

Advanced driver assistance systems (ADAS) can help to reduce road accidents. In order to increase the positive effects of these systems the warnings and interventions have to be adjusted to the driver’s behaviour. With regard to the human behaviour a real time capable algorithm for predicting driver’s manoeuvres was developed.

The basis for development of the algorithm were two controlled field studies with the focus on inter- and intraindividual behaviour in urban traffic situations. The algorithm is based on Fuzzy Logic and Edit Distance; it was trained with the data containing the driver’s behaviour before and during driving manoeuvres of the field study. Focus lies on the driver’s vehicle control and his head- and gaze behaviour. The feature selection was performed on the basis of true and false positives, false negatives and the prediction time horizon. The algorithm learns behavioural sequences of considered features in an offline training step and compares the actual driver’s behaviour with the trained sequences during the real-time detection to calculate the manoeuvre probability and the time horizon until a certain manoeuvre will be conducted.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 119.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Tingvall, C., Haworth, N.: Vision Zero: an ethical approach to safety and mobility. 6th ITE International Conference Road Safety & Traffic Enforcement, Beyond. (2000)

    Google Scholar 

  2. Winner, H., Hakuli, S., Lotz, F., Singer, C.: Handbuch Fahrerassistenzsysteme: Grundlagen, Komponenten und Systeme für aktive Sicherheit und Komfort, 3rd edn. ATZ/MTZ-Fachbuch, Wiesbaden (2015)

    Google Scholar 

  3. Borgeest, K.: Elektronik in der Fahrzeugtechnik. Springer Vieweg, Wiesbaden (2013). ATZ, Imprint

    Google Scholar 

  4. Hoffmann, J., Gayko, J.: Fahrerwarnelemente. In: Winner, H., Hakuli, S., Wolf, G. (eds.) Handbuch Fahrerassistenzsysteme: Grundlagen, Komponenten und Systeme für aktive Sicherheit und Komfort; mit 45 Tabellen, pp. 343–354. Vieweg + Teubner, Wiesbaden (2012). ATZ-MTZ-Fachbuch

    Chapter  Google Scholar 

  5. Blaschke, C., Schmitt, J., Färber, B.: „Fahrmanöver-Prädiktion über CAN-Bus Daten.“ In Fahrer im 21. Jahrhundert. Human Machine Interface. VDI, Düsseldorf, pp 165–177 (2007)

    Google Scholar 

  6. Mages, M., Hopstock, M., Klanner, F.: Kreuzungsassistenz. In: Winner, H., Hakuli, S., Wolf, G. (eds.) Handbuch Fahrerassistenzsysteme, pp. 572–581. Vieweg+Teubner, Wiesbaden (2009)

    Chapter  Google Scholar 

  7. Dambier, M.: Adaptive information flow control: Recognition and prediction of factors contributing to driver’s stress. Diss. Der Andere Verlag, Tönning (2010)

    Google Scholar 

  8. Kopf, M.: Was nützt es dem Fahrer, wenn Fahrerinformations- und -assistenzsysteme etwas über ihn wissen? In: Maurer, M., Stiller, C. (eds.) Fahrerassistenzsysteme mit maschineller Wahrnehmung, pp. 117–139. Springer, Berlin (2005)

    Chapter  Google Scholar 

  9. Doshi, A., Trivedi, M.M.: Tactical driver behavior prediction and intent inference: A review. 14th International IEEE Conference on Intelligent Transportation Systems – (ITSC), pp 1892–1897 (2011)

    Google Scholar 

  10. Donges, E.: Aspekte der Aktiven Sicherheit bei der Führung von Personenkraftwagen. Automobil-Industrie 27(2), 183–190 (1982)

    Google Scholar 

  11. Schmitt, J., Färber, B.: Verbesserung von FAS durch Fahrerabsichtserkennung mit Fuzzy Logic. VDI-Berichte, vol. 1919., pp 177–186 (2005)

    Google Scholar 

  12. Bishop, C.M.: Pattern Recognition and Machine Learning. Springer Science+Business Media, New York (2006). 10013

    MATH  Google Scholar 

  13. Zadeh, L.A.: Fuzzy sets. Inf Control 8(3), 338–353 (1965)

    Article  MATH  Google Scholar 

  14. Wu, J., Brackstone, M., McDonald, M.: Fuzzy sets and systems for a motorway microscopic simulation model. Fuzzy Sets Syst 1(116), 65–76 (2000)

    Article  Google Scholar 

  15. Bauer, C.: A Driver-Specific Maneuver Prediction Model Based on Fuzzy Logic. Diss., Freie Universität Berlin (2011)

    Google Scholar 

  16. Altman, D.G., Bland, J.M.: Diagnostic tests. 1: Sensitivity and specificity. Br Med J 308(6943), 1552 (1994)

    Article  Google Scholar 

  17. Fawcett, T.: ROC graphs: Notes and practical considerations for researchers. Mach Learn 31, 1–38 (2004)

    MathSciNet  Google Scholar 

  18. Langer, I., Heine, J., Abendroth, B., Bruder, R.: Herausforderungen beim Hervorrufen von kritischen Brems- oder Lenkreaktionen in Fahrversuchen zur Untersuchung der Fahrerintention. In: GfA (ed.) Gestaltung der Arbeitswelt der Zukunft, pp. 516–518. (2014)

    Google Scholar 

  19. Myung, I.J., Pitt, M.A.: Applying Occam’s razor in modeling cognition: A Bayesian approach. Psychon Bull Rev 1(4), 79–95 (1997)

    Article  Google Scholar 

  20. Berndt, H., Emmert, J., Dietmayer, K.: Continuous Driver Intention Recognition with Hidden Markov Models. 11th International IEEE Conference on Intelligent Transportation Systems (ITSC)., pp 1189–1194 (2008)

    Google Scholar 

  21. Mourant, R.R., Rockwell, T.H.: Strategies of visual search by novice and experienced drivers. Hum Factors 4, 325–335 (1972)

    Article  Google Scholar 

  22. Heine, J., Krämer, I., Achieser, I., Langer, I., Schramm, T., Abendroth, B.: Bewertung von Prädiktoren zur Fahrerintentionserkennung. 5. Berliner Fachtagung Fahrermodellierung, Berlin. (2015a)

    Google Scholar 

  23. Lin, C.-F., Ulsoy, A.G.: Calculation of the time to lane crossing and analysis of its frequency distribution. American Control Conference, Proceedings of 1995, vol. 5., pp 3571–3575 (1995)

    Google Scholar 

  24. Heine, J., Sylla, M., Schramm, T., Langer, I., Abendroth, B., Bruder, R.: Algorithm for Driver Intention Detection with Fuzzy Logic and Edit Distance. Intelligent Transportation Systems (ITSC), 2015 IEEE 18th International Conference on., pp 1022–1027 (2015b)

    Google Scholar 

  25. Sylla, M.: Entwicklung eines Algorithmus zur Fahrmanöverprädiktion mit Methoden der Fuzzy-Logik (Masterthesis). TU Darmstadt, Darmstadt (2015)

    Google Scholar 

  26. Hulnhagen, T., Dengler, I., Tamke, A., Dang, T., Breuel, G.: Maneuver recognition using probabilistic finite-state machines and fuzzy logic. IEEE Intelligent Vehicles Symposium. vol. IV., pp 65–70 (2010)

    Google Scholar 

  27. Levensthein, V.I.: Binary Codes Capable of Correcting Deletions, Insertions and Reversals. Sov Phys Doklady 10(8), 707–710 (1966)

    MathSciNet  Google Scholar 

  28. Bunke, H., Csirik, J.: “Parametric String Edit Distance and its Application to Pattern Recognition.”. IEEE Trans Syst Man Cybern 25, 202–206 (1995)

    Article  Google Scholar 

  29. Chua, S.L., Marsland, S., Guesgen, H.W.: Unsupervised learning of patterns in data streams using compression and edit distance. Proceedings of the Twenty-Second international joint conference on Artificial Intelligence, vol. 2., pp 1231–1126 (2011)

    Google Scholar 

  30. Navarro, G.: A guided tour to approximate string matching. ACM Comput Surv 1(33), 31–88 (2001)

    Article  Google Scholar 

  31. Manstetten, D., Bengler, K., Busch, F., Färber, B., Lehsing, C., Neukum, A., Petermann-Stock, I., Schendzielorz, T.: ‘UR:BAN MV’ – a German project focusing on human factors to increase traffic safety in urban areas. 20th ITS World Congress. (2012)

    Google Scholar 

  32. Achieser, I.: Potential evaluation of eye- and headtracking data as a robust and realtime capable predictor for driver intention detection and integration into an algorithm for maneuver prediction (Master Thesis). Technische Universität Darmstadt, Darmstadt (2016)

    Google Scholar 

  33. Heine, J.: Entwicklung eines Algorithmus zur Prädiktion eines innerstädtischen Fahrstreifenwechsels. Dissertation Technische Universität Darmstadt (in Vorbereitung)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Fachmedien Wiesbaden GmbH

About this chapter

Cite this chapter

Heine, J., Langer, I., Schramm, T. (2018). Human Focused Development of a Manoeuvre Prediction in Urban Traffic Situations Based on Behavioural Sequences. In: Bengler, K., Drüke, J., Hoffmann, S., Manstetten, D., Neukum, A. (eds) UR:BAN Human Factors in Traffic. ATZ/MTZ-Fachbuch. Springer Vieweg, Wiesbaden. https://doi.org/10.1007/978-3-658-15418-9_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-658-15418-9_13

  • Published:

  • Publisher Name: Springer Vieweg, Wiesbaden

  • Print ISBN: 978-3-658-15417-2

  • Online ISBN: 978-3-658-15418-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics