Skip to main content
  • 205 Accesses

Zusammenfassung

Die Bedeutung von Implantaten zur Wiederherstellung von Körperfunktionen, die durch Krankheit, natürliche Abnutzung oder Unfall verlorengegangen sind, nimmt stetig zu. Die Grenzen, die der Anwendung von chirurgischen Ersatzteilen bei dem heutigen Stand der Technik gesetzt sind, liegen einerseits in den Eigenschaften der Werkstoffe, andererseits in der anwendungsgerechten Konstruktion begründet, die die physiologischen und biomedizintechnischen Anforderungen des Funktionsersatzes erfüllen muß. Die Verwendung alloplastischen Materials im Funktionsersatz geht weit in die Vergangenheit zurück; es handelt sich vorwiegend um Implantate im Haltungs- und Bewegungsapparat [34–36]. Substitutionen im kardiovaskulären System setzen subtile Operationstechniken voraus und haben sich deshalb erst in neuerer Zeit durchgesetzt [37–40].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

Literatur

  1. Doremus, R. H.: Glass Science, New York: John Wiley & Sons (1973)

    Google Scholar 

  2. Kingery, W. D.: Introduction to Ceramics, New York: John Wiley & Sons (1960)

    Google Scholar 

  3. Doremus, R. H.: Manufacturing processes of ceramics. In: Ducheyne, P.; Hastings, G. W. (eds.): Metal and Ceramic Biomaterials. Boca Raton, FL: CRC Press (1984) 107–120

    Google Scholar 

  4. Haubold, A.D.; Shim, H.S.; Bokros, J.C.: Carbon in medical devices. In: Williams D.F. (ed.), Biocompatibility of Clinical Implant Materials, Vol. 2, Boca Raton, FL: CRC Press (1981) 3–42

    Google Scholar 

  5. Oonishi, H.; Hamaguchi, T.; Okabe, N.; Nabeshima, T.; Ota, N.: Al2O3 ceramic artificial ankle joint. In: Proceedings of the Colloquium for Orthopaedic Ceramic Implants, Kyoto (1980) 63–67

    Google Scholar 

  6. Sandhaus, S.: Bone implants and drills and taps for bone surgery. British Pat., 1,083, 769 (1967)

    Google Scholar 

  7. Schulte, W.: The intra-osseous Al203 (FRIALIT) Tübingen Implant. Development status after eight years. Quintessence Int., 15 (1984)

    Google Scholar 

  8. Brinkmann, E.: Das Keramik-Anker-Implantat nach Mutschelknauss. Zahnärztliche Praxis, 29 (1978) 148–150

    Google Scholar 

  9. Kawahara, H H.; Yamagami, A.: Bio-ceram, a new type of ceramic implant. Proc. Jpn. Soc. Implant Dent. (1975) 187–196

    Google Scholar 

  10. Driskell, T. D.; Heller, A. L.: Clinical use of aluminum oxide endosseous implants, Oral Implantol. 7 (1977) 1–14

    Google Scholar 

  11. Jahnke, K.; Galic, M.; Eitel, W.; Heumann, H.: Electron microscope observations of Al2O3-ceramic implants in middle ear surgery. In: Winter, G. D.; Gibbons, D. F.; Plenk, H., Jr. (eds.): Biomaterials 1980, Chichester: John Wiley & Sons (1982) 715–720

    Google Scholar 

  12. Plester, D.; Jahnke, K.: Ceramic implants in otologic surgery. Am. J. Otol. 3 (1981) 104–108

    Google Scholar 

  13. Garvie, R.C.; Urbani, C.; Kennedy, D.R.; McNeuer, J.C.: Biocompatibility of magnesia partially stabilized zirconia (Mg-PSZ) ceramics. J. Mater. Sci. 19 (1984) 3224–3228

    Google Scholar 

  14. Claussen, N.: Umwandlungsverstärkte keramische Werkstoffe. Z. Werkstofftechn. 13 (1982) 138–147

    Google Scholar 

  15. Nakajima, K.; Kobayashi, K.; Murata, Y.: Phase stability of Y-Psz in aqueous solutions. Adv. Ceram. 12 (1984) 339–407

    Google Scholar 

  16. Clarke, I. E.; Philips, W.; McKellop, H. A.; Moreland, J.; Amstutz, H. C.: Sialon ceramic — a candidate material for total joint replacements. In: Hastings, G. W.; Williams, D. F. (eds.): Mechanical Properties of Biomaterials, New York: John Wiley & Sons (1980) 155

    Google Scholar 

  17. Swart, I. G. N.; de Groot, K.: Clinical experiences with sintered calciumphosphate as oral implant material. In: Heimke, G. (ed.): Dental Implants, Munich: Hanser (1980) 97–103

    Google Scholar 

  18. Denissen, H. W.; de Groot, K.: Immediate dental root implants from synthetic dense calcium hydroxylapatite. J. Prosthet. Dent. 42 (1979) 551

    Google Scholar 

  19. Reck, R.; Helms, J.: Fundamental aspects of bioglass and surgery with bioactive glass ceramic implants. In: Grote, J. J. (ed.); Biomaterials in Otology, The Hague: Martinus Nijhoff (1984) 230–241

    Google Scholar 

  20. Driskell, T. D.; Hassler, C. R.; Tennery, V.J.; McCoy, I. R.; Clarke, W.J.: Calcium phosphate resorbable ceramics: A potential alternative to bone grafting. J. Dent. Res. 52 (1973) 123

    Google Scholar 

  21. Zöllner, C.; Strutz, J.; Beck, C.; Basing, C.M.: Are porous tricalcium phosphate ceramic implants suitable for middle ear surgery? An experimental study of the pig’s hypotympanon, with additional preliminary clinical results. In: Grote, J.J. (ed.): Biomaterials in Otology, The Hague: Martinus Nijhoff (1984) 262–273

    Google Scholar 

  22. Han, C. D.: Rheology in polymer processing. New York: Academic Press (1976)

    Google Scholar 

  23. Middleman, S.: Fundamentals of polymer processing. New York: McGraw-Hill (1977)

    Google Scholar 

  24. Miller, E. (ed.): Plastics design handbook: Part B, Process and Design for Processes. New York: Dekker (1983)

    Google Scholar 

  25. Ogorkiewicz, R. M.: Thermoplastics-properties and processing. New York: John Wiley & Sons (1973)

    Google Scholar 

  26. Young, J. F.; Shane, R. S. (eds.): Materials and Processes, 3rd ed., Parts A and B, New York: Dekker (1985)

    Google Scholar 

  27. Flory, P. J.: NSF-Outlook for Science and Technology: The next five years. San Francisco, CA: Freeman (1982)

    Google Scholar 

  28. Billmeyer, F.W., Jr.: Textbook of polymer science. 3rd ed., New York: John Wiley & Sons (1984)

    Google Scholar 

  29. Shalaby, S. W.; Schwartz, B. G.: s. o.

    Google Scholar 

  30. Miller, E. (ed.): Plastics design handbook: Part A, materials and components. New York: Dekker (1981)

    Google Scholar 

  31. Rembaum, A.; Shen, M.: Biomedical Polymers. New York: Dekker (1971)

    Google Scholar 

  32. Saechtling-Zebrowski, Hj.: Kunststoff-Taschenbuch, 18. ed., München: Hanser (1971)

    Google Scholar 

  33. Shalaby, S. W.: Polymeric materials. In: Webster, J. G. (ed.): Encyclopedia of medical devices and instrumentation. New York: John Wiley & Sons (1988) 2324–2335

    Google Scholar 

  34. Rubin, L. R.: Biomaterials in reconstructive surgery. St. Louis: The CV Mosby Company (1983)

    Google Scholar 

  35. Frank, E.; Zitter, M.: Metallische Implantate in der Knochenchirurgie. Berlin: Springer (1971)

    Google Scholar 

  36. Winter, G. D. et al.: Evaluation of biomaterials, Bd. 1. Chichester, New York: John Wiley & Sons (1980)

    Google Scholar 

  37. Matloff, J. M.: Cardiac valve replacement - current status. Boston: Martinus Nijhoff (1985)

    Google Scholar 

  38. Callow, A. D.: Historical overview of experimental and clinical development of vascular grafts. In: Stanley I. C. et al. (eds.), Biological and synthetic vascular protheses. New York: Grune & Stratton (1982) 11–26

    Google Scholar 

  39. Hufnagel, C. A.: History of vascular grafting. In: Wright C. B. et al. (eds.). Boston: John Wright (1983) 1–12

    Google Scholar 

  40. Temple, L. J.; Wright, J. T. M.: Implants in the cardiovascular and respiratory systems. In: Williams D. F.; Roaf R., (eds.): Implants in surgery. London: W. B. Saunders (1973) 481–536

    Google Scholar 

  41. Williams, D. F.: Definitions in biomaterials. Amsterdam: Elsevier 1987

    Google Scholar 

  42. Park, J. B.: Biomaterials: an overview. In: Webster J. G. (ed.): Encyclopedia of medical devices and instrumentation. New York: John Wiley & Sons (1988) 328–350

    Google Scholar 

  43. Semlitsch, M.; Willert, H. G.: Metallic materials for artificial hip joints. In: Webster J. G. (ed.): Encyclopedia of medical devices and instrumentation. New York: John Wiley & Sons (1988) 137–149

    Google Scholar 

  44. Willert, H. G.; Semlitsch, M.: Biomaterialien und orthopädische Implantate. In: Orthopädie in Praxis und Klinik I I Stuttgart: Thieme 1981

    Google Scholar 

  45. Szycher, M.: Biocompatible polymers, metals, and composites. Lancaster: Technomic 1983

    Google Scholar 

  46. Mohtashemi, M.; Hines, G. L.: Tissue response to permanently implanted pacemaker generators and electrodes. In: Rubin L. R. (ed.): Biomaterials in reconstructive surgery. St. Louis: The C. V. Mosby Company 1983

    Google Scholar 

  47. Ratner, B. D.: Surface characterization of biomaterials. Progress in biomedical engineering 6. Amsterdam: Elsevier 1988

    Google Scholar 

  48. Pourdeyhimi, B.; Wagner, D.: On the correlation between the failure of vascular grafts and their structural and material properties: a critical analysis. J. Biomed. Mater. Res. 20 (1986) 375–409

    Google Scholar 

  49. Cazenave, J. P.; Davies, J. A.; Kazatchkine, M.D.; van Aken, W. G.: Blood-surface interactions: biological principles underlying haemocompatibility with artificial materials. Amsterdam: Elsevier 1986

    Google Scholar 

  50. Park, J. B.: Biomaterials science and engineering. New York: Plenum Press 1984

    Google Scholar 

  51. Ral, T.: The toxicity of metals used in orthopaedic implants. J. of Bone and Joint Surgery 63 B(3) (1981) 435–440

    Google Scholar 

  52. Method for determination of the endurance properties of stemmed femoral components without application of torsion. ISO, TC-150, SC-4, N30, December 1985

    Google Scholar 

  53. Davidson, J. A.; Schwartz, G.: Wear, creep, and frictional heat of femoral implant articulating surfaces and the effect on long-term performance–Part I, A review. J Biomed. Mater. Res.: Applied biomaterials 21, A3 (1987) 261–285

    Google Scholar 

  54. Davidson, J. A.; Schwartz, G.; Lynch, G.: Wear, creep, and frictional heating of femoral implant articulating surfaces and the effect on long-term performance — Part II, friction, heating, and torque. J. Biomed. Mater. Res.: Applied biomaterials 22, Al (1988) 69–91

    Google Scholar 

  55. McKellop, H. A.; Clarke, I. C.: Evolution and evaluation of materials-screening machines and joint simulators in predicting in vivo wear phenomena. In: Ducheyne P.; Hastings G., (eds.): Functional behavior of orthopaedic biomaterials, Bd. 2. Boca Raton FL: CRC Press 1984

    Google Scholar 

  56. Fraker, A. C.; Griffin, C. D.: Corrosion and degradation of implant materials. Second Int. Symposium on Corrosion and Degradation of Implant Materials 1983. Philadelphia: ASTM, Bd. 859 (1985)

    Google Scholar 

  57. Stange, J.; Mittelmeier, H.: Elastische Osteosynthese mit Autokompressionsplatten (ACP) aus kohlefaserverstärktem thermoplastischen Kunststoff. Biomedizinische Technik 34 (1989) 143–148

    Google Scholar 

  58. Dörre, E.: Hydroxylapatitkeramik-Beschichtungen für Verankerungsteile von Hüftgelenkprothesen (Technische Aspekte). Biomedizinische Technik 34 (1989) 46–52

    Google Scholar 

  59. Breme, J.: Titanium and Titanium alloys, biomaterials of preference. Proc. Sixth World Conference on Titanium, France 1988

    Google Scholar 

  60. Zitter, H.; Plenk Jr., H.: The electromechanical behaviour of metallic implant materials as an indicator of their biocompatibility. J. Biomed. Mater. Res. 21 (1987) 881

    Google Scholar 

  61. Fraker, A.C.; Ruff, A.W.; Sung, P.; van Orden, A.C.; Speck, K.M.: Surface preparation and corrosion behaviour of Titanium alloys for surgical implants. Ti ‘80 Science and Technology, Plenum Press (1980) 2447

    Google Scholar 

  62. Mears, D. C.: Dissimilar metals in orthopaedic surgery. J. Biomed. Mater. Res. 6 (1975) 133

    Google Scholar 

  63. Brown, S. A.: Biomaterials, corrosion and wear of corrosion. In: Webster J. G. (ed.): Encyclopedia of medical devices and instrumentation. New York: John Wiley & Sons (1988) 351–361

    Google Scholar 

  64. Zitter, H.: The suitability of metals for surgical implants. In: Schaldach, M.; D. Hohmann, (eds.): Advances in artificial hip and knee joint technology. Engineering in medicine Bd. 2. Berlin, New York: Springer (1976) 227–241

    Google Scholar 

  65. Rätzer-Scheibe, H. J.; Buhl, H.: Repassivation of Titanium and Titanium alloys. Titanium Science and Technology AIME (1984) 2641

    Google Scholar 

  66. Higham, P. A.: Ion implantation as a tool for improving the properties of orthopaedic alloys. Proc. Conf. Biomed. Mat., Boston, Dec. 1985 (1986) 253

    Google Scholar 

  67. Williams, J. M.; Buchanan, R. A.: Ion implantation of surgical Ti-6A1–4V alloy. Mater. Sci. Eng. 69 (1985) 237

    Google Scholar 

  68. Zwicker, U.; Etzold, U.; Moser, Th.: Abrasive properties of oxide layers on TiA15Fe2.5 in contact with high density polyethelene. In: Lütjering, G.; Zwicker, U.; Bunk, W. (eds.): Ti ‘84 Science and Technology (1984) 1343

    Google Scholar 

  69. Zetner, K.; Plenk, H.; Strassl, H.: Tissue and cell reactions in vivo and in vitro to different metals for dental implants. In: Heimke, G. (ed.): Dental implants. München: Hanser (1980) 15

    Google Scholar 

  70. Magnetische Eigenschaften. In: Hellwege, K. H.; Hellwege, A. M. (Hrsg.): LandoltBörnstein. Berlin: Springer 1962

    Google Scholar 

  71. Kubaschewski, O.; Evans, E. Cl.; Alcock, C. B.: Metallurgical thermochemistry. London: Pergamon 1967

    Google Scholar 

  72. Steinemann, S. G.; Perren, S. M.: Titanium as metallic biomaterials. In: Lütjering, G.; Zwicker, U.; Bunk, W. (eds.): Ti ‘84 Science and Technology (1984) 1327

    Google Scholar 

  73. Zitter, H.: Schädigung des Gewebes durch metallische Implantate. Unfallheilkunde 79 (1976) 91

    Google Scholar 

  74. Ferguson Jr., A. B.; Laing, P. G.; Hodge, E. S.: The ionization of metal implants in living tissue. J. Bone and Joint Surg. 42A (1960) 77

    Google Scholar 

  75. Zwicker, U.; Bühler, K.; Müller, R.; Beck, H.; Schmid, H. J.; Ferstl, J.: Mechanical properties and tissue reactions of a Titanium alloy for implant material. Titanium ‘80 Science and Technology, AIME (1980) 505

    Google Scholar 

  76. Hohmann, D.; Legal, H.: Application of Titanium alloys for orthopaedic surgery. Ti ‘84 Science and Technology, 1984

    Google Scholar 

  77. Breme, J.; Heimke, G.: Corrosion fatigue test of TiAl5Fe2,5 hip implant under high stresses. In: Lütjering, G.; Zwicker, U.; Bunk, W. (eds.): Ti ‘84 Science and Technology (1984) 1351

    Google Scholar 

  78. Semlitsch, M.; Staub, F.; Weber, H.: Development of a vital, high strength wrought Ti-6Al-7Nb alloy for surgical implants. 5th Europ. Conf. on Biomaterials, Paris (1985)

    Google Scholar 

  79. Albrektsson, T.; Bränemark, P-I.; Hansson, H-A.; Kasemo, B.; Larsson, K.; Lundström, I.; McQueen, D. H.; Skalak, R.: The interface zone of inorganic implants in vivo: Titanium implants in bone. Ann. Biomed. Eng. 11 (1983) 1–27

    Google Scholar 

  80. Brânemark, P.I.; Adell, R.; Albrektsson, T.; Lekholm, U.; Ludkvist, S.; Rockler, B.: Osseointegrated Titanium fixtures in the treatment of endentulousness. Biomaterials 4 (1983) 25

    Google Scholar 

  81. Schröder, A.; Stich, H.; Straumann, F.; Sutter, F.: Über die Anlagerung von Osteozement an einen belasteten Implantatkörper. Schw. Mschr. f. Zahnheilk. 88 (1978) 1051

    Google Scholar 

  82. Kydd, W.L.; Daly, C. H.: Bone-Titanium implant response to mechanical stress. J. Prosthet. Dent. 35 (1976) 567

    Google Scholar 

  83. Hansson, H. A.; Albrektsson, M. D.; Brânemark, P. I.: Structural aspects of the interface between tissue and Titanium implants. J. Prosthet. Dent. 50 (1983) 108

    Google Scholar 

  84. Kawahara, H.: Cellular response to implant materials: biological, physical and chemical factors. Intern. Dent. J. 33 (1984) 350

    Google Scholar 

  85. Pilliar, R.M.; Lee, J.M.; Manatopoulos, C.: Observations on the effect of movement on bone ingrowth into porous-surfaced implants. Clinical Orthopaed. and Related Res. 20B (1986)108

    Google Scholar 

  86. Eulenberger, J.; Keller, F.; Schroeder, A.; Steinemann, S. G.: Haftung zwischen Knochen und Titan. 4. DVM-Vortragsreihe Implantate, DVM, (ed.) (1983) 131

    Google Scholar 

  87. Hahn, H.; Palich, J.: Preliminary evaluation of porous metals surfaced Titanium for orthopaedic implants. J. Biomed. Mater. Res. 4 (1970) 571

    Google Scholar 

  88. Fletcher, R. D.; Schneider, G.; Labant, M.; Albertson, J.N.: An in vitro technique for measuring cell adhesion to rigid materials. J. Dent. Res. 58 (1979) 1750

    Google Scholar 

  89. Schröder, A.; Pohler, O.; Suttner, P.: Gewebereaktion auf ein Titan-Hohlzylinderimplantat mit Titan-Spritzschichtoberfläche. Schw. Mschr. Zahnheilk. 86 (1976) 713

    Google Scholar 

  90. Steinemann, S. G.; Mäusli, P.-A.: Titanium alloys for surgical implants — biocompatibility from physicochemical principles. Sixth World Conf. on Titanium, France 1988

    Google Scholar 

  91. Steinhäuser, E.: Bone screws and plates in orthognathic surgery. Int. J. Oral Surg. 11 (1982) 209

    Google Scholar 

  92. Steinhäuser, E.: Erfahrungen mit dem Titangitter als temporäres Fremdimplantat zur Wiederherstellung bei Unterkieferdefekten. Dtsch. zahnärztl. Z. 32 (1977) 523

    Google Scholar 

  93. Plitz, W.: Wie beeinträchtigen osteoinduktive Oberflächenstrukturen die Gestaltfestigkeit von Endoprothesen. 7. DVM-Vortragsreihe Implantate (1988) 134

    Google Scholar 

  94. Schmidt, R. F.; Thews, G.: Physiologie des Menschen, Kap. 16: Funktionen des Blutes. 20. Aufl. Berlin: Springer 1980

    Google Scholar 

  95. Gerlach, E.; Moser, K.; Deutsch, E.; Willmanns, W.: Erythrocytes, thrombocytes, leukocytes. Recent advances in membrane and metabolic research. Stuttgart: Thieme 1973

    Google Scholar 

  96. Wranglen, G.: Korrosion und Korrosionsschutz. Berlin: Springer 1985

    Google Scholar 

  97. Lemm, W. et al.: Biodegradation of some biomaterials in vitro. Proc. Europ. Soc. Art. Organs 7 (1980) 86

    Google Scholar 

  98. Imai, Y. et al.: Biodegradation of polymeric materials. Trans. Soc. Biomat. 3 (1979) 84

    Google Scholar 

  99. Weimer, E.; Schaldach, M.: Biodegradation von Polyethylen und Polyäther-Polyurethan. Biomed. Techn. 29 (1984) 218–225

    Google Scholar 

  100. Dunken, H.: Physikalische Chemie der Glasoberfläche. Leipzig (1981)

    Google Scholar 

  101. Nossel, H.C.: Assessment of activation of coagulation and platelets in vivo. In: Salzman, E. W. (ed.): Interaction of the blood with natural and artificial surfaces. New York: Marcel Dekker (1981) 171–184

    Google Scholar 

  102. Andrade, J. D.: Principles of protein adsorption. In: Andrade J. D. (ed.): Surface and interfacial aspects of biomedical polymers. New York, London: Plenum Press, Bd. 2 (1985) 1–80

    Google Scholar 

  103. Park, K.; Gerndt, S.J.; Park, H.: Patchwise adsorption of fibrinogen on glass surfaces and its implication in platelet adhesion. J. Colloid Interface Science 125 (1988) 702–711

    Google Scholar 

  104. Mosher, D. F.: Influence of proteins on platelet-surface interactions. In: Salzman, E. W. (ed.): Interaction of the blood with natural and artificial surfaces. New York: Marcel Dekker (1981) 85–102

    Google Scholar 

  105. Brash, J. L.: Protein interactions with artificial surfaces. In: Salzman, E. W. (ed.): Interaction of the blood with natural and artificial surfaces. New York: Marcel Dekker (1981) 37–60

    Google Scholar 

  106. Gölander, C.-G.; Kiss, E.: Protein adsorption on functionalized and ESCA-characterized polymer films studied by ellipsometry. J. Colloid Interface Science 121 (1988) 240–253

    Google Scholar 

  107. Baurschmidt, P.; Schaldach, M.: Alloplastische Materialien für den Herzklappenersatz. Biomed. Techn. 25 (1980) 89–95

    Google Scholar 

  108. Morrissey, B. W.: The adsorption and conformation of plasma proteins: a physical approach. Annals of the New York Academy of Science 283 (1977) 50

    Google Scholar 

  109. Kochwa, S.; Brownell, M.; Rosenfield, R. E.; Wasserman, L. R.: Adsorption of proteins by polystyrene particles. I. Molecular Unfolding and Acquired Immunogenicity of IgG. J. Immunology 99 (1967) 981

    Google Scholar 

  110. Vanholder; Ringoir: Bioincompatibility: an overview. The Intern. J. of Artificial Organs 12 (1989) 356–365

    Google Scholar 

  111. Nakahara, T.; Yoshida, F.: Mechanical effects on rates of hemolytis. J. Biom. Mat. Res. 20 (1986) 363–374

    Google Scholar 

  112. Anderson, G.H.; Hellums, J.D.; Moake, J.L.; Alfrey, C.P.: Platelet lysis and aggregation in shear fields. Blood Cells 4 (1978) 499–507

    Google Scholar 

  113. Benninghofen, A.; Werner, H. W.; Riedenauer, F. G.: Secondary ion mass spectrometry. New York: John Wiley & Sons (1987)

    Google Scholar 

  114. Andrade, J. D.: X-ray photoelectron spectroscopy. In: Andrade, J. D. (ed.): Surface and interfacial aspects of biomedical polymers. New York, London: Plenum Press, Bd. 1 (1985) 105–196

    Google Scholar 

  115. Knutson, K.; Lyman, D. J.: Surface infrared spectroscopy. In: Andrade, J. D. (ed.): Surface and interfacial aspects of biomedical polymers. New York, London: Plenum Press, Bd.1 (1985) 197–248

    Google Scholar 

  116. Cotton, T. M.: Surface enhanced Raman spectroscopy of biological macromolecules. In: Andrade, J. D. (ed.): Surface and interfacial aspects of biomedical polymers. New York, London: Plenum Press, Bd. 2 (1985)161–188

    Google Scholar 

  117. Hlady, V.; van Wagenen, R. A.; Andrade, J. D.: Total internal reflection intrinsic fluorescence (TIRIF) spectroscopy applied to protein adsorption. In: Andrade, J. D. (ed.): Surface and interfacial aspects of biomedical polymers. New York, London: Plenum Press, Bd. 2 (1985) 81–120

    Google Scholar 

  118. Test-Fibel Blutgerinnung. Boehringer Mannheim GmbH 1974

    Google Scholar 

  119. Augthun, M.; Brauner, A.; Kaden, P.; Mittermayer, Ch.: Möglichkeiten und Grenzen der Zellkultur. Z. für zahnärztl. Implantologie IV (1988) 228–231

    Google Scholar 

  120. Coleman, D. L.: In vitro blood materials interactions: a multitest approach. Ph. D. Dissertation, University of Utah 1980

    Google Scholar 

  121. Paar, D.; Maruhn, D.: Präzision teilautomatisierter Bestimmungen der Thromboplastinzeit bei unterschiedlichen Fibrinogenkonzentrationen. Das Ärztliche Laboratorium 20 (1974) 379–384

    Google Scholar 

  122. Kaiser, M. et al.: In vitro tests of thrombogenicity, protein adsorption and hemolytic properties of biomaterials. Proc. Europ. Soc. Artif. Organs 6 (1976) 203–206

    Google Scholar 

  123. Wilson, R. S.; Lelah, M.D.; Cooper, S. L.: Blood material interactions: assessment of in vitro and in vivo test methods. In: Williams, D. F. (ed.): Techniques of biocompatibility testing. Cleveland: CRC Press 1984

    Google Scholar 

  124. Kusserow, B.; Larrow, R.; Nichols, J.: Observations concerning prosthesis-induced thromboembolic phenomena made with a vivo embolus system. Trans. Amer. Soc. Artif. Int. Organs 16 (1970) 58

    Google Scholar 

  125. Whalen, R. L.; Jeffrey, D. L.; Norman, J. C.: A new method of in vivo screening of thromboresistant biomaterials utilizing flow measurement. Trans. Amer. Soc. Int. Organs 19 (1973)19

    Google Scholar 

  126. Harbauer, G.; Brauner, H.; Schaldach, M.: A simplified in vivo screening method of implant materials for blood compatibility. Proc. of Europ. Soc. Artif. Organs (ESAO) 2 (1975) 163

    Google Scholar 

  127. Lederman, D. M. et al.: The intravascular magnetic suspension of a test device for in vivo hemocompatibility evaluation of biomaterials. Trans. Amer. Soc. Artif. Int. Organs 22 (1976) 545

    Google Scholar 

  128. Gott, V. L.; Furuse, A.: Antithrombogenic surfaces, classification and in vivo evaluation. Fed. Proc. 30 (1971) 1679

    Google Scholar 

  129. Guidelines for blood-material interactions. Report of the National Heart, Lung, and Blood Institute Working Group. NIH Publication No. 85–2185, First ed. (1980)

    Google Scholar 

  130. Guidelines for blood-material interactions. Chap. 8: Species effects in testing materials and cardiovascular devices in experimental animals. Report of the National Heart, Lung, and Blood Institute Working Group. NIH Publication No. 85–2185, Revised Ed. (1985)

    Google Scholar 

  131. Andrade, J. D.; Smith, L. M.; Gregonis, D. E.: The contact angle and interface energetics. In: Andrade, J. D. (ed.): Surface and interfacial aspects of biomedical polymers. New York, London: Plenum Press, Bd. 1 (1985) 249–292

    Google Scholar 

  132. Eley, D.; Spivey, D.: The semiconductivity of organic substances, Part 6. Transactions of the Faraday Society 56 (1960) 1432

    Google Scholar 

  133. Szent-Györgi, A.: The study of energy-levels in biochemistry. Nature 148 (1941)157

    Google Scholar 

  134. Baurschmidt, P.; Schaldach, M.: The electrochemical aspects of the thrombogenicity of a material. J. Bioengineering 1 (1977) 261

    Google Scholar 

  135. Bolz, A.; Schaldach, M.: Entwicklung einer amorphen, halbleitenden Beschichtung zur Verbesserung der Blutverträglichkeit kardiovaskulärer Implantate. Biomed. Techn. 33 Ergbd. (1988) 175–176

    Google Scholar 

  136. Produktinformation der Biocompatibles Ltd., Brunel Science Park, Kingston Lane, Uxbridge, Middlesex, UB8 3PQ, GB

    Google Scholar 

  137. Sung Wan Kim; Ebert, C. D.; Lin, J. Y.; McRea, J. C.: Nonthrombogenic polymers: pharmaceutical approaches. J. Am. Soc. Artif. Intern. Organs 6 (1983) 76–87

    Google Scholar 

  138. Yasuda, H.: Plasma for modification of polymers. J. Macromolecular Sci.-Chem. A10 (1976) 383–420

    Google Scholar 

  139. McPherson, J.M.; Sawamura, S.; Armstrong, R.: An examination of the biological response to injectable, glutaraldehyde cross-linked collagen implants. J. Biom. Mat. Res. 20 (1986) 93–107

    Google Scholar 

  140. Morse, D.; Steiner, R.; Fernandez, J.: Guide to prosthetic cardiac valves. New York: Springer 1985

    Google Scholar 

  141. Lehmann, K.; Turina, M.: Gewinnung funktionsfähiger Endotholzellen aus Venen. Biomed. Techn. 33 Ergbd. (1988) 189–190

    Google Scholar 

  142. Mittermayer, Ch.; Breuers, W.; Richter, H.; Heiliger, R.; Klee, D.: Characterization of human endothelial cells on modified polymer surfaces. Biomed. Techn. 33 Ergbd. (1988) 23–26

    Google Scholar 

  143. Webster, J. G.: Encyclopedia of medical devices and instrumentation: vascular prosthesis. New York: John Wiley & Sons (1988) 2839–2847

    Google Scholar 

  144. Juran, J. M.; Gryna, F. M.; Bingham, R. S.: Quality control handbook. New York: McGraw-Hill 1974

    Google Scholar 

  145. Buckle, H.: Mikrohärteprüfung und ihre Anwendung. Stuttgart: Berliner Union 1960

    Google Scholar 

  146. Ashby, M. F.; Jones, D. R.: Ingenieurwerkstoffe. Berlin: Springer 1986

    Google Scholar 

  147. Ilschner, B.: Werkstoffwissenschaften. Berlin: Springer 1982

    Google Scholar 

  148. Buerger, M. J.: Crystal-structure analysis. New York: John Wiley & Sons 1960

    Google Scholar 

  149. Smits, F.M.: Measurement of sheet resistivities with the four-point-probe. The Bell Syst. Tech. Journal 37 (1958) 711

    Google Scholar 

  150. Greenaway, D. L.; Harbeke, G.: Optical properties and band structure of semiconductors. Oxford: Pergamon Press 1968

    Google Scholar 

  151. Mitra, S.S.; Nudelman, S.: Far infrared properties of solids. New York, London: Plenum Press 1970

    Google Scholar 

  152. Griffiths, P.R.; De Haseth, J.A.: Fourier transform infrared spectroscopy. New York: John Wiley & Sons 1986

    Google Scholar 

  153. Ratner, B. D.: Interface characterization of biomaterials by ESCA. Ann. Biomed. Eng. 11 (1983) 313–336

    Google Scholar 

  154. Cardona, M.; Ley, L.: Photoemission in solids I, II. Topics in applied physics, Bd.26, 27. Berlin: Springer 1979

    Google Scholar 

  155. Griep, S.; Ley, L.: Direct spectroscopic determination of the distribution of occupied gap states in a-Si:H. Journ. of Non-Crystalline Solids 59 & 60 (1983) 253

    Google Scholar 

  156. Leybold AG, Köln

    Google Scholar 

  157. Jede, R.; Peters, H.; Dünnebier, G.; Ganschow, O.; Kaiser, U.; Seifert, K.: Quantitative depth profile and bulk analysis with high dynamic range by electron gas sputtered neutral mass spectrometry. J. Vac. Sci. Technol. A 6 (4) (1988) 2271

    Google Scholar 

  158. Peters, H.; Skoda, L.; Crecelius, G.; Adrian, H.: Quantitative depth profile analysis of high-Tc-superconductors with sputtered neutral mass spectrometry (SNMS). Fresenius Zeitschrift für Analytische Chemie 333 (1989) 343–345

    Google Scholar 

  159. Schillalies, H.: Konzept einer SIMS-Apparatur zur Analyse der Sekundär-Ionen von Oberflächen. Leybold AG, 5 Köln 51, Bonner Str. 504

    Google Scholar 

  160. Wirth, A. et al.: Surface and interface analysis. Proc. ECASIA 85, 9 (1986) 157

    Google Scholar 

  161. Tura, J.M.; Wirth, A.: Metal analysis in human tissue and bone. VG Instruments SIMSLAB Application Note 1988

    Google Scholar 

  162. Golden, W. G.: Fourier transform infrared reflection-absorption spectroscopy. In: Ferraro, J. R., Basile, L. J. (eds.): Fourier transform infrared spectroscopy: applications to chemical systems, Bd. 4. New York, London: Academic Press (1985) 315

    Google Scholar 

  163. Baier, R. E.: The role of surface energy in thrombogenesis. Bull. N.Y. Acad. Med. 48 (1972) 257

    Google Scholar 

  164. Andrade, J. D.: Interfacial phenomena and biomaterials. Med. Instrum. 7 (1973) 110

    Google Scholar 

  165. Kortüm, G.: Lehrbuch der Elektrochemie. Weinheim: Chemie 1970

    Google Scholar 

  166. Morrison, S. R.: Electrochemistry at semiconductor and oxidized metal electrodes. New York: Plenum Press 1984

    Google Scholar 

  167. Vetter, K. J.: Elektrochemische Kinetik. Berlin: Springer 1961

    Google Scholar 

  168. Pankove, J. I.: Semiconductors and semimetals. Chap. 2. Orlando: Academic Press (1984) 51

    Google Scholar 

  169. Cardona, M.: Modulation spectroscopy. New York, London: Academic Press 1969

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Schaldach, M., Bolz, A. (1991). Biomaterialien. In: Hutten, H. (eds) Biomedizinische Technik 4. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-84181-1_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-84181-1_6

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-84182-8

  • Online ISBN: 978-3-642-84181-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics