Skip to main content

Brain Serotonin Subsystem Complexity and Receptor Heterogeneity: Therapeutic Potential of Selective Serotonin Agonists and Antagonists

  • Conference paper
Clinical Pharmacology in Psychiatry

Part of the book series: Psychopharmacology Series ((PSYCHOPHARM,volume 10))

Abstract

Gaddum and Picarelli (1957) initially suggested the existence of more than one serotonin (5-HT) receptor over 30 years ago. Subsequently, neurophysiological, pharmacological, and other investigative techniques provided evidence that 5-HT could act at presynaptic and postsynaptic sites and could be either excitatory or inhibitory in different systems; however, more definitive evidence of 5-HT receptor heterogeneity did not begin to emerge until the beginning of the last decade (Peroutka and Snyder 1979; Sanders-Bush 1988; Whitaker-Azmitia and Peroutka 1990). There is now molecular and functional evidence for the existence of eight 5-HT receptors, designated 5-HT1A-E, 5-HT2, 5-HT3 and 5-HT4; in addition, there is increasingly compelling data indicative of additional 5-HT receptor subtypes or subforms (Sanders-Bush 1988; Schmidt and Peroutka 1989; Frazer et al. 1990). While studies of the multiple 5-HT receptor subtypes and their signal transduction mechanisms have dominated many recent investigations of this neurotransmitter system, there have also been substantial advances in the development of selective receptor subtype agonists and antagonists with therapeutic potentials in a variety of neuropsychiatric disorders.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Albert VR, Allen JM, Joh TH (1987) A single gene codes for aromatic L-amino acid decarboxylase in both neuronal and non-neuronal tissues. J Biol Chem 262: 9404–9411

    PubMed  CAS  Google Scholar 

  • Andrade R, Nicoll RA (1987) Novel anxiolytics discriminate between postsynaptic serotonin receptors mediating different physiological responses on single neurons of the rat hippocampus. Naunyn Schmiedebergs Arch Pharmacol 336: 5–10

    Article  PubMed  CAS  Google Scholar 

  • Azmitia EC (1987) The CNS serotonergic system: progression toward a collaborative organization. In: Meltzer HY (ed) Psychopharmacology: the third generation of progress. Raven, New York, pp 61–74

    Google Scholar 

  • Barnes JM, Barnes NM, Costall B, Naylor RJ, Tyers MB (1989) 5-HT3 receptors mediate inhibition of acetylcholine release in cortical tissue. Nature 338:762–763

    Article  PubMed  CAS  Google Scholar 

  • Basse-Tomusk A, Rebec GV (1986) Ipsapirone depresses neuronal activity in the dorsal raphe nucleus and the hippocampal formation. Eur J Pharmacol 130: 141–143

    Article  PubMed  CAS  Google Scholar 

  • Berendsen HHG, Jenck F, Broekkamp CLE (1990) Involvement of 5-HT1c-receptors in drug-induced penile erections in rats. Psychopharmacology (Berl) 101: 57–61

    Article  CAS  Google Scholar 

  • Blue ME, Yagaloff KA, Mamounas LA, Hartig PR, Molliver ME (1988) Correspondence between 5-HT2 receptors and serotonergic axons in rat neocortex. Brain Res 453: 315–328

    Article  PubMed  CAS  Google Scholar 

  • Bowers MB (1987) The role of drugs in the production of schizophreniform psychoses and related disorders. In: Meltzer HY (ed) Psychopharmacology: the third generation of progress. Raven, New York, pp 819–823

    Google Scholar 

  • Carli M, Prontera C, Samanin R (1989) Evidence that central 5-hydroxytryptaminergic neurones are involved in the anxiolytic activity of buspirone. Br J Pharmacol 96: 829–836

    PubMed  CAS  Google Scholar 

  • Ceulemans DLS, Hoppenbrouwers M-LJA, Gelders YG, Reyntjens AJM (1985a) The influence of ritanserin, a serotonin antagonist, in anxiety disorders: a double-blind placebo-controlled study versus lorazepam. Pharmacopsychiatry 18: 303–305

