Skip to main content

Electrophysiology of Salivary Acinar Cells: Microelectrode Studies

  • Chapter
Epithelial Secretion of Water and Electrolytes

Abstract

In 1955 Lundberg, using conventional Ling-Gerard microelectrodes, first recorded the intracellular membrane potential from acinar cells in the cat mandibular gland in vivo. Either parasympathetic or sympathetic nerve stimulation caused membrane hyperpolarization, which he termed the “secretory potential”. From subsequent studies (Lundberg 1957a,b,c) on the cat sublingual gland, he postulated that the stimulus-evoked secretory potentials were due to activation of an inwardly directed active transport mechanism for Cl-. Since subsequent microelectrode studies on stimulus-evoked potential responses in many salivary glands could not be explained by Lundberg’s proposition, however, it was postulated instead that the stimulus-evoked membrane response was due to activations of conductive pathways permeable to K+ and Na+ and of the electrogenic Na+ pump, located in the basolateral membrane (see Petersen 1980; Gallacher and Petersen 1983). Recently, Suzuki and Petersen (1985) suggested instead that the stimulus-evoked potential response might be due to activation of a K+-conductive pathway and the electrogenic Na+ pump in the basolateral membrane plus activation of a Cl--conductive pathway in the luminal membrane (see also Petersen and Gallacher 1988). This model was derived from one first postulated for the rectal gland of the dogfish (Hannafin et al. 1983).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Bundgaard M, Moller M, Poulsen JH (1977) Localization of sodium pumps in cat salivary glands. J Physiol (Lond) 273: 339–353

    CAS  Google Scholar 

  • Case RM, Hunter M, Novak I, Young JA (1984) The anionic basis of fluid secretion by the rabbit mandibular salivary gland. J Physiol (Lond) 349: 619–630

    CAS  Google Scholar 

  • Cook DI, Day ML, Champion MP, Young JA (1988) Ca2+ not cyclic AMP mediates the fluid secretory response to isoproterenol in the rat mandibular salivary gland: whole-cell patch clamp studies. Pflügers Arch 413: 67–76

    Article  PubMed  CAS  Google Scholar 

  • Emmelin N, Grampp W, Thesleff P (1980) Sympathetically evoked secretory potentials in the parotid gland of the cat. J Physiol (Lond) 302: 183–195

    CAS  Google Scholar 

  • Exley PM, Fuller CM, Gallacher DV (1986) Potassium uptake in the mouse submandibular gland is dependent on chloride and sodium and abolished by piretanide. J Physiol (Lond) 378: 97–108

    CAS  Google Scholar 

  • Findlay I (1984) A patch-clamp study of potassium channels and whole-cell currents in acinar cells of the mouse lacrimal gland. J Physiol (Lond) 350: 179–195

    CAS  Google Scholar 

  • Findlay I, Petersen OH (1985) Acetylcholine stimulates a Ca2+-dependent Cl- conductance in mouse lacrimal acinar cells. Pflügers Arch 403: 328–330

    Article  PubMed  CAS  Google Scholar 

  • Gallacher DV, Morris AP (1986) A patch-clamp study of potassium currents in resting and acetylcholine stimulated mouse submandibular acinar cells. J Physiol (Lond) 373: 379–395

    CAS  Google Scholar 

  • Gallacher DV, Petersen OH (1980) Electrophysiology of mouse parotid acini: effects of electrical flieds stimulation and ionophoresis of neurotransmitters. J Physiol (Lond) 305: 43–57

    CAS  Google Scholar 

  • Gallacher DV, Petersen OH (1983) Stimulus-secretion coupling in mammalian salivary glands. In: Young JA (ed) Gastrointestinal physiology, vol 4. University Park Press, Baltimore, pp 593–660 (International Review of Physiology, vol 42)

    Google Scholar 

  • Greger R, Schlatter E (1984) Mechanism of NaCl secretion in the rectal gland of spiny dogfish (Squalus acanthias) 1. Experiments in isolated in vitro perfused rectal gland tubules. Pflügers Arch 402: 63–75

    Article  PubMed  CAS  Google Scholar 

  • Greger R, Schlatter E, Goglein H (1985) Cl--channels in the apical cell membrane of the rectal gland “induced” by cAMP. Pflügers Arch 403: 446–448

    Article  PubMed  CAS  Google Scholar 

  • Hannafin J, Kinne-Saffran E, Friedmann D, Kinner R (1983) Presence of a sodium-potassium chloride cotransport system in the rectal gland of Squalus acanthias. J Membr Biol 75: 73–83

    Article  PubMed  CAS  Google Scholar 

  • Imai Y (1965a) Studies on the secretory mechanism of submaxillary gland of dog (part 1). J Physiol Soc Jpn 27: 304–312 (in Japanese)

    Google Scholar 

  • Imai Y (1965b) Studies on the secretory mechanism of submaxillary gland of dog (part 2). J Physiol Soc Jpn 27: 313–324 (in Japanese)

    Google Scholar 

  • Iwatsuki N, Nishiyama A (1982) Parotid acinar cells: ionic dependence of isoprenaline-evoked membrane potential changes. Pflügers Arch 393: 123–129

    Article  PubMed  CAS  Google Scholar 

  • Iwatsuki N, Maruyama Y, Matsumoto O, Nishiyama A (1985) Activation of Ca2+-dependent Cl- and K+ conductances in rat and mouse parotid acinar cells. Jpn J Physiol 35: 933–944

    Article  PubMed  CAS  Google Scholar 

  • Kagayama M, Nishiyama A (1974) Membrane potential and input resistance in acinar cells from cat and rabbit submaxillary glands in vivo: effect of autonomic nerve stimulation. J Physiol (Lond) 242: 157–172

    CAS  Google Scholar 

  • Katoh K, Nakasato M, Nishiyama A, Sakai M (1983) Activation of potassium transport induced by secretagogues in superfused submaxillary gland segments of rat and mouse. J Physiol (Lond) 341: 371–385

    CAS  Google Scholar 

  • Katoh K, Kaneko K, Nishiyama A (1986) Effects of adrenergic neurotransmitter on K transport in superfused segments of rat submaxillary gland. Pflügers Arch 406:1–5

    Article  PubMed  Google Scholar 

  • Lau KR, Case RL (1986) Chloride activity in mandibular salivary gland cells during secretion. Biomed Res 7 [Suppl 2]: 181–184

    CAS  Google Scholar 

  • Lundberg A (1955) The electrophysiology of the submaxillary gland of the cat. Acta Physiol Scand 35: 1–25

    Article  PubMed  CAS  Google Scholar 

  • Lundberg A (1957a) The secretory potentials in the sublingual gland of the cat. Acta Physiol Scand 40: 21–34

    Article  PubMed  CAS  Google Scholar 

  • Lundberg A (1957b) The mechanism of establishment of secretory potentials in sublingual gland cells. Acta Physiol Scand 40: 35–58

    Article  PubMed  CAS  Google Scholar 

  • Lundberg A (1957 c) Anionic dependence of secretion and secretory potentials in the perfused sublingual gland. Acta Physiol Scand 40: 101–112

    Article  PubMed  CAS  Google Scholar 

  • Lundberg A (1958) Electrophysiology of salivary glands. Physiol Rev 38: 21–40

    PubMed  CAS  Google Scholar 

  • Manganel M, Turner RJ (1988) Coupled Na+ — H+ exchange in rat parotid basolateral membrane vesicles. J Membr Biol 102: 247–254

    Article  PubMed  CAS  Google Scholar 

  • Martinez JR, Cassity N (1985) 36Cl-fluxes in dispersed rat submandibular acini: effects of acetylcholine and transport inhibitors. Pflügers Arch 403: 50–54

    Article  PubMed  CAS  Google Scholar 

  • Maruyama Y, Gallacher DV, Petersen OH (1983) Voltage and Ca2+-activated K+ channel in basolateral acinar cell membranes of mammalian salivary glands. Nature 302: 827–829

    Article  PubMed  CAS  Google Scholar 

  • Nauntofte B, Dissing S (1987) Stimulation-induced changes in cytosolic calcium in parotid acini. Am J Physiol 253: G290–G297

    PubMed  CAS  Google Scholar 

  • Nauntofte B, Poulsen JH (1986) Effects of Ca2+ and furosemide on Cl- transport and O2 uptake in rat parotid acini. Am J Physiol 251: C175–C185

    PubMed  CAS  Google Scholar 

  • Nishiyama A, Petersen OH (1974) Membrane potential and resistance measurement in acinar cells from salivary glands in vitro: effect of acetylcholine. J Physiol (Lond) 242: 173–188

    CAS  Google Scholar 

  • Nishiyama A, Katoh K, Saito Y, Wakui M (1980) Effect of neural stimulation on acinar cell membrane potentials in isolated pancreas and salivary gland segment. Membr Biochem 3:49–66

    Article  PubMed  CAS  Google Scholar 

  • Nishiyama A, Iwatsuki N, Takahashi H, Hayashi H, Katoh K (1988a) Potassium uptake evoked by cholinergic and β-adrenergic stimulation in submaxillary gland acinar cells. In: Davison JS, Shaffer EA (eds) Gastrointestinal and hepatic secretion. University Calgary Press, Calgary, pp 189–192

    Google Scholar 

  • Nishiyama A, Takahashi H, Hayashi H (1988b) Electrogenic Na pump activity evoked by sustained stimulation with acetylcholine in mouse salivary and lacrimal gland acinar cells. In: Wong PYD, Young JA (eds) Exocrine secretion. Hong Kong University Press, Hong Kong, pp 129–132

    Google Scholar 

  • Novak I, Young JA (1986) Two independent anion transport systems in rabbit mandibular salivary glands. Pflügers Arch 407: 649–656

    Article  PubMed  CAS  Google Scholar 

  • Ozawa T, Saito Y, Nishiyama A (1988a) Mechanism of uphill chloride transport of the mouse lacrimal acinar cells: studies with Cl--sensitive microelectrode. Pflügers Arch 412:509–515

    Article  PubMed  CAS  Google Scholar 

  • Ozawa T, Saito Y, Nishiyama A (1988b) Evidence for an anion exchanger in the mouse lacrimal gland acinar cell membrane. J Membr Biol 105: 273–280

    Article  PubMed  CAS  Google Scholar 

  • Palfrey HC, Rao MC (1983) Na/K/Cl co-transport and its regulation. J Exp Biol 106: 43–54

    PubMed  CAS  Google Scholar 

  • Pedersen GL, Petersen OH (1973) Membrane potential measurement in parotid acinar cells. J Physiol (Lond) 234: 217–227

    CAS  Google Scholar 

  • Petersen OH (1970a) Some factors influencing stimulation-induced release of potassium from the cat submandibular gland to fluid perfused through the gland. J Physiol (Lond) 208:431–447

    CAS  Google Scholar 

  • Petersen OH (1970b) The dependence of the transmembrane salivary secretory potential on the external potassium and sodium concentration. J Physiol (Lond) 210: 205–215

    CAS  Google Scholar 

  • Petersen OH (1971) Secretory transmembrane potentials in acinar cells from the cat submandibular gland during perfusion with a chloride-free sucrose solution. Pflügers Arch 323: 91–95

    Article  PubMed  CAS  Google Scholar 

  • Petersen OH (1973) Membrane potential measurement in mouse salivary gland cells. Experientia 26: 160–161

    Article  Google Scholar 

  • Petersen OH (1980) The electrophysiology of gland cells. Academic, London

    Google Scholar 

  • Petersen OH, Gallacher DV (1988) Electrophysiology of pancreatic and salivary acinar cells. Annu Rev Physiol 50: 65–80

    Article  PubMed  CAS  Google Scholar 

  • Petersen OH, Pedersen GL (1974) Membrane effects mediated by alpha- and beta-adrenoceptors in mouse parotid acinar cells. J Membr Biol 16: 353–362

    Article  PubMed  CAS  Google Scholar 

  • Petersen OH, Poulsen JH (1968) Secretory potential, potassium transport and secretion in the cat submandibular gland during perfusion with sulphate Locke’s solution. Experientia 24: 919–920

    Article  PubMed  CAS  Google Scholar 

  • Pirani D, Evans LAR, Cook DI, Young JA (1987) Intracellular pH in the rat mandibular salivary gland: the role of Na — H and Cl — HCO3 antiports in secretion. Pflügers Arch 408: 178–184

    Article  PubMed  CAS  Google Scholar 

  • Poulsen JH, Kristensen LO (1982) Is stimulation-induced uptake of sodium in rat parotid acinar cells mediated by a sodium/chloride co-transport system? In: Case RM, Garner A, Turnberg LA, Young JA (eds) Electrolyte and water transport across gastrointestinal epithelia. Raven, New York, pp 199–208

    Google Scholar 

  • Poulsen JH, Oakley B (1979) Intracellular potassium ion activity in resting and stimulated mouse pancreas and submandibular gland. Proc R Soc Lond [Biol] 204: 99–104

    Article  CAS  Google Scholar 

  • Roberts ML, Petersen OH (1978) Membrane potential and resistance changes in salivary gland acinar cells by microiontophoretic application of acetylcholine and adrenergic agonists. J Membr Biol 39: 297–312

    Article  PubMed  CAS  Google Scholar 

  • Roberts ML, Iwatsuki N, Petersen OH (1978) Parotid acinar cells: ionic dependence of acetylcholine-evoked membrane potential changes. Pflugers Arch 376: 159–167

    Article  PubMed  CAS  Google Scholar 

  • Saito Y, Ozawa T, Hayashi H, Nishiyama A (1987a) The effect of acetylcholine on chloride transport across the mouse lacrimal gland acinar cell membranes. Pflügers Arch 409: 280–288

    PubMed  CAS  Google Scholar 

  • Saito Y, Ozawa T, Nishiyama A (1987b) Acetylcholineinduced Na+ influx in the mouse lacrimal gland acinar cells: demonstration of multiple Na+ transport mechanisms by intracellular Na+ activity measurements. J Membr Biol 98: 135–144

    Article  PubMed  CAS  Google Scholar 

  • Saito Y, Ozawa T, Suzuki S, Nishiyama A (1988) Intracellular pH regulation in the mouse lacrimal gland acinar cells. J Membr Biol 101: 73–81

    Article  PubMed  CAS  Google Scholar 

  • Schneyer LH, Schneyer CA (1960) Electrolyte and inulin spaces of rat salivary glands and pancreas. Am J Physiol 199: 649–652

    PubMed  CAS  Google Scholar 

  • Schneyer LH, Yoshida Y (1969) Secretory potentials in rat submaxillary gland. Proc Soc Exp Biol Med 130: 190–196

    Google Scholar 

  • Simon JAW, Bank HL (1984) Freeze-fracture and lead ion tracer evidence for a paracellular fluid secretory pathway in rat parotid glands. Anat Rec 208: 69–80

    Article  Google Scholar 

  • Suzuki K, Petersen OH (1985) The effect of Na+ and Cl- removal and of loop diuretics on acetylcholine-evoked membrane potential changes in mouse lacrimal acinar cells. Q J Exp Physiol 70: 437–445

    PubMed  CAS  Google Scholar 

  • Trautmann A, Marty A (1984) Activation of Ca-dependent K channels by carbamoylcholine in rat lacrimal glands. Proc Natl Acad Sci USA 81: 611–615

    Article  PubMed  CAS  Google Scholar 

  • Turner RJ, George JN (1988) Cl-— HCO- 3 exchange is present with Na+/K+/Cr cotransport in rabbit parotid acinar basolateral membranes. Am J Physiol 254: C391–C396

    PubMed  CAS  Google Scholar 

  • Turner RJ, George JN, Baum BJ (1986) Evidence for a Na+/K+/Cl--cotransport system in basolateral membrane vesicles from the rabbit parotid. J Membr Biol 94: 143–152

    Article  PubMed  CAS  Google Scholar 

  • Wakui M, Nishiyama A (1980a) ACh-evoked complex membrane potentila changes in mouse submaxillary gland acini: a study employing channel blockers and atropine. Pflügers Arch 386: 251–259

    Article  PubMed  CAS  Google Scholar 

  • Wakui M, Nishiyama A (1980b) Ionic dependence of acetyl-choline equilibrium potential of acinar cells in mouse submaxillary gland. Pflügers Arch 386: 261–267

    Article  PubMed  CAS  Google Scholar 

  • Welsh MJ (1986) An apical-membrane chloride channel in human tracheal epithelium. Science 232: 1648–1650

    Article  PubMed  CAS  Google Scholar 

  • Welsh MJ, Smith PL, Frizzell RA (1982) Chloride secretion by canine tracheal epithelium: II. The cellular electrical potential profile. J Membr Biol 70: 227–238

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1990 Springer-Verlag Berlin · Heidelberg

About this chapter

Cite this chapter

Nishiyama, A., Hayashi, H., Takahashi, H., Saito, Y. (1990). Electrophysiology of Salivary Acinar Cells: Microelectrode Studies. In: Young, J.A., Wong, P.Y.D. (eds) Epithelial Secretion of Water and Electrolytes. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-75033-5_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-75033-5_13

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-75035-9

  • Online ISBN: 978-3-642-75033-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics