Skip to main content
Log in

Acetylcholine-Induced Na+ influx in the mouse lacrimal gland acinar cells: Demonstration of multiple Na+ transport mechanisms by intracellular Na+ activity measurements

  • Articles
  • Published:
The Journal of Membrane Biology Aims and scope Submit manuscript

Summary

In the isolated, superfused mouse lacrimal gland, intracellular Na+ activities (aNa i ) of the acinar cells were directly measured with double-barreled Na+-selective microelectrodes. In the nonstimulated conditionaNa i was 6.5±0.5 mM and membrane potential (V m ) was −38.9±0.4 mV. Addition of 1 mM ouabain or superfusion with a K+-free solution slightly depolarized the membrane and caused a gradual increase inaNa i . Stimulation with acetylcholine (ACh, 1 μM) caused a membrane hyperpolarization by about 20 mV and an increase inaNa i by about 9 mM in 5 min. The presence of amiloride (0.1 mM) reduced the ACh-induced increase inaNa i by approximately 50%, without affectingV m and input resistance in both nonstimulated and ACh-stimulated conditions. Acid loading the acinar cells by an addition/withdrawal of 20 mM NH4Cl or by replacement of Tris+-buffer saline solution with HCO 3 /CO2-buffered solution increasedaNa i by a few mM. Superfusion with a Cl-free NO 3 solution or 1 mM furosemide or 0.5 mM bumetanide-containing solution had little effect on the restingaNa i levels, however, it reduced the ACh-induced increase inaNa i by about 30%. Elimination of metabolite anions (glutamate, fumarate and pyruvate) from the superfusate reduced both the restingaNa i and the ACh-induced increase inaNa i .

The present results suggest the presence of multiple Na+ entry mechanisms activated by ACh, namely, Na+/H+ exchange, Na-K-Cl cotransport and organic substrate-coupled Na+ transport mechanisms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Alexander, J.H., Lennep, E.W. van, Young, J.A. 1972. Water and electrolyte secretion by the exorbital lacrimal gland of the rat studied by micropuncture and catheterization techniques.Pfluegers Arch. 337:299–309

    Google Scholar 

  • Aronson, P.S., Nee, J., Suhm, M.A. 1982. Modifier role of internal H+ in activating Na+-H+ exchanger in renal microvillus membrane vesicles.Nature (London) 299:161–163

    Google Scholar 

  • Brown, H.M., Owen, J.D. 1979. Micro ion-selective electrodes for intracellular ions.Ion-Selective Electrode Rev. 1:145–186

    Google Scholar 

  • Cassola, A.C., Mollenhauer, M., Fromter, E. 1983. The intracellular chloride activity of rat kidney proximal tubular cells.Pfluegers Arch. 399:259–265

    Google Scholar 

  • Dartt, D.A., Moller, M., Poulsen, J.H. 1981. Lacrimal gland electrolyte and water secretion in the rabbit: Localization and role of (Na++K+)-activated ATPase.J. Physiol. (London) 321:557–569

    Google Scholar 

  • Dufresne, M., Bastie, M.J., Vaysse, N., Creach, Y., Hollande, E., Ribet, A. 1985. The amiloride sensitive Na+/H+ antiport in guinea pig pancreatic acini: Characterization and stimulation by celrulein.FEBS Lett. 187:126–130

    Google Scholar 

  • Hellmessen, W., Christian, A.L., Fasold, H., Schulz, I. 1985. Coupled Na+-H+ exchange in isolated acinar cells from rat exocrine pancreas.Am. J. Physiol. 249:G125-G136

    Google Scholar 

  • Henniger, R.A., Schulte, B.A., Spicer, S.S. 1983. Immunolocalization of carbonic anhydrase isozymes in rat and mouse salivary and exorbital lacrimal glands.Anat. Rec. 207:605–614

    Google Scholar 

  • Herzog, V., Sies, H., Miller, F. 1976. Exocytosis in secretory cells of rat lacrimal gland. Peroxidase release from lobules and isolated cells upon cholinergic stimulation.J. Cell Biol. 70:692–706

    Google Scholar 

  • Iwatsuki, N., Petersen, O.H. 1978. Intracellular Ca2+ injection causes membrane hyperpolarization and conductance increase in lacrimal acinar cells.Pfluegers Arch. 377:185–187

    Google Scholar 

  • Kinsella, J.L., Aronson, P.S. 1980. Properties of the Na+-H+ exchanger in renal microvillus membrane vesicles.Am. J. Physiol. 238:F461-F469

    Google Scholar 

  • Kuijpers, G.A.J., Depont, J.J.H.H.M., Nooy, I.G.P. van, Fleuren-Jakobs, A.M.M., Bonting, S.L., Rodrigues De Miranda, J.F. 1984. Amiloride is a cholinergic antagonist in the rabbit pancreas.Biochim. Biophys. Acta 804:237–244

    Google Scholar 

  • Marty, A., Tan, Y.P., Trautmann, A. 1984. Three types of calcium-dependent channel in rat lacrimal glands.J. Physiol. (London) 357:293–325

    Google Scholar 

  • Mircheff, A.K., Lu, C., Conteas, C.N. 1983. Resolution of apical and basal-lateral membrane populations from rat exorbital gland.Am. J. Physiol. 245:G661-G667

    Google Scholar 

  • O'Doherty, J., Stark, R.J. 1983. A transcellular route for Nacoupled Cl transport in secreting pancreatic acinar cells.Am. J. Physiol. 245:G499-G503

    Google Scholar 

  • Parod, R.J., Leslie, B.A., Putney, J.W., Jr. 1980. Muscarinic and α-adrenergic stimulation of Na and Ca uptake by dispersed lacrimal cells.Am. J. Physiol. 239:G99-G105

    Google Scholar 

  • Parod, R.J., Putney, J.W., Jr. 1980. Stimulus-permeability coupling in rat lacrimal gland.Am. J. Physiol. 239:G106-G113

    Google Scholar 

  • Petersen, O.H., Maruyama, Y. 1984. Calcium-activated potassium channels and their role in secretion.Nature (London) 307:693–695

    Google Scholar 

  • Saito, Y., Ozawa, T., Hayashi, H., Nishiyama, A. 1985a. Acetylcholine-induced change in intracellular Cl activity of the mouse lacrimal acinar cells.Pfluegers Arch. 405:108–111

    Google Scholar 

  • Saito, Y., Ozawa, T., Hayashi, H., Nishiyama, A. 1985b. Cl and K activities in the mouse lacrimal acinar cells and the effect of secretagogues.J. Physiol. Soc. Jpn. 47:389

    Google Scholar 

  • Saito, Y., Ozawa, T., Hayashi, H., Nishiyama, A. 1987. The effect of acetylcholine on chloride transport across the mouse lacrimal gland acinar cell membranes.Pfluegers Arch. (in press)

  • Saito, Y., Ozawa, T., Nishiyama, A. 1986a. Multiple Na entry mechanisms in the mouse lacrimal gland acinar cells as studied with Na-selective microelectrode method.In: Gastrointestinal Secretion Symposium. July, 1986, Calgary, Alberta, Canada. The proceedings. (in press)

  • Saito, Y., Ozawa, T., Nishiyama, A. 1986b. Transcellular chloride transport by acinar cells of the mouse lacrimal gland.Proc. Int. Union Physiol. Sci. 16:p480

    Google Scholar 

  • Seow, K.T.F., Lingard, J.M., Young, J.A. 1986. Anionic basis of fluid secretion by rat pancreatic acini in vitro.Am. J. Physiol. 250:G140-G148

    Google Scholar 

  • Soltoff, S.P., Mandel, L.J. 1983. Amiloride directly inhibits the Na, K-ATPase activity of rabbit kidney proximal tubules.Science 220:957–959

    Google Scholar 

  • Steiner, R.A., Oehme, M., Ammann, D., Simon, W. 1979. Neutral carrier sodium ion-selective microelectrode for intracellular studies.Anal. Chem. 51:351–353

    Google Scholar 

  • Suzuki, K., Petersen, O.H. 1985. The effect of Na and Cl removal and of loop diuretics on acetylcholine-evoked membrane potential changes in mouse lacrimal acinar cells.Q. J. Exp. Physiol. 70:437–445

    Google Scholar 

  • Thomas, R.C. 1974. Intracellular pH of snail neurones measured with a new pH-sensitive glass micro-electrode.J. Physiol. (London) 238:159–180

    Google Scholar 

  • Vogh, B.P., Langham, M.R., Jr. 1981. The effect of furosemide and bumetanide on cerebrospinal fluid formation.Brain Res. 221:171–183

    Google Scholar 

  • Wright, E.M. 1984. Electrophysiology of plasma membrane vesicles.Am. J. Physiol. 246:F363-F372

    Google Scholar 

  • Yoshitomi, K., Fromter, E. 1984. Cell pH of rat proximal tubule in vivo and the conductive nature of peritubular HCO 3 (OH) exit.Pfluegers Arch. 402:300–305

    Google Scholar 

  • Zeuthen, T. 1980. How to make and use double-barreled ionselective microelectrodes.Curr. Topics Membr. Transp. 13:31–47

    Google Scholar 

  • Zeuthen, T. 1983. Ion activities in the lateral intercellular spaces of gallbladder epithelium transporting at low external osmolarities.J. Membrane Biol. 76:113–122

    Google Scholar 

  • Zeuthen, T., Machen, T. 1984. HCO 3 /CO2 stimulates Na+/H+ and Cl/HCO 3 exchange inNecturus gallbladder.In: Hydrogen Ion Transport in Epithelia. J.G. Forte, D.G. Warnock, and F.C. Rector, Jr., editors. pp. 97–108. Wiley, New York

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Saito, Y., Ozawa, T. & Nishiyama, A. Acetylcholine-Induced Na+ influx in the mouse lacrimal gland acinar cells: Demonstration of multiple Na+ transport mechanisms by intracellular Na+ activity measurements. J. Membrain Biol. 98, 135–144 (1987). https://doi.org/10.1007/BF01872126

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01872126

Key Words

Navigation