    Article  PubMed  CAS  Google Scholar 

  • Ceulemans DLS, Gelders Y, Hoppenbrouwers M-L, Reyntjens A, Janssen P (1985b) Effect of serotonin antagonism in schizophrenia: a pilot study with setoperone. Psychopharmacology (Berl) 85: 329–332

    Article  CAS  Google Scholar 

  • Charney DS, Woods SW, Goodman WK, Heninger GR (1987) Serotonin function in anxiety. II. Effects of the serotonin agonist m-CPP in panic disorder patients and healthy subjects. Psychopharmacology (Berl) 92: 14–24

    Article  CAS  Google Scholar 

  • Charney DS, Goodman WK, Price LH, Woods SW, Rasmussen SA, Heninger GR (1988) Serotonin function in obsessive-compulsive disorder: a comparison of the effects of tryptophan and m-chlorophenylpiperazine in patients and healthy subjects. Arch Gen Psychiatry 45: 177–185

    PubMed  CAS  Google Scholar 

  • Cohn JB, Bowden CL, Fisher JG, Rodos J J (1986) Double-blind comparison of buspirone and clorazepate in anxious outpatients. Am J Med 80 Suppl 3B: 10–16

    Google Scholar 

  • Conrad LC, Leonard CM, Pfaff DW (1974) Connections of the median and dorsal raphe nuclei in the rat: an autoradiographic and degeneration study. J Comp Neurol 156: 179–205

    Article  PubMed  CAS  Google Scholar 

  • Consolazione A, Cuello AC (1982) CNS serotonin pathways. In: Osborne NN (ed) Biology of serotonergic transmission. Wiley, Chichester, pp 29–61

    Google Scholar 

  • Cortes R, Soriano E, Pazos A, Probst A, Palacios JM (1988) Autoradiography of antidepressant binding sites in the human brain: localization using [3H]imipramine and [3H]paroxetine. Neuroscience 27: 473–496

    Article  PubMed  CAS  Google Scholar 

  • Costall B, Domeney AM, Naylor RJ, Tyers MB (1987) Effects of the 5-HT3 receptor antagonist, GR38032F, on raised dopaminergic activity in the mesolimbic system of the rat and marmoset brain. Br J Pharmacol 92: 881–894

    PubMed  CAS  Google Scholar 

  • Costall B, Naylor RJ, Tyers MB (1990) The pharmacology of 5-HT3 receptors. Pharmacol Ther 47: 181–202

    Article  PubMed  CAS  Google Scholar 

  • Cowen PJ, Anderson IM, Grahame-Smith DG (1990) Neuroendocrine effects of azapirones. J Clin Psychopharmacol 10: 21S–25S

    PubMed  CAS  Google Scholar 

  • Csanalosi I, Schweizer E, Case WG, Rickels K (1987) Gepirone in anxiety: a pilot study. J Clin Psychopharmacol 7: 31–33

    Article  PubMed  CAS  Google Scholar 

  • Curzon G, Kennett GA (1990) m-CPP: a tool for studying behavioral responses associated with 5-HT1C receptors. Trends Pharmacol Sci 11:181–182

    Article  PubMed  CAS  Google Scholar 

  • Darmon MC, Grima B, Cash CD, Maitre M, Mallet J (1986) Isolation of a rat pineal gland cDNA clone homologous to tyrosine and phenylalanine hydroxylases. FEBS Lett 206: 43–46

    Article  PubMed  CAS  Google Scholar 

  • Darmon MC, Guibert B, Leviel V, Ehret M, Maitre M, Mallet J (1988) Sequence of two mRNAs encoding active rat tryptophan hydroxylase. J Neurochem 51: 312–316

    Article  PubMed  CAS  Google Scholar 

  • Davies MF, Deisz RA, Prince DA, Peroutka SJ (1987) Two distinct effects of 5-hydroxytryptamine on single cortical neurons. Brain Res 423: 347–352

    Article  PubMed  CAS  Google Scholar 

  • Descarries L, Audet MA, Doucet G, Garcia S, Oleskevich S, Seguela P, Soghomonian JJ, Watkins KC (1990) Morphology of central serotonin neurons: brief review of quantified aspects of their distribution and ultrastructural relationships. Ann NY Acad Sci 600: 81–92

    Article  PubMed  CAS  Google Scholar 

  • Donnelly CH, Murphy DL (1977) Substrate- and inhibitor-related characteristics of human platelet monoamine oxidase. Biochem Pharmacol 26: 853–858

    Article  PubMed  CAS  Google Scholar 

  • Eison AS, Eison MS, Stanley M, Riblet LA (1986) Serotonergic mechanisms in the behavioral effects of buspirone and gepirone. Pharmacol Biochem Behav 24: 701–707

    Article  PubMed  CAS  Google Scholar 

  • Eklund K, Dunhar GC, Pinder RM, Steffensen K (1985) Minaserin and imipramine in the treatment of elderly depressed patients. Acta Psychiatr Scand 72: 54–59

    Article  Google Scholar 

  • Engel G, Gothert M, Muller-Schweinitzer E, Schlicker E, Sistonen L, Stadler PA (1983) Evidence for common pharmacological properties of [3H]5-hydroxytryptamine binding sites, presynaptic 5-hydroxytryptamine autoreceptors in CNS and inhibitory presynaptic 5-hydroxytryptamine receptors on sympathetic nerves. Naunyn Schmiedebergs Arch Pharmacol 324: 116–124

    Article  PubMed  CAS  Google Scholar 

  • Engel G, Gothert M, Hoyer D, Schlicker E, Hillenbrand K (1987) Identity of inhibitory presynaptic 5-hydroxytryptamine (5-HT) autoreceptors in the rat brain cortex with 5-HT1B binding sites. Naunyn Schmiedebergs Arch Pharmacol 332: 1–7

    Article  Google Scholar 

  • Fozard JR, Gray J A (1989) 5-HT1c receptor activation: a key step in the initiation of migraine? Trends Pharmacol Sci 10(8):307–309

    Article  PubMed  CAS  Google Scholar 

  • Frazer A, Maayani S, Wolfe BB (1990) Subtypes of receptors for serotonin. Annu Rev Pharmacol Toxicol 30: 307–348

    Article  PubMed  CAS  Google Scholar 

  • Fritschy JM, Lyons WE, Molliver ME, Grzanna R (1988) Neurotoxic effects of p- chloroamphetamine on the serotoninergic innervation of the trigeminal motor nucleus: a retrograde transport study. Brain Res 473: 261–270

    Article  PubMed  CAS  Google Scholar 

  • Fuxe K, Calza L, Benfenati F, Zini I, Agnati LF (1983) Quantitative autoradiographic localization of [3H]imipramine binding sites in the brain of the rat: relationship to ascending 5-hydroxytryptamine neuron systems. Proc Natl Acad Sci USA 80: 3836–3840

    Article  PubMed  CAS  Google Scholar 

  • Gaddum JH, Picarelli ZP (1957) Two kinds of tryptamine receptor. Br J Pharmacol 12: 323–328

    CAS  Google Scholar 

  • Gelders Y, Vanden Bussche G, Reyntjens A, Janssen P (1986) Serotonin-S2 receptor blockers in the treatment of chronic schizophrenia. Clin Neuropharmacol 9 Suppl 4: 325–327

    Google Scholar 

  • Glaser T (1988) Ipsapirone, a potent and selective 5-HT1A-receptor ligand with anxiolytic and antidepressant properties. Drugs Future 13: 429–439

    Google Scholar 

  • Glitz DA, Pohl R (1991) 5-HT1A partial agonists: what is their future? Drugs 41:11–18

    Article  PubMed  CAS  Google Scholar 

  • Goa KL, Ward A (1986) Buspirone: a preliminary review of its pharmacological properties and therapeutic efficacy as an anxiolytic. Drugs 32: 114–129

    Article  PubMed  CAS  Google Scholar 

  • Graham D, Langer SZ (1988) The neuronal sodium-dependent serotonin transporter: studies with [3H]imipramine and [3H]paroxetine. In: Osborne NN, Hamon M (eds) Neuronal serotonin. Wiley, Chichester, pp 367–391

    Google Scholar 

  • Graham D, Esnaud H, Habert E, Langer SZ (1989) A common binding site for tricyclic and nontricyclic 5-hydroxytryptamine uptake inhibitors at the substrate recognition site of the neuronal sodium-dependent 5-hydroxytryptamine transporter. Biochem Pharmacol 38: 3819–3826

    Article  PubMed  CAS  Google Scholar 

  • Grenett HE, Ledley FD, Reed LL, Woo SL (1987) Full-length cDNA for rabbit tryptophan hydroxylase: functional domains and evolution of aromatic amino acid hydroxylases. Proc Natl Acad Sci USA 84: 5530–5534

    Article  PubMed  CAS  Google Scholar 

  • Hamik A, Peroutka SJ (1989) 1-(m-Chlorophenyl)piperazine (mCPP) interactions with neurotransmitter receptors in the human brain. Biol Psychiatry 25:569–575

    Article  PubMed  CAS  Google Scholar 

  • Hillegaart V, Hjorth S (1989) Median raphe, but not dorsal raphe, application of the 5-HT1A agonist 8-OH-DPAT stimulates rat motor activity. Eur J Pharmacol 160: 303–307

    Article  PubMed  CAS  Google Scholar 

  • Hillegaart V, Ahlenius S, Larsson K (1989) Effects of local application of 5-HT into the median and dorsal raphe nuclei on male rat sexual and motor behavior. Behav Brain Res 33: 279–286

    Article  PubMed  CAS  Google Scholar 

  • Hollander E, Fay M, Cohen B, Campeas R, Gorman JM, Liebowitz MR (1988) Serotonergic and noradrenergic sensitivity in obsessive-compulsive disorder: behavioral findings. Am J Psychiatry 145: 1015–1017

    PubMed  CAS  Google Scholar 

  • Hoyer D (1988) Functional correlates of serotonin 5-HT1 recognition sites. J Recept Res 8: 59–81

    PubMed  CAS  Google Scholar 

  • Hoyer D (1990) Serotonin 5-HT3, 5-HT4, and 5-HT-M receptors. Neuropsychopharmacology 3: 371–383

    PubMed  CAS  Google Scholar 

  • Hoyer D, Middlemiss DN (1989) Species differences in the pharmacology of terminal 5-HT autoreceptors in mammalian brain. Trends Pharmacol Sci 10: 130–132

    Article  PubMed  CAS  Google Scholar 

  • Hoyer D, Pazos A, Probst A, Palacios JM (1986a) Serotonin receptors in the human brain. I. Characterization and autoradiographic localization of 5-HT1A recognition sites: apparent absence of 5-HT1B recognition sites. Brain Res 376: 85–96

    Article  PubMed  CAS  Google Scholar 

  • Hoyer D, Pazos A, Probst A, Palacios JM (1986b) Serotonin receptors in the human brain. II. Characterization and autoradiographic localization of 5-HT1c and 5-HT2 recognition sites. Brain Res 376: 97–107

    Article  PubMed  CAS  Google Scholar 

  • Hoyer D, Waeber C, Pazos A, Probst A, Palacios JM (1988) Identification of a 5-HT1 recognition site in human brain membranes different from 5-HT1A, 5-HT1B and 5-HT1C sites. Neurosci Lett 85: 357–362

    Article  PubMed  CAS  Google Scholar 

  • Hsu YP, Powell JF, Sims KB, Breakefield XO (1989) Molecular genetics of the monoamine oxidases. J Neurochem 53: 12–18

    Article  PubMed  CAS  Google Scholar 

  • Jocobs BL, Wise WD, Taylor KM (1974) Differential behavioral and neurochemical effects following lesions of the dorsal or median raphe nuclei in rats. Brain Res 79: 353–361

    Article  Google Scholar 

  • Jacobs BL, Trimbach C, Eubanks EE, Trulson M (1975) Hippocampal mediation of raphe lesion- and PCPA-induced hyperactivity in the rat. Brain Res 94: 253–261

    Article  PubMed  CAS  Google Scholar 

  • Jones BJ, Costall B, Domeney AM, Kelly ME, Naylor RJ, Oakley NR, Tyers MB (1988) The potential anxiolytic activity of GR38032F, a 5-HT3-receptor antagonist. Br J Pharmacol 93: 985–993

    PubMed  CAS  Google Scholar 

  • Kahn RS, Wetzler S, Van Praag HM, Asnis GM, Strauman T (1988) Behavioral indiactions for serotonin receptor hypersensitivity in panic disorder. Psychiatry Res 25: 101–104

    Article  PubMed  CAS  Google Scholar 

  • Kennett GA, Curzon G (1988a) Evidence that hypophagia induced by m-CPP and TFMPP requires 5-HT1c and 5-HT1B receptors; hypophagia induced by RU24969 only requires 5-HT1B receptors. Psychopharmacology (Berl) 96: 93–100

    Article  CAS  Google Scholar 

  • Kennett GA, Curzon G (1988b) Evidence that m-CPP may have behavioral effects mediated by central 5-HT1c receptors. Br J Pharmacol 94: 137–147

    PubMed  CAS  Google Scholar 

  • Kennett GA, Whitton P, Shah K, Curzon G (1989) Anxiogenic-like effects of mCPP and TFMPP in animal models are opposed by 5-HT1c receptor antagonists. Eur J Pharmacol 164 (3): 445–454

    Article  PubMed  CAS  Google Scholar 

  • Kohler C, Steinbusch H (1982) Identification of serotonin and non-serotonin-containing neurons of the mid-brain raphe projecting to the entorhinal area and the hippocampal formation. A combined immunohistochemical and fluorescent retrograde tracing study in the rat brain. Neuroscience 7: 951–975

    Article  PubMed  CAS  Google Scholar 

  • Kosofsky BE, Molliver ME (1987) The serotoninergic innervation of cerebral cortex: different classes of axon terminals arise from dorsal and median raphe nuclei. Synapse 1: 153–168

    Article  PubMed  CAS  Google Scholar 

  • Kovachich GB, Aronson CE, Brunswick DJ, Frazer A (1988) Quantitative autoradiography of serotonin uptake sites in rat brain using [3H]cyanoimipramine. Brain Res 454: 78–88

    Article  PubMed  CAS  Google Scholar 

  • Lader MH (1991) Ondansetron in the treatment of anxiety. In: The role of ondansetron, a novel 5-HT3 antagonist, in the treatment of psychiatric disorders. 5th World Congress of Biological Psychiatry, Satellite Symposium, abstract book, pp 17–19

    Google Scholar 

  • Ledley FD, Grenett HE, Bartos DP, van Tuinen P, Ledbetter DH, Woo SL (1987) Assignment of human tryptophan hydroxylase locus to chromosome 11: gene duplication and translocation in evolution of aromatic amino acid hydroxylases. Somat Cell Mol Genet 13: 575–580

    Article  PubMed  CAS  Google Scholar 

  • Lesch KP (1991) The ipsapirone/5-HT1A receptor challenge in anxiety disorders and depression. In: Stahl SM, Gastpar M, Keppel Hesselink J, Traber J (eds) Serotonin 1A receptors in depression and anxiety. New York, Raven, pp 135–162

    Google Scholar 

  • Lesch KP, Hoh A, Disselkamp-Tietze J, Wiesmann M, Osterheider M, Schulte HM (1991) 5-Hydroxytryptamine1A receptor responsivity in obsessive-compulsive disorder: comparison of patients and controls. Arch Gen Psychiatry 48:540–547

    PubMed  CAS  Google Scholar 

  • Mamounas LA, Molliver ME (1988) Evidence for dual serotonergic projections to neocortex: Axons from the dorsal and median raphe nuclei are differentially vulnerable to the neurotoxin p-chloroamphetamine (PCA). Exp Neurol 102: 23–36

    Article  PubMed  CAS  Google Scholar 

  • Marcusson JO, Bergstrom M, Eriksson K, Ross SB (1988) Characterization of [3H]paroxetine binding in rat brain. J Neurochem 50: 1783–1790

    Article  PubMed  CAS  Google Scholar 

  • Marcusson JO, Andersson A, Backstrom I (1989) Drug inhibition indicates a single-site model of the 5-HT uptake site/antidepressant binding site in rat and human brain. Psychopharmacology (Berl) 99: 17–21

    Article  CAS  Google Scholar 

  • Marsden CA (1988) 5-Hydroxytryptamine receptor subtypes and new anxiolytic drugs: an appraisal. In: Tyrer P (ed) Psychopharmacology of anxiety. Oxford University Press, Oxford, pp 3–27

    Google Scholar 

  • McKenna DJ, Nazarali AJ, Hoffman AJ, Nichols DE, Mathis CA, Saavedra JM (1989) Common receptors for hallucinogens in rat brain: a comparative autoradiographic study using [125I]LSD and [125I]DOI, a new psychotomimetic radioligand. Brain Res 476: 45–56

    Article  PubMed  CAS  Google Scholar 

  • Meek JL, Lofstrandh S (1976) Tryptophan hydroxylase in discrete brain nuclei: comparison activity in vitro and in vivo. Eur J Pharmacol 37: 377–380

    Article  PubMed  CAS  Google Scholar 

  • Meltzer HY (1989) Clozapine: clinical advantages and biologic mechanisms. In: Schulz SC, Tamminga CA (eds) Schizophrenia: scientific progress. Oxford University Press, New York, pp 302–309

    Google Scholar 

  • Meltzer HY (1991) Studies of ondansetron in schizophrenia. In: The role of ondansetron, a novel 5-HT3 antagonist, in the treatment of psychiatric disorders. 5th World Congress of Biological Psychiatry, Satellite Symposium, abstract book, pp 25–27

    Google Scholar 

  • Molliver ME (1987) Serotonergic neuronal systems: what their anatomic organization tells us about function. J Clin Psychopharmacol 7 Suppl 6: 3S–23S

    Google Scholar 

  • Moore RY, Halaris AE (1975) Hippocampal innervation by serotonin neurons of the midbrain raphe in the rat. J Comp Neurol 164: 171–183

    Article  PubMed  CAS  Google Scholar 

  • Mueller EA, Murphy DL, Sunderland T (1985) Neuroendocrine effects of m-chlorophenylpiperazine, a serotonin agonist, in humans. J Clin Endocrinol Metab 61: 1179–1184

    Article  PubMed  CAS  Google Scholar 

  • Murphy DL, Mueller EA, Hill JL, Tolliver TJ, Jacobsen FM (1989) Comparative anxiogenic, neuroendocrine, and other physiologic effects of m-chlorophenylpiperazine given intravenously or orally to healthy volunteers. Psychopharmacology (Berl) 98: 275–282

    Article  CAS  Google Scholar 

  • Murphy DL, Pigott TA, Insel TR (1990a) Obsessive-compulsive disorder and anxiety. In: Burrows GD, Noyes R, Roth M (eds) Handbook of anxiety, vol 3. Elsevier, Amsterdam

    Google Scholar 

  • Murphy DL, Sims KB, Karoum F, de la Chapelle A, Norio R, Sankila E-M, Breakefield XO (1990b) Marked amine and amine metabolite changes in Norrie disease patients with an X-chromosomal deletion affecting monoamine oxidase. J Neurochem 54: 242–247

    Article  PubMed  CAS  Google Scholar 

  • Neijt HC, Karpf A, Schoeffter P, Engel G, Hoyer D (1988) Characterization of 5-HT3 recognition sites in membranes of NG 108-15 neuroblastoma-glioma cells with [3H]ICS 205-930. Naunyn Schmiedebergs Arch Pharmacol 337: 493–499

    Article  PubMed  CAS  Google Scholar 

  • O’Hearn E, Battaglia G, DeSouza EB, Kuhar MJ, Molliver ME (1988) Methylenedioxyamphetamine (MDA) and methylenedioxymethamphetamine (MDMA) cause selective ablation of serotonergic axon terminals in forebrain: immunocytochemical evidence for neurotoxicity. J Neurosci 8: 2788–2803

    PubMed  Google Scholar 

  • Pazos A, Palacios JM (1985) Quantitative autoradiographic mapping of serotonin receptors in the rat brain. I. Serotonin-1 receptors. Brain Res 346: 205–230

    Article  PubMed  CAS  Google Scholar 

  • Pazos A, Cortes R, Palacios JM (1985) Quantitative autoradiographic mapping of serotonin receptors in the rat brain. II. Serotonin-2 receptors. Brain Res 346: 231–249

    Article  PubMed  CAS  Google Scholar 

  • Pazos A, Probst A, Palacios JM (1987) Serotonin receptors in the human brain. III. Autoradiographic mapping of serotonin-1 receptors. Neuroscience 21: 97–122

    Article  PubMed  CAS  Google Scholar 

  • Peroutka SH, McCarthy BG (1989) Sumatriptan (GR 43175) interacts selectively with 5-HT1B and 5-HT1D binding sites. Eur J Pharmacol 163: 133–136

    Article  PubMed  CAS  Google Scholar 

  • Peroutka SJ, Snyder SH (1979) Multiple serotonin receptors: differential binding of 3H-serotonin, 3H-lysergic acid diethylamide and 3H-spiroperidol. Mol Pharmacol 16: 687–699

    PubMed  CAS  Google Scholar 

  • Peroutka SJ, Switzer JA, Hamik A (1989) Identification of 5-hydroxytryptamine1D binding sites in human brain membranes. Synapse 3: 61–66

    Article  PubMed  CAS  Google Scholar 

  • Plenge P, Mellerup ET, Laursen H (1990) Regional distribution of the serotonin transport complex in human brain, identified with 3H-paroxetine, 3H-citalopram and 3H- imipramine. Prog Neuropsychopharmacol Biol Psychiatry 14: 61–72

    Article  PubMed  CAS  Google Scholar 

  • Raiteri M, Maura G, Bonanno G, Pittaluga A (1986) Differential pharmacology and function of two 5-HT1 receptors modulating transmitter release in rat cerebellum. J Pharmacol Exp Ther 237: 644–648

    PubMed  CAS  Google Scholar 

  • Ross SB (1987) Distribution of the two forms of monoamine oxidase within monoaminergic neurons of the guinea pig brain. J Neurochem 48: 609–614

    Article  PubMed  CAS  Google Scholar 

  • Shaller CF, Czupryna J, Salama AI (1990) 5-HT2 receptor blockade by ICI 169,369 and other 5-HT2 antagonists modulates the effects of D-2 dopamine receptor blockade. J Pharmacol Exp Ther 253:1162–1170

    Google Scholar 

  • Sanders-Bush E (1988) The serotonin receptors. Humana, Clifton

    Google Scholar 

  • Schmidt AW, Peroutka SJ (1989) 5-Hydroxytryptamine receptor ‘families’. FASEB J 3:2242–2249

    PubMed  CAS  Google Scholar 

  • Schuckit MA (1984) Clinical studies of buspirone. Psychopathology 17 Suppl 3: 61–68

    Article  Google Scholar 

  • Shirota K, Fujisawa H (1988) Purification and characterization of aromatic L-amino acid decarboxylase from rat kidney and monoclonal antibody to the enzyme. J Neurochem 51: 426–434

    Article  PubMed  CAS  Google Scholar 

  • Sims KB, de la Chapelle A, Norio R, Sankila E-M, Hsu Y-PP, Rinehart WB, Corey TJ, Ozelius L, Powell JF, Brans G, Gusella JF, Murphy DL, Breakefield XO (1989a) Monoamine oxidase deficiency in males with an X chromosome deletion. Neuron 2: 1069–1076

    Article  PubMed  CAS  Google Scholar 

  • Sims KB, Ozelius L, Corey T, Rinehart WB, Liberfarb R, Haines J, Chen WJ, Norio R, Sankila E, de la Chapelle A, Murphy DL, Gusella J, Breakefield XO (1989b) Norrie disease gene is distinct from the monoamine oxidase genes. Am J Hum Genet 45: 424–434

    CAS  Google Scholar 

  • Sinton CM, Fallon SL (1988) Electrophysiological evidence for a functional differentiation between subtypes of the 5-HT1 receptor. Eur J Pharmacol 157: 173–181

    Article  PubMed  CAS  Google Scholar 

  • Sleight AJ, Pierce PA, Schmidt AW, Hekmatpanah CR, Peroutka SJ (1991) The clinical utility of serotonin receptor active agents in neuropsychiatry disease. In: Peroutka SJ (ed) Serotonin receptor subtypes: basic and clinical aspects. New York, Wiley, pp 211–227

    Google Scholar 

  • Sprouse JS, Aghajanian GK (1987) Electrophysiological responses of serotonergic dorsal raphe neurons to 5-HT1A and 5-HT1B agonists. Synapse 1: 3–9

    Article  PubMed  CAS  Google Scholar 

  • Takeuchi Y (1988) Distribution of serotonin neurons in the mammalian brain. In: Osborne NN, Hamon M (eds) Neuronal serotonin. Wiley, New York, pp 25–56

    Google Scholar 

  • Taylor DP (1988) Buspirone, a new approach to the treatment of anxiety. FASEB J 2: 2445–2452

    PubMed  CAS  Google Scholar 

  • Taylor DP (1989) Serotonin agents in anxiety. Ann NY Acad Sci 600: 545–557

    Article  Google Scholar 

  • Thorpe LW, Westlund KN, Kochersperger LM, Abell CW, Denney RM (1987) Immunocytochemical localization of monoamine oxidases A and B in human peripheral tissues and brain. J Histochem Cytochem 35: 23–32

    Article  PubMed  CAS  Google Scholar 

  • Titeler M, Lyon RA, Glennon RA (1988) Radioligand binding evidence implicates the brain 5-HT2 receptor as a site of action for LSD and phenylisopropylamine hallucinogens. Psychopharmacology (Berl) 94: 213–216

    Article  CAS  Google Scholar 

  • Traber J, Glaser T (1987) 5-HT1A receptor-related anxiolytics. Trends Pharmacol Sci 8:432–437

    Article  CAS  Google Scholar 

  • Tyers MB, Costall B, Domeney A, Jones BJ, Kelly ME, Naylor RJ, Oakley NR (1987) The anxiolytic activities of 5-HT3 antagonists in laboratory animals. Neurosci Lett 29 Suppl:S68

    Google Scholar 

  • Ugedo L, Grenhoff J, Svensson TH (1989) Ritanserin, a 5-HT2 receptor antagonist, activates midbrain dopamine neurons by blocking serotonergic inhibition. Psychopharmacology (Berl) 98: 45–50

    Article  CAS  Google Scholar 

  • Vandermaelen CP, Matheson GK, Wilderman RC, Patterson LA (1986) Inhibition of serotonergic dorsal raphe neurons by systemic and iontophoretic administration of buspirone, a non-benzodiazepine anxiolytic drug. Eur J Pharmacol 129: 123–130

    Article  PubMed  CAS  Google Scholar 

  • Waeber C, Dietl MM, Hoyer D, Probst A, Palacios JM (1988) Visualization of a novel serotonin recognition site (5-HT1D) in the human brain by autoradiography. Neurosci Lett 88: 11–16

    Article  PubMed  CAS  Google Scholar 

  • Wander TJ, Nelson A, Okazaki H, Richelson E (1987) Antagonism by neuroleptics of serotonin 5-HT1A and 5-HT2 receptors of normal human brain in vitro. Eur J Pharmacol 143: 279–282

    Article  PubMed  CAS  Google Scholar 

  • Whitaker-Azmitia PM, Peroutka SJ (1990) The neuropharmacology of serotonin. Ann NY Acad Sci 600: 1–718

    Article  Google Scholar 

  • Whitton P, Curzon G (1990) Anxiogenic-like effect of infusing 1-(3-chlorophenyl) piperazine (mCPP) into the hippocampus. Psychopharmacology (Berl) 100 (1): 138–140

    Article  CAS  Google Scholar 

  • Zohar J, Mueller EA, Insel TR, Zohar-Kadouch RC, Murphy DL (1987) Serotonergic responsivity in obsessive-compulsive disorder: comparison of patients and healthy controls. Arch Gen Psychiatry 44: 946–951

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1993 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Lesch, K.P., Aulakh, C.S., Murphy, D.L. (1993). Brain Serotonin Subsystem Complexity and Receptor Heterogeneity: Therapeutic Potential of Selective Serotonin Agonists and Antagonists. In: Gram, L.F., Balant, L.P., Meltzer, H.Y., Dahl, S.G. (eds) Clinical Pharmacology in Psychiatry. Psychopharmacology Series, vol 10. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-78010-3_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-78010-3_6

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-78012-7

  • Online ISBN: 978-3-642-78010-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics