Skip to main content

Zusammenfassung

Die Low density-Lipoproteinfraktion des Plasmas kann als sicherster Risikofaktor der koronaren Herzerkrankung angesehen werden. In dieser Fraktion werden bis zu 80% des Plasmacholesterins transportiert. Bisher gab es weder Verfahren, diese Komponente im Plasma direkt und zuverlässig zu messen, noch bestand die Möglichkeit, LDL selektiv und ohne Anwendung immunologischer Techniken in einem extrakorporalen System zu eliminieren. Wir beschreiben eine Methode, die beides ermöglicht.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 54.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  1. Castelli WP, Doyle JT, Gordon T, Hames C, Hjortland MC, Hulley SB, Kagan A, Zukel WJ (1977) HDL-cholesterol and other lipids in coronary heart disease. Circulation 55: 767–772

    PubMed  CAS  Google Scholar 

  2. Goldstein JL, Brown MS (1977) The LDL-pathway and its relation to atherosclerosis. Annu Rev Biochem 46: 897–930

    Article  PubMed  CAS  Google Scholar 

  3. Brown MS, Goldstein JL (1976) Familial hypercholesterolemia. A genetic defect in the LDL-receptor. N Engl J Med 294: 1386–1390

    Article  PubMed  CAS  Google Scholar 

  4. Brown MS, Goldstein JL (1980) The hyperlipoproteinemias and other disorders of lipid metabolism. In: Isselbacher et al. (eds) Harrison’s principles of internal medicine, 9th ed., p 508

    Google Scholar 

  5. Stoffel W, Bode C (1983) LDL-apheresis: selective removal of low density lipoproteins. In: Pineda A (ed) Selective removal of plasma-components (in press)

    Google Scholar 

  6. Stoffel W, Demani T (1981) Selective removal of apolipoprotein B-containing serumlipoproteins from blood plasma. Proc Natl Acad Sci USA 78: 611–615

    Article  PubMed  CAS  Google Scholar 

  7. King ME, Breslow JL, Lees RS (1978) Plasma exchange therapy in homozygous familial hypercholesterolemia. N Engl J Med 302: 1457–1459

    Article  Google Scholar 

  8. Stoffel W, Bode C, Borberg H, Tauchert M, Oette K, Fuchs M (1982) Selective removal of plasma LDL by combined extracorporeal plasma separation-immunoabsorption. Proc. 6th Int. Congress on Atherosclerosis, Berlin, p 502

    Google Scholar 

Literatur

  1. Basu KS et al. (1982) Biochemical and genetic studies of the Apoprotein E secreted by mouse macrophages and human monocytes. J Biol Chem 257: 9788–9795

    PubMed  CAS  Google Scholar 

  2. Danielsson B et al. (1978) Isolation of a high density lipoprotein with high contents of Arginine-rich Apoprotein (Apo E) from rat plasma. FEBS Lett 86: 299–302

    Article  PubMed  CAS  Google Scholar 

  3. Fielding PE, Fielding CJ (1980) Evidence for a cholesteryl ester transfer complex in human plasma. Proc Natl Acad Sci USA 77: 3327

    Article  PubMed  CAS  Google Scholar 

  4. Nicoll A et al. (1980) High-density lipoprotein metabolism. Adv Lipid Res 17: 53–106

    PubMed  CAS  Google Scholar 

  5. Patsch JR et al. (1978) Formation of high-density lipoprotein-like particles during lipolysis of very low density lipoproteins in vitro. Proc Natl Acad Sci USA 75: 4519–4523

    Article  PubMed  CAS  Google Scholar 

  6. Patsch W et al. (1980) Characterization of human high density lipoproteins by zonal ultracentrifugation. J Biol Chem 255: 3178–3185

    PubMed  CAS  Google Scholar 

  7. Röschlau P et al. (1974) Enzymatische Bestimmung des Gesamt-Cholesterins im Serum. J Clin Chem Clin Biochem 12: 403–407

    Google Scholar 

  8. Rouser G et al. (1970) Two dimensional thin layer chromatographic separation of polar lipids and determination of phospholipids by phosphorus analysis of spots. Lipids 5: 494–496

    Article  PubMed  CAS  Google Scholar 

  9. Sata T et al. (1972) Characterization of subfractions separated by gel chromatography from blood plasma of normolipemic and hyperlipemic humans. J Lipid Res 13: 757–768

    PubMed  CAS  Google Scholar 

  10. Zöllner N (1959) Die Normalwerte der Plasmalipoide. Dtsch Med Wochenschr 84: 386–392

    Article  PubMed  Google Scholar 

Literatur

  • Kane JP, Sata T, Hamilton RL, Havel RJ (1975) Apoprotein composition of very low density lipoproteins of human serum. J Clin Invest 56: 1622–1634

    Article  PubMed  CAS  Google Scholar 

  • Kane JP, Hardman DA, Paulus HE (1980) Heterogenity of apolipoprotein B: Isolation of a new species from human chylomicrons. Proc Natl Acad Sci USA 77: 2465–2469

    Article  PubMed  CAS  Google Scholar 

  • Schwandt P, Richter WO (1980) Purification of porcine neurophysins I and II by high performance liquid chromatography. Biochim Biophys Acta 626: 376–382

    PubMed  CAS  Google Scholar 

Literatur

  1. Diekstall F (1982) Hyperalpha/Hyperbetalipoproteinämie: Familienstudie. Dissertation, Medizinische Hochschule Hannover

    Google Scholar 

  2. Koschinsky T (1982) Angeborene und erworbene Stoffwechselstörungen in arteriellen glatten Muskelzellen und Fibroblasten bei Diabetes mellitus und Hyperlipoproteinämien — Zellkulturuntersuchungen zu Faktoren der Arterioskleroseentwicklung — Habilitationsschrift, Universität Düsseldorf

    Google Scholar 

  3. Mahley RW, Innerarity TL (1977) Interaction of canine and swine lipoproteins with low density lipoprotein receptor of fibroblasts as correlated with heparin/manganese precipitability. J Biol Chem 252: 2980

    Google Scholar 

Literatur

  1. Adam O, Dill-Wiesner M, Wolfram G, Zöllner N (1980) Plättchenaggregation und Prostaglandinumsatz beim Menschen unter definierter Linolsäurezufuhr mit Formeldiäten. Res Exp Med (Berl) 177: 227–235

    Article  CAS  Google Scholar 

  2. Adam O, Wolfram G, Zöllner N (1979) Quantitative evaluation of phospholipid fractions in serum by tubular thin-layer chromatography. In: Frigerio A, Renoz L (eds) Recent developments in chromatography and electrophoresis. Elsevier, Amsterdam, pp 267–272

    Google Scholar 

  3. Chambaz J, Robert A, Wolf C, Béréziat G, Polonovski J (1979) Different acylation and accumulation in free form of arachidonic acid or its sodium salt in human platelets. Thromb Res 15: 743–754

    Article  PubMed  CAS  Google Scholar 

  4. Moncada S, Vane JR (1979) The role of prostacyclin in vascular tissue. Fed Proc 38: 66–71

    PubMed  CAS  Google Scholar 

  5. Kook AJ, Rubinstein D (1970) The role of serum lipoproteins in the release of phospholipids by rat liver slices. Biochim Biophys Acta 202: 396–398

    PubMed  CAS  Google Scholar 

  6. Smith JB (1981) Prostaglandins and platelet aggregation. Acta Med Scand 651: 91–97

    CAS  Google Scholar 

  7. Stoffel W, Därr W, Assmann G (1978) Pleomorphe Funktionen von hochungesättigten Phospholipiden in biologischen Membranen und Serumlipiden. Med Welt 29: 124–132

    PubMed  CAS  Google Scholar 

  8. Vallee E, Gougat J, Ageron M (1980) Inhibition of platelet phospholipase A2 as a mechanism for the anti-aggregating effect of linoleic acid. Agents Actions 10: 57–62

    Article  PubMed  CAS  Google Scholar 

  9. Zilversmit DB (1950) Microdetermination of plasma phospholipids by trichloracetic acid precipitation. J Lab Clin Med 35: 155–162

    PubMed  CAS  Google Scholar 

Literatur

  • Beaumont JL, Carlson LA, Cooper GR, Fejfar Z, Fredrickson DS, Strasser T (1970) Classification of hyperlipidemias and hyperlipoproteinemias. Bull WHO 43: 891–915

    PubMed  CAS  Google Scholar 

  • Beil U, Grundy SM, Crouse JR, Zech L (1981) Triglyceride and cholesterol metabolism in primary hypertriglyceridemia. Arteriosclerosis 2: 44–57

    Google Scholar 

  • Fielding CJ (1978) Origin and properties of remnant lipoproteins. In: Wietschy J (ed) Disturbances in lipid and lipoprotein metabolism. Am Physiol Soc, Bethesda, Md, p 83

    Google Scholar 

  • Gianturco SH, Brown FB, Gotto AM Jr, Bradley WA (1982) Receptor-mediated uptake of hypertriglyceridemic very low density lipoproteins by normal human fibroblasts. J Lipid Res 23: 984–993

    PubMed  CAS  Google Scholar 

  • Mahley RW, Innerarity TL, Bersot TP, Lipson A, Margolis S (1980) Cholesterol feeding: effects on lipoprotein structure and metabolism. In: Gotto AM Jr, Smith LC, Allen B (eds) Atherosclerosis V. Springer, New York, p 641

    Chapter  Google Scholar 

  • Maxwell RE, Nawrocki JW, Uhlendorf PD (1982) Some differences in effects of gemfibrozil, clofibrate, benzafibrate, cholestyramine and ML-236B on lipid metabolism in rats. Res Clin Forums 4: 43–52

    Google Scholar 

  • Schwandt P, Weisweiler P, Neureuther G (1979) Serum lipoprotein lipids after gemfibrozil treatment. Artery 5: 117–124

    PubMed  CAS  Google Scholar 

  • Vessby B, Lithell H (1982) Drug treatment of hyperlipoproteinemia-effects on serum lipoprotein composition. Res Clin Forums 4: 21–29

    Google Scholar 

  • Weisweiler P, Drosner M, Janetschek P, Schwandt P (1983) Changes in very low and low density lipoproteins with dietary modification (zur Veröffentlichung eingereicht)

    Google Scholar 

  • Weisweiler P, Schwandt P, Friedl C (1983) Immunonephelometric quantitation of apolipoprotein E in human serum. J Clin Chem Clin Biochem (in press)

    Google Scholar 

Literatur

  1. Kritchevsky D (1980) Pharmacology of Probucol. In: Noseda G (ed) Diet and drugs in atherosclerosis. Raven Press, New York

    Google Scholar 

  2. Riesen WF et al. (1980) Probucol in hypercholesterolaemia, a double blind studie. Atherosclerosis 36: 201–207

    Article  PubMed  CAS  Google Scholar 

  3. Mellies M et al. (1980) Effects of Probucol on plasma cholesterol. Metabolism 29: 956–964

    Article  PubMed  CAS  Google Scholar 

  4. Simons LA et al. (1981) Metabolic studies with Probucol in hypercholesterolaemia. Atherosclerosis 40: 299–308

    Article  PubMed  CAS  Google Scholar 

  5. Gordon T et al. (1977) High density lipoprotein as a protective factor against coronary heart disease: Framingham Studie. Am J Med 62: 707

    Article  PubMed  CAS  Google Scholar 

  6. Miller, Miller (1975) Plasma high density lipoprotein concentrations and development of ischemic heart disease. Lancet 1: 16

    Article  PubMed  CAS  Google Scholar 

  7. Tedeschi et al. (1982) Safety and effectiveness of Probucol as a cholesterol lowering agent. Artery 10: 22–34

    PubMed  CAS  Google Scholar 

  8. Klein L (1981) QT-interval prolongation produced by Probucol. Arch Intern Med 141: 1102–1107

    Article  PubMed  CAS  Google Scholar 

  9. Troendle G (1982) Letter to the Editor. Lancet 1: 1179

    Article  PubMed  CAS  Google Scholar 

  10. Baker SG et al. (1982) Treatment of homozygous familial hypercholesterolaemia with Probucol. S Afr Med 62: 7–11

    CAS  Google Scholar 

  11. Miettinen TA et al. (1975) Treatment of severe and mild hypercholesterolaemia with Probucol and Neomycin. Postgrad Med J (Suppl 8) 51: 71–75

    CAS  Google Scholar 

Literatur

  1. Wilhelmsen L et al. (1981) β-Blockers versus saluretics in hypertension. Prev Med 10: 38–49

    Article  PubMed  CAS  Google Scholar 

  2. Lopes-Virella MF et al. (1977) Cholesterol determination in HDL-Lipoproteins separated by 3 different methods. Clin Chem 23: 882

    PubMed  CAS  Google Scholar 

Literatur

  1. Albers JJ, Grundy SM, Cleary PA et al. (1982) National Cooperative Gallstone Study. The effect of chenodeoxycholic acid on lipoproteins and apolipoproteins. Gastroenterology 82: 638–646

    PubMed  CAS  Google Scholar 

  2. Angelin B, Einarsson K, Leijd B (1979) Biliary lipid composition during treatment with differant hypolipidaemic drugs. Eur J Clin Invest 9: 185–190

    Article  PubMed  CAS  Google Scholar 

  3. Bartlett GR (1959) Phosphorous assay in column chromatography. J Biol Chem 234: 466–468

    PubMed  CAS  Google Scholar 

  4. Bateson MC, Bouchier IAD, Trash DB, Maugdal DP, Northfield TC (1981) Calcification of radiolucent gall stones during treatment with ursodeoxycholic acid. Br Med J 283: 645–646

    Article  CAS  Google Scholar 

  5. Bell GD, Bradshaw JP, Burgess A, Ellis W, Hatton J et al. (1980) Elevation of serum high density lipoprotein cholesterol by Rowachol, a proprietary mixture of six pure monoterpenes. Atherosclerosis 36: 47–54

    Article  PubMed  CAS  Google Scholar 

  6. Bell GD, Doran J (1979) Gall stone dissolution in man using an essential oil preparation. Br Med J 279: 24

    Article  Google Scholar 

  7. Benko S, Macher A, Szarvas F, Tiboldi T (1961) Effect of essential oils on atherosclerosis of cholesterol-fed rabbits. Nature 190: 731–732

    Article  CAS  Google Scholar 

  8. Bouchier IAD (1980) The medical treatment of gallstones. Annu Rev Med 31: 59–77

    Article  PubMed  CAS  Google Scholar 

  9. Carey M, Small DM (1978) The physical chemistry of cholesterol solubility in bile. Relationship to gallstone formation and dissolution in man. J Clin Invest 61: 998–1026

    Article  PubMed  CAS  Google Scholar 

  10. Coyne MJ, Bonorris GG, Goldstein LJ, Schoenfield LJ (1976) Effect of chenodeoxycholic acid and phenobarbital on the rate-limiting enzymes of hepatic cholesterol and bile acid synthesis in patients with gallstones. J Lab Clin Med 87: 281–291

    PubMed  CAS  Google Scholar 

  11. Doran J, Kreighley MRB, Bell GD (1979) Rowachol — a possible treatment for cholesterol gallstones. Gut 20: 312–317

    Article  PubMed  CAS  Google Scholar 

  12. Egge H, Murawski U, Müller J, Zilliken F (1970) Mikrolipidanalysen aus Serum mit dem Eppendorfsystem 3000. J Clin Chem Clin Biochem 8: 488–491

    CAS  Google Scholar 

  13. Einarsson K, Grundy SM (1980) Effects of feeding cholic acid and chenodeoxycholic acid on cholesterol absorption and hepatic secretion of biliary lipids in man. J Lipid Res 21: 23–34

    PubMed  CAS  Google Scholar 

  14. Ellis WR, Bell GD (1981) Treatment of biliary duct stones with a terpene preparation. Br Med J 282: 611

    Google Scholar 

  15. Ellis WR, Bell GD, Middleton B, White DA (1981) Adjunct to bile-acid treatment for gall-stone dissolution: low-dose chenodeoxycholic acid combined with a terpene preparation. Br Med J 282: 611–612

    Google Scholar 

  16. Gerolami A, Sarles H (1975) Beta-sitosterol and chenodeoxycholic acid in the treatment of cholesterol gallstones. Lancet 2: 721

    Article  PubMed  CAS  Google Scholar 

  17. Grundy SM, Metzger AL (1972) A physiological method for estimation of hepatic secretion of biliary lipids in man. Gastroenterology 62: 1200–1217

    PubMed  CAS  Google Scholar 

  18. Grundy SM, Mok HYI, Zech L, Berman M (1981) Influence of nicotinic acid on metabolism of cholesterol and triglycerides in man. J Lipid Res 22: 24–36

    PubMed  CAS  Google Scholar 

  19. Hegardt FG, Dam H (1971) The solubility of cholesterol in aqueous solutions of bile salts and lecithin. Z Ernaehrungswiss 10: 223–233

    Article  CAS  Google Scholar 

  20. Holzbach RT, Marsh M, Olzewski M, Holan K (1973) Cholesterol solubility in bile. Evidence that supersaturated bile is frequent in healthy man. J Clin Invest 52: 1467–1479

    Article  PubMed  CAS  Google Scholar 

  21. Hordinsky BZ (1971) Terpenes in the treatment of gallstones. Minn Med 54: 649–652

    PubMed  CAS  Google Scholar 

  22. Hordinsky BZ, Hordinsky W (1979) Rowachol — seine Verwendung bei Hyperlipämie. Arch Arzneitherapie 1: 45–51

    Google Scholar 

  23. Hunninghake DB, Probstfield JL (1977) Drug treatment of hyperlipoproteaemia. In: Rifkind BM, Levy RI (eds) Hyperlipidemia — diagnosis and therapy. Grune and Stratton, New York, pp 327–362

    Google Scholar 

  24. Igimi H, Hisatsugu T, Nishimura M (1976) The use of d-limonen preparation as a dissolving agent of gallstones. Dig Dis 21: 926–939

    Article  CAS  Google Scholar 

  25. Klose G, Mordasini R , Middelhoff G, Augustin J, Greten H (1978) Medikamentöse Behandlung primärer Hyperlipoproteinämien. Klin Wochenschr 56: 99–110

    Article  PubMed  CAS  Google Scholar 

  26. Kutz K, Leiß O, von Bergmann K (1982) Einfluß von Bezafibrat und Fenofibrat auf lithogenen Index und individuelle Gallensäuren in der Galle. Verh Dtsch Ges Inn Med 88: 567–569

    Google Scholar 

  27. Leiß O, Murawski U, Egge H (1979) Mikrobestimmung von Lipoproteinlipiden im Serum. J Clin Chem Clin Biochem 17: 619–625

    PubMed  Google Scholar 

  28. Levy RJ (1980) Drugs used in the treatment of hyperlipoproteinaemias. In: Goodman Gilman A, Goodman LS, Gilman A (eds) Goodman an Gilman’s The pharmacological basis of therapeutics, 6th ed. Macmillan Publ. Co., New York, pp 834–847

    Google Scholar 

  29. Maugdal DP, Bird R, Blackwood WS, Northfield TC (1978) Low-cholesterol diet: enhancement of effect of CDCA in patients with gall stones. Br Med J 2: 851–853

    Article  Google Scholar 

  30. Miller NE, Nestel PJ, Clifton-Bligh P (1976) Relationships between plasma lipoprotein cholesterol concentrations and the pool size and metabolism of cholesterol in man. Atherosclerosis 23: 535–547

    Article  PubMed  CAS  Google Scholar 

  31. Mörsdorf K (1966) Cyclische Terpene und ihre choleretische Wirkung. Bulletin de Chimie Therapeutique 1966, pp 442–443

    Google Scholar 

  32. Mörsdorf K, Wolf G (1966) Untersuchungen zur Wirkungspotenz einiger Choleretika. Dtsch Med J 10: 303–306

    Google Scholar 

  33. Mok HYI, von Bergmann K, Grundy SM (1979) Effects of continuous and intermittend feeding on biliary lipid outputs in man: application for measurements of intestinal absorption of cholesterol and bile acids. J Lipid Res 20: 389–398

    PubMed  CAS  Google Scholar 

  34. Mordasini R, Riesen W, Oster P, Riva G (1982) Verhalten der High-density-Lipoproteine (HDL) unter medikamentöser lipidsenkender Behandlung. Schweiz Med Wochenschr 112: 95–98

    PubMed  CAS  Google Scholar 

  35. Paumgartner G, Horak W, Probst P, Grabner G (1971) Effect of phenobarbital on bile salt excretion in the rat. Naunyn-Schmiedebergs Arch Pharmacol 270: 98–102

    Article  PubMed  CAS  Google Scholar 

  36. Pearlman BJ, Marks JW, Bonorris GG, Schoenfield LJ (1979) Gallstone dissolution — a progress report. Clin Gastroenterol 8: 123–140

    PubMed  CAS  Google Scholar 

  37. Pertsemlidis D, Panveliwalla D, Ahrens EH Jr (1974) Effects of clofibrate and of an estrogen-progestin combination on fasting biliary lipids and cholic acid kinetics in man. Gastroenterology 66: 565–573

    PubMed  CAS  Google Scholar 

  38. Schlierf G, Oster P, Heuck CC, Raetzer H, Schellenberg B (1978) Sitosterol in juvenille type II hyperlipoproteinemia. Atherosclerosis 30: 245–248

    Article  PubMed  CAS  Google Scholar 

  39. Small DM, Atkinson D, Redgrave T, Shipley GG, Tall AR (1979) A biophysical approach to cholesterol transport from tissues to bile. In: Fisher MM, Goresky CA, Shaffer EA, Strassberg SM (eds) Gallstones. Plenum Press, New York London, pp 113–129

    Google Scholar 

  40. Von Bergmann J, von Bergmann K, Hadorn B, Paumgartner G (1975) Biliary lipid compostion in early childhood. Clin Chim Acta 64: 241

    Article  Google Scholar 

  41. Von Bergmann K, Leiß O, Kutz K (1981) Effects of lipid lowering substances on biliary lipid metabolism in hyperlipidaemic patients. In: Lipoproteins and Coronary Atherosclerosis, Lugano, October 1–3, 1981. Abstract Book, p 190

    Google Scholar 

  42. Weisweiler P, Neureuther G, Schwandt P (1979) The effect of cholestyramine on lipoprotein lipids in patients with primary type II A hyperlipoproteinemia. Atherosclerosis 33: 295–300

    Article  PubMed  CAS  Google Scholar 

Literatur

  1. Assmann G, Schriewer H (1980) Screening und Therapiekontrolle von Lipidstoffwechselstörungen in der Praxis. Münch Med Wochenschr 122: 449–452

    CAS  Google Scholar 

  2. DeVoe RD (1974) Principles of cell homeostasis. In: Mountcastle VB (ed) Medical physiology, vol 1. Mosby, St. Louis, pp 3–33

    Google Scholar 

  3. Karoff Ch, Zidek W, Schlegel M, Vetter H (1982) Das Verhalten von Serumlipiden, intra- und extrazellulären Elektrolyten und hormonaler Faktoren bei Gewichtsreduktion. Med Klinik (im Druck)

    Google Scholar 

  4. Losse H, Wehmeyer H, Wessels F (1960) Der Wasser- und Elektrolytgehalt von Erythrozyten bei arterieller Hypertonic Klin Wochenschr 38: 393–395

    CAS  Google Scholar 

  5. Losse H, Zidek W, Zumkley H, Wessels F, Vetter H (1981) Intracellular Na+ as a genetic marker of essential hypertension. Clin Exp Hypertension 3: 627–640

    Article  CAS  Google Scholar 

  6. de Luise M, Blackburn GL, Flier JS (1980) Reduced activity of the red-cell sodium-potassium pump in human obesity. N Engl J Med 303: 1017–1022

    Article  PubMed  Google Scholar 

  7. Nicolaou KC, Barnette WE, Magolda RL (1980) Synthesis and biological properties of prostacyclins. In: Scriabine A, Lefer AM, Kuehl FA (eds) Prostaglandins in cardiovascular and renal function. MTP Press, Lancaster, pp 9–28

    Google Scholar 

  8. Rayssiguier Y (1981) Magnesium and lipids: Interrelationships in the pathogenesis of vascular disease. Magnesium Bulletin la: 165–177

    Google Scholar 

  9. Vanroelen W, De Leeuw I, D’Hollander M (1981) Plasma and RBC Mg in the obese. Magnesium Bulletin 1b: 47

    Google Scholar 

  10. Zidek W, Vetter H, Zumkley H, Losse H (1981) Intracellular cation activities and concentrations in spontaneously hypertensive and normotensive rats. Clin Sci 61: 41s–43s

    PubMed  CAS  Google Scholar 

  11. Zidek W, Losse H, Dorst KG, Zumkley H, Vetter H (1982) Intracellular sodium and calcium in essential hypertension. Klin Wochenschr (im Druck)

    Google Scholar 

  12. Zidek W, Vetter H, Losse H (1982) Intracellular mono- and divalent cations in spontaneously hypertensive rats. In: Ganten D et al. (eds) 4th International Symposium on rats with spontaneous hypertension and related studies. Schattauer, Stuttgart (in press)

    Google Scholar 

Literatur

  1. Björntorp P, Sjoström L (1978) Carbohydrate storage in man. Speculations and some quantitative considerations. Metabolism (Suppl 2) 27: 1853–1863

    Article  PubMed  Google Scholar 

  2. Bratusch-Marrain P, Björkman O, Hagenfeldt L, Waldhäusl W, Wahren J (1979) Influence of arginine on splanchnic glucose metabolism in man. Diabetes 28: 126–131

    Article  PubMed  CAS  Google Scholar 

  3. DeFronzo RA, Tobin J, Andres R (1979) The glucose clamp technique. A method for the quantification of beta cell sensitivity to glucose and of tissue sensitivity to insulin. Am J Physiol 23: E214–E223

    Google Scholar 

  4. Doar JWH, Stamp TCB, Wynn V, Path FC, Audhya TK (1969) Effects of oral and intravenous glucose loading in thyrotoxicosis. Studies of plasma glucose, free fatty acid, plasma insulin and blood pyruvate levels. Diabetes 18: 633–639

    PubMed  CAS  Google Scholar 

  5. Ferrannini E, Wahren J, Felig P, DeFronzo R (1980) The role of fractional glucose extraction in the regulation of splanchnic glucose metabolism in normal and diabetic man. Metabolism 29: 28–35

    Article  PubMed  CAS  Google Scholar 

  6. Kreines F, Jett M, Knowles HC (1965) Observations in hyperthyroidism of abnormal glucose tolerance and other traits related to diabetes mellitus. Diabetes 14: 740–743

    PubMed  CAS  Google Scholar 

  7. Saunders J, Hall SEH, Sönksen PH (1980) Glucose and free fatty acid turnover in thyrotoxicosis and hyperthyroidism before and after treatment. Clin Endocrinol 13: 33–44

    Article  CAS  Google Scholar 

  8. Sestoft L, Heding LG (1981) Hypersecretion of proinsulin in thyrotoxicosis. Diabetologia 21: 103–107

    Article  PubMed  CAS  Google Scholar 

Literatur

  • Sachs L (1974) Angewandte Statistik. Springer, Berlin Heidelberg New York, S 212

    Google Scholar 

  • Seegmiller JE, Grayzel AI, Laster L, Liddle L (1961) Uric acid production in gout. J Clin Invest 40: 1304–1314

    Article  PubMed  CAS  Google Scholar 

  • Zöllner N (1963) Eine einfache Modifikation der enzymatischen Harnsäurebestimmung. J Clin Chem Clin Biochem 1: 178–182

    Google Scholar 

Literatur

  1. Bartels O, Reiß M (1982) Infusionsbehandlung mit einer Leberkoma-Lösung. Biochemische und klinische Ergebnisse. In: Holm E (Hrsg) Aminosäuren- und Ammoniakstoffwechsel bei Leberinsuffizienz. G. Witzstrock, Baden-Baden Köln New York, S 211–219

    Google Scholar 

  2. Sieg A, Gärtner U, Striebel JP et al. (1979) Parenterale Aminosäurenbehandlung bei Patienten mit Leberzirrhose. Inn Med 6: 209–216

    Google Scholar 

  3. Holm E, Fiene R, Striebel JP et al. (1978) Spontane und infusionsabhängige Konzentrationen der Plasmaaminosäuren bei Leberinsuffizienz. Biochemische Daten und EEG. In: Wewalka F, Dragovics B (Hrsg) Aminosäuren, Ammoniak und hepatische Enzephalopathie. Fischer, Stuttgart New York, S 176–182

    Google Scholar 

  4. Andres R, Zierler KL, Anderson HM et al. (1954) Measurement of blood flow and volume in the forearm of man; with notes on the theory of indicator dilution and on production of turbulence, hemolysis, and vasodilatation by intra-vascular injection. J Clin Invest 33: 482–504

    Article  PubMed  CAS  Google Scholar 

  5. Felig P (1975) Amino acid metabolism in man. Annu Rev Biochem 44: 933–955

    Article  PubMed  CAS  Google Scholar 

  6. Abumrad NN, Patrick L, Rannels SL et al. (1981) Branched chain amino acids, and α-ketoisocaproate balance across human forearm muscle. In: Walser M, Williamson JR (eds) Metabolism and clinical implications of branched chain amino and ketoacids. Elsevier/North-Holland, New York Amsterdam Oxford, pp 317–322

    Google Scholar 

  7. Chua B, Siehl DL, Morgan HE (1979) Effect of leucine and metabolites of branched chain amino acids on protein turnover in heart. J Biol Chem 254: 8358–8362

    PubMed  CAS  Google Scholar 

  8. Buse MG, Reid SS (1975) Leucine. A possible regulator of protein turnover in muscle. J Clin Invest 56: 1250–1261

    Article  PubMed  CAS  Google Scholar 

  9. Li JB, Jefferson CS (1978) Influence of amino acid availability on protein turnover in perfused skeletal muscle. Biochim Biophys Acta 544: 351–359

    Article  PubMed  CAS  Google Scholar 

  10. Malaisse WJ, Sener A (1981) Branched chain amino and ketoacids: effects upon insulin secretion. In: Walser M, Williamson JR (eds) Metabolism and clinical implications of branched chain amino and ketoacids. Elsevier/North-Holland, New York Amsterdam Oxford, pp 181–185

    Google Scholar 

Literatur

  1. Brandt A, Doss M (1981) Hereditary porphobilinogen synthase deficiency in human associated with acute hepatic porphyria. Hum Genet 58: 194–197

    Article  PubMed  CAS  Google Scholar 

  2. Doss M (1978) Differentialdiagnose der hepatischen Porphyrien. Verh Dtsch Ges Inn Med 84: 1165–1169

    PubMed  Google Scholar 

  3. Doss M, Becker U, Sixel F, Geisse S, Solcher H, Schneider J, Kufner G, Schlegel H, Stoeppler M (1982) Persistent protoporphyrinemia in hereditary porphobilinogen synthase (δ-aminolevulinic acid dehydrase) deficiency under low lead exposure. A new molecular basis for the pathogenesis of lead intoxication. Klin Wochenschr 60: 599–606

    Article  PubMed  CAS  Google Scholar 

  4. Doss M, Müller WA (1982) Acute lead poisoning in inherited porphobilinogen synthase (δ-aminolevulinic acid dehydrase) deficiency. Blut 45: 131–139

    Article  PubMed  CAS  Google Scholar 

  5. Doss M, Schneider J, von Tiepermann R, Brandt A (1982) New type of acute porphyria with porphobilinogen synthase (δ-aminolevulinic acid dehydratase) defect in the homozygous state. Clin Biochem 15: 52–55

    Article  PubMed  CAS  Google Scholar 

  6. Doss M, von Tiepermann R, Schneider J, Schmid H (1979) New type of hepatic porphyria with porphobilinogen synthase defect and intermittent acute clinical manifestation. Klin Wochenschr 57: 1123–1127

    Article  PubMed  CAS  Google Scholar 

  7. Doss M, von Tiepermann R, Schneider J (1980) Acute hepatic porphyria syndrome with porphobilinogen synthase defect. Int J Biochem 12: 823–826

    Article  PubMed  CAS  Google Scholar 

  8. Doss M, Verspohl F (1981) The „Glucose Effect“ in acute hepatic porphyrias and in experimental porphyria. Klin Wochenschr 59: 727–735

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1983 J. F. Bergmann Verlag, München

About this paper

Cite this paper

Seidel, D. et al. (1983). Stoffwechsel. In: Schlegel, B. (eds) Verhandlungen der Deutschen Gesellschaft für innere Medizin. Verhandlungen der Deutschen Gesellschaft für innere Medizin, vol 89. J.F. Bergmann-Verlag. https://doi.org/10.1007/978-3-642-85456-9_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-85456-9_14

  • Publisher Name: J.F. Bergmann-Verlag

  • Print ISBN: 978-3-8070-0335-1

  • Online ISBN: 978-3-642-85456-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics