Skip to main content

A View of Psychopharmacology, Neuroscience, and the Major Psychoses

  • Conference paper
Neuropsychopharmacology

Abstract

This paper summarizes and highlights a few areas of neuropsychopharmacology. These areas of research have been selected because they have particular interest, involve the critical interaction between basic and clinical investigations, and may be relevant to the development of new drugs in the treatment of manic-depressive illness and schizophrenia.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Ahluwahlia P, Singhal RL, (1985) Kinetics of the uptake of monoamines into synatopsomes from rat brain: consequences of lithium treatment and withdrawal. Neuropharmacology 24: 213–720

    Google Scholar 

  • Allison JH, Blisner ME (1976) inhibition of the effect of lithium on brain inositol by atropine. Biochem Biophys Res Commun 68: 1332–1338

    Google Scholar 

  • Allison JH, Stewart MA (1971) Reduced brain inositol in lithium treated rats. Nature New Biol 233: 267–268

    Article  PubMed  CAS  Google Scholar 

  • Allison JH, Blisner ME, Holland WH, Hipps PP, Sherman WR (1976) Increase brain myoinositol 1-phosphate in lithium-treated rats. Biochem Biophys Res Commun 71 (2): 664– 670

    Google Scholar 

  • Aragon MC, Herrero E, Jimenez C (1987) Effects of systematically administered lithium tryptophan transport and exchange in plasma-membrane vesicles from rat brain. Neurochem Res 12: 439–444

    Article  PubMed  CAS  Google Scholar 

  • Asakura M, Tsukamoto T, Kubota H, Imafuku J, Ino M, Nishizaki J, Sato A, Shinbo K, Hasegawa K (1987) Role of serotonin in the regulation of beta-adrenoceptors by antidepressants. Eur J Pharmacol 141: 95–100

    Article  PubMed  CAS  Google Scholar 

  • AvissarS, Schreiber G, Danon A, Belmaker RH (1988) Lithium inhibits adrenergic and cholinergic increases in GTP binding in rat cortex. Nature 331: 440–442

    Article  Google Scholar 

  • Balogh DW, Merritt RD (1987) Visual masking and the schizophrenic spectrum: interfacing clinical and experimental methods. Schizophr Bull 13: 679–698

    PubMed  CAS  Google Scholar 

  • Ban TA, Lohrenz JJ, Lehmann HE (1961) Observation on the action of sernyl — a new psychotrophic drug. Can J Psychiatr 6: 150–156

    CAS  Google Scholar 

  • Baron M, Risch N, Hamburger R, Mandel B, Kushner S, Newman M, Drumer D, Belmaker RH (1987) Genetic linkage between X-chromosome markers and bipolar affective illness. Nature 326: 289–292

    Article  PubMed  CAS  Google Scholar 

  • BassettAS, McGillivray BC, Jones BD, PantzarJT (1988) Partial trisomy chromosome 5 cosegregating with schizophrenia. Lancet 1 (8589): 799–801

    Google Scholar 

  • Baxter LR Jr (1985) Can lithium carbonate prolong the antidepressant effect of sleep deprivation? Arch Gen Psychiatry 42: 635

    Article  PubMed  Google Scholar 

  • Baxter LR Jr, Liston EH, Schwartz JM, Altshuler LL, Wilkins JN, Richeimer S, Guze BH (1986) Prolongation of the antidepressant response to partial sleep deprivation by lithium. Psychiatry Res 19: 17–23

    Article  PubMed  Google Scholar 

  • Berggren U (1987) Effects of short-term lithium administration on tryptophan levels and 5- hydroxytryptamine synthesis in whole brain and brain regions in rats. J Neural Transm 69: 115–121

    Article  PubMed  CAS  Google Scholar 

  • Berrettini WH, Nürnberger JI Jr, Scheinin M, Seppala T, Linnoila M, Narrow W, Simmons- Ailing S, Gershon ES (1985) Cerebrospinal fluid and plasma monoamines and their metabolites in euthymic bipolar patients. Biol Psychiatry 20: 257–269

    Article  PubMed  CAS  Google Scholar 

  • Berridge MJ, Downes CP, Hanley MR (1982) Lithium amplifies agonist-dependent phosphatidylinositol responses in brain and salivary glands. Biochem J 206: 587–595

    PubMed  CAS  Google Scholar 

  • BlierP, De Montigny C (1985) Short-term lithium administration enhances serotonergic neurotransmission: electrophysiological evidence in the rat CNS. Eur J Pharmacol 113: 69–77

    Article  Google Scholar 

  • Bloom FE (1988) Neurotransmitters: past, present, and future directions. FASEB 2: 32–41

    CAS  Google Scholar 

  • Botstein D, White RL, Skolnick M, Davis RW (1980) Construction of a genetic linkage map in man using restriction fragment length polymorphisms. Am J Hum Genet 32: 314–331

    PubMed  CAS  Google Scholar 

  • Bowers MB, Heninger GR (1977) Lithium: clinical effects and cerebrospinal fluid acid monoamine metabolites. Commun Psychopharmacol 1: 135–145

    PubMed  CAS  Google Scholar 

  • Braff DL, Sacazzo DP (1988) The time course of information processing deficits in schizophrenia. Am J Psychiatry 142: 170–179

    Google Scholar 

  • Brunello N, Barbaccia ML, Chuang D, Costa E (1982) Down-regulation of beta-adrenergic receptors following repeated injections of desmethylimipramine: permissive role of serotonergic axons. Neuropharmacology 21: 1145–1149

    Article  PubMed  CAS  Google Scholar 

  • Bunney WE Jr, Garland-Bunney BL (1987) Mechanisms of action of lithium in affective illness: basic and clinical implications. In: Meitzer HY (ed) Psychopharmacology: the third generation in progress. Raven, New York, p 553–563

    Google Scholar 

  • Campbell IC, McKernan RM, Smokcum RWJ, Stephenson JD, Weeramanthri TB (1984) Effects of desipramine, phenoxybenzamine and yohimbine on beta-adrenoceptors and cyclic AMP production in the rat brain. Neuropharmacology 23: 1385–1388

    Article  PubMed  CAS  Google Scholar 

  • CappeliezP, White N, Duhamel JR (1982) Effect of serotonin depletion induced by p- chloroamphetamine on changes in rats’ activity levels produced by lithium. Neuropsycho- biology 8: 129–134

    Article  Google Scholar 

  • Carlsson A (1988) The current status of the dopamine hypothesis of schizophrenia. Neuropsychopharmacology 1: 179–186

    Article  PubMed  CAS  Google Scholar 

  • Casebolt TL, Jope RS (1989) Chronic lithium treatment reduces norepinephrine-stimulated inositol phospholipid hydrolysis in rat cortex. Eur J Pharmacol 140: 245–246

    Article  Google Scholar 

  • Charney DS, Price LH, Heninger GR (1986) Desipramine-yohimbine combination treatment of refractory depression. Arch Gen Psychiatry 43: 1155–1161

    Article  PubMed  CAS  Google Scholar 

  • Clineschmidt BV, Martin GE, Bunting PR (1982) Anticonvulsant activity of (+)-5methyl- 10,ll-dihydro-5H-dibenzo[a,d]cyclohepten-5,10-imine (MK-801), a substance with potent anticonvulsant, central sympathomimetic, and apparent anxiolytic properties. Drug Dev Res 2: 123–134

    Article  CAS  Google Scholar 

  • Collard KJ, Roberts MHT (1977) Effects of lithium on the elevation of forebrain 5-hydroxyindoles by tryptophan. Neuropharmacology 16: 671–673

    Article  PubMed  CAS  Google Scholar 

  • Contreras PC, Di Maggio DA, O’Donohue TL (1985) Evidence for an endogenous peptide ligand and antagonist for PCP receptors. Prog Clin Biol Res 192: 495–498

    PubMed  CAS  Google Scholar 

  • Crisostomo EA, Davis JN (1985) Beta-adrenergic receptor autoradiography in rats treated with desmethylimipramine. Soc Neurosci Abstr 11: 773

    Google Scholar 

  • Crossley DI (1984) The effects of idazoxan, an alpha-2 adrenoceptor antagonist in depression - a preliminary investigation. 9th IUPHAR congress, London, Abstract 1724 P

    Google Scholar 

  • Crosson B, Hughes CW (1987) Role of the thalamus in language: is it related to schizophrenic thought disorder? Schizophr Bull 13: 605–621

    PubMed  CAS  Google Scholar 

  • de Montigny C, Aghajanian GJ (1978) Tricyclic antidepressants: long-term treatment increases responsivity of rat forebrain neurons to serotonin. Science 202: 1303–1306

    Article  PubMed  Google Scholar 

  • de Montigny C, Grunberg F, Mayer A, Deschenes J-P (1981) Lithium induces rapid relief of depression in tricyclic antidepressant drug non-responders. Br J Psychiatry 138: 252–256

    Article  PubMed  Google Scholar 

  • de Montigny C, Elie R, Caille G (1985) Rapid response to the addition of lithium in iprindole- resistant unipolar depression: a pilot study. Am J Psychiatry 142: 220–223

    PubMed  Google Scholar 

  • Delgado PL, Charney DS, Price LH, Landis H, Aghajanian GK, HeningerGR (1988) Behavioral effects of acute tryptophan-depletion in depressed patients. 27th American College of Neuropsychopharmacology, 11-16 Dec 1988, San Juan, Puerto Rico Detera-Wadleigh SD, Berrettini WH, Goldin LR, Boorman D, Anderson S, Gershon ES

    Google Scholar 

  • Close linkage of c-Harvey-ras-l and the insulin gene to affective disorder is ruled out in three North American pedigrees. Nature 325:806–808

    Google Scholar 

  • Detera-Wadleigh SD, Goldin LR, Sherrington R, Encio I, de Miguel C, Berrittini W, GurlingH, Gershon ES (1989) Exclusion of linkage to 5q 11-13 in families with schizophrenia and other psychiatric disorders. Nature: 340: 391–393

    CAS  Google Scholar 

  • Domino EF, Kamenka JM (1988) Sigma and phencylidine-like compounds as molecular probes in biology, NPP Books, Ann Arbor MI

    Google Scholar 

  • Dudley M, Baron M (1989) The 5HT1A site is involved in the rapid down-regulation of cortical adrenoreceptors (ß-vec.) 22nd Winter Conference on Brain Research, 21 –28 Jan 1989, Snowbird, Utah

    Google Scholar 

  • Duman RS,Tallman JF (1988) Ontogeny and chronic antidepressant regulation of beta-1 and beta-2 adrenergic receptor messenger RNA in rat brain. Soc Neurosci Abstr, vol 14, part 2, p 1306

    Google Scholar 

  • Dumbrille-Ross A, Tang SW (1983) Noradrenergic and serotonergic input necessary for imipramine-induced changes in beta but not S2 receptor densities. Psychiatry Res 9:207– 215

    Google Scholar 

  • Ebstein RP, Lerer B, Shapira B, Shemesh Z, Moscovich DG, Kindler S (1988) Cyclic AMP second-messenger signal amplification in depression. Br J Psychiatry 152: 665–669

    Article  PubMed  CAS  Google Scholar 

  • Egeland JA, Gerhard DS, Pauls DL, Sussex JN, Kidd KK, Allen CR, HostetterAM, Housman DE (1987) Bipolar affective disorders linked to DNA markers on chromosome 11. Nature 325: 783–787

    Article  PubMed  CAS  Google Scholar 

  • Frazer A, Gudelsky G, Hartig P, Yocca F (1989) Regulation of central serotonergic responsiveness and subtypes of serotonin receptors. 22nd Winter Conference on Brain Research, 21–28 Jan 1989, Snowbird, Utah

    Google Scholar 

  • Friedman E, Wang H-Y (1988) Effect of chronic lithium treatment on 5-hydroxytryptamine autoreceptors and release of 5-[3H]hydroxytryptamine from rat brain cortical, hippo- campal, and hypothalamic slices. J Neurochem 50: 195–201

    Article  PubMed  CAS  Google Scholar 

  • Fyro B, Patterson V, Sedvall G (1975) The effect of lithium treatment on manic symptoms and levels of monoamine metabolites in cerebrospinal fluid of manic-depressive patients. Psychopharmacology 44: 99–103

    Article  CAS  Google Scholar 

  • Gelernter JE, Gejman PV, Detera-Wadleigh SD, Goldin LR, Berrittini WH, Gershon ES Restriction fragment length polymorphisms (RFLPs) show no linkage of bipolar affective disorder to the X-chromosome color blindness region in three pedigrees. 27th Annual Meeting American College of Neuropsychopharmacology 11–16 Dec 1988, San Juan, Puerto Rico

    Google Scholar 

  • Gershon ES (1980) Genetic studies of manic-depressive illness. Pharmacopsychiatry 13:55– 61

    Google Scholar 

  • Gershon ES, Berrettini W, Nürnberger J Jr, Goldin LR (1987) Genetics of affective illness. In: Meitzer HY (ed) Psychopharmacology the third generation in progress. Raven, New York, p481

    Google Scholar 

  • Hallcher LM, Sherman WR (1980) The effects of lithium ion and other agents on the activity of rayo-inositol-l-phosphatase from bovine brain. J Biol Chemistry 255(22): 10896– 10901

    Google Scholar 

  • Heal DJ, Jones SA, Buckett WR (1988) Administration of sibutramine HCl and other antidepressants including ECS decreases cortical beta-1 but not beta-2 adrenoceptors. Br J Pharmacol 94: 379

    Google Scholar 

  • Heninger GR,Charney DS, Sternberg DE (1983) Lithium carbonate augmentation of antidepressant treatment. Arch Gen Psychiatry 40: 1335–1342

    Article  Google Scholar 

  • Himmelhoch JM, Detre T, Kupfer DJ, Swartzburg M, Byck R (1982) Treatment of previously intractable depressions with tranylcypromine and lithium. J Ner Ment Dis 155:216– 220

    Google Scholar 

  • Hodgkinson S, Sherrington R, Gurling H, Marchbanks R, Redders S, Mallet J, Mclnnis M, Petursson H, Brynojolfsson J (1987) Molecular genetic evidence for heterogeneity in manic depression. Nature 325: 805–806

    Article  PubMed  CAS  Google Scholar 

  • Hotta I, Yamawaki S (1986) Lithium decreases 5HTi receptors but increases 5-HT-sensitive adenylate cyclase activity in rat hippocampus. Biol Psychiatry 21: 1382–1390

    Article  PubMed  CAS  Google Scholar 

  • Janowsky A, Okada F, Manier DH, Applegate CD, Sulser F, Steranka LR (1982) Role of serotonergic input in the regulation of beta-adrenergic receptor-coupled adenylate cyclase system. Science 218: 900–901

    Article  PubMed  CAS  Google Scholar 

  • Johnson RW, Reisine T, Spotnitz S, Weich N, Ursillo R, Yamamura HI (1980) Effects of desipramine and yohimbine on alpha-2 and beta adrenoreceptor sensitivity. Eur J Pharmacol 67: 123–127

    Article  PubMed  CAS  Google Scholar 

  • Kaufmann CA, De Lisi LE, Lehner T, Gilliam TC (1989) Physical mapping, linkage analysis of a putative schizophrenia locus on chromosome 5q. Schizophr Bull 15: 441–452

    PubMed  CAS  Google Scholar 

  • Kellar KJ (1987) Effects of electroconvulsive shock on noradrenergic and serotonergic receptors in rat brain. Pharmacopsychiatry 20: 30–34

    Article  PubMed  CAS  Google Scholar 

  • Kellar KJ, Stockmeier CA (1986) Effects of electroconvulsive shock and serotonin axon lesions on beta-adrenergic and serotonin-2 receptors in rat brain. Ann NY Acad Sei 462: 76–90

    Article  CAS  Google Scholar 

  • Kendall DA, Duman R, Slopis J, Enna SJ (1982) Influence of adrenocorticotropin hormone and yohimbine on antidepressant-induced declines in rat brain neurotransmitter receptor binding and function. J Pharmacol Exp Ther 222: 566–571

    PubMed  CAS  Google Scholar 

  • Kennedy JL, Giuffra LA, Moisés HW, Cavalli-Sforza LL, Pakstis AJ, Kidd JR, Castiglione CM, Sjogren B, Wetterberg L, Kidd KK (1988) Evidence against linkage of schizophrenia to markers on chromosome 5 in a northern Swedish pedigree. Nature 336: 167–170

    Article  PubMed  CAS  Google Scholar 

  • Klein E, Patel J, Zohar J (1987) Chronic lithium increases the phosphorylation of a 64K protein in rat brain. Brain Res 407: 312–316

    Article  PubMed  CAS  Google Scholar 

  • Knapp S, MandellAJ (1973) Short- and long-term lithium administration: effects on the brain’s serotonergic biosynthetic systems. Science 180: 645–647

    Article  PubMed  CAS  Google Scholar 

  • Lasagna L, Pearson JW (1965) Analgesic and psychotomimetic properties of dexoxadrol. Proc Soc Exp Biol Med 118: 352–354

    PubMed  CAS  Google Scholar 

  • Luby ED, Cohen BD, Rosenbaum G, Gottlieb JS, Kelley R (1969) Study of a new schizo- phrenomimetic drug - sernyl. Arch Neurol Psychiatry 81: 113–118

    Google Scholar 

  • Manji H, Brown JH (1987) The antidepressant effect of beta-adrenoreceptor subsensitivity: a brief review and clinical implications. Can J Psychiatry 32: 788–797

    PubMed  CAS  Google Scholar 

  • Manier DH, Gillespie DD, Steranka LR, Sulser F (1984) A pivotal role for serotonin (5HT) in the regulation of beta adrenoceptors by antidepressants: reversibility of the action of parachlorophenylalanine by 5-hydroxytryptophan. Experientia 40: 1223–1226

    Article  PubMed  CAS  Google Scholar 

  • McDonald JW, Silverstein FS, Johnston MV (1987) MK-801 protects the neonatal brain from hypoxic-ischemic damage. Eur J Pharmacol 140: 359–361

    Article  PubMed  CAS  Google Scholar 

  • McGhie A, Chapman JS (1961) Disorders of attention and perception in early schizophrenia. J Med Psychol 34: 103

    Article  CAS  Google Scholar 

  • Meitzer HY, Arora RC, Goodnick P (1983) Effect of lithium carbonate on serotonin uptake in blood platelets of patients with affective disorders. J Affective Disord 5: 215–221

    Article  Google Scholar 

  • Meitzer HY, Lowy M, Robertson A, Goodnick P, Perline R (1984) Effect of 5-hydroxytryptophan on serum Cortisol levels in major affective disorders. III. Effect of antidepressants and lithium carbonate. Arch Gen Psychiatry 41: 391–397

    Google Scholar 

  • MendlewiczJ, FleissJL, Fieve RR (1972) Evidence for X-linkage in the transmission of manic-depressive illness. JAMA 222 (13): 1624–1627

    Article  Google Scholar 

  • Mendlewicz J, Simpon P, Levy S, Charon F, Brocas H, Legros S, Vassart (1987) Polymorphic DNA marker on X chromosome and manic-depression. Lancet 2: 1230–1232

    Google Scholar 

  • Mendlewicz J et al. (1988) Molecular genetic approach in affective illness. Presented at the Collegium Internationale Neuropsychopharmacologicum, August 15–19, Munich, Germany

    Google Scholar 

  • Menkes HA, Baraban JM, Freed AN, Snyder SH (1986) Lithium dampens neurotransmitter response in smooth muscle: relevance to action in affective illness. Proc Natl Acad Sci USA 83: 5727–5730

    Article  PubMed  CAS  Google Scholar 

  • Minneman KP, Dibner MD, Wolfe BB, MolinoffPB (1979) Beta-1 and beta-2 adrenergic receptors in rat cerebral cortex are independently regulated. Science 204: 866–868

    Article  PubMed  CAS  Google Scholar 

  • Naccarato F, Ray RE, Wells WW (1974) Biosynthesis of myo-inositol in rat mammary gland isolation and properties of the enzymes. Arch Biochem Biophys 164: 194–201

    Article  PubMed  CAS  Google Scholar 

  • Nimgaonkar VL, Goodwin GM, Davies CL, Green AR (1985) Down-regulation of beta- adrenoceptors in rat cortex by repeated administration of desipramine, electroconvulsive shock and clenbuterol requires 5HT neurones but not 5HT. Neuropharmacology 24: 279–283

    Article  PubMed  CAS  Google Scholar 

  • OlneyJ, Price M, Salles KS, LabruyereJ, Friedich G (1987) MK-801 powerfully protects against TV-methyl aspartate neurotoxicity. Eur J Pharmacol 141: 357–361

    Article  Google Scholar 

  • OsmanOT, Rudorfer MV, Potter WZ (1989) Idazoxan: a selective alpha-2-antagonist and effective sustained antidepressant in two bipolar depressed patients. Arch Gen Psychiatry 46: 958–959

    Article  Google Scholar 

  • Pandey GH, Dysken MW, Garver DL, Davis JM (1979) Beta-adrenergic receptor function in affective illness. Am J Psychiatry 135: 675–678

    Google Scholar 

  • Patterson T, Spohn HE, Bogia DP, Hayes K (1987) Thought disorder in schizophrenia: cognitive and neuroscience approaches. Schizophr Bull 12: 460–472

    Google Scholar 

  • Paul SM, Crews FT (1980) Rapid desensitization of cerebral beta-adrenergic receptors induced by desmethylimipramine and phenoxybenzamine. Eur J Pharmacol 62: 349–350

    Article  PubMed  CAS  Google Scholar 

  • Perez-Cruet J, Murphy DL, Bunney WE (1971) Changes in synthesis rate of serotonin, dopamine and norepinephrine after withdrawal of chronic treatment with alpha methyl- tyrosine in rats. Clin Res 19: 735

    Google Scholar 

  • Peroutka SJ, Conn PJ, MacDermott A, Julius D (1989) The 5-HTlc receptor: from binding site to amino acid sequence. 22nd Winter Conference on Brain Research 21–28 Jan 1989, Snowbird, Utah

    Google Scholar 

  • Pinder RM (1985) Alpha-2-adrenoceptor antagonists as antidepressants. Drugs Future 10: 841–857

    Google Scholar 

  • Pinder RM, SitsenJMA (1987) Alpha-2-adrenoceptor antagonists as antidepressants: the search for selectivity. In: Dahl SG, Gram LF, Paul SM, Potter WZ (eds) Clinical pharmacology in psychiatry. Springer, Berlin, Heidelberg New York, pp 107–112

    Google Scholar 

  • PoitouP, Guerinot F, Bohuon C (1974) Effects of lithium on central metabolism of 5- hydroxytryptamine. Psychopharmacologia 38: 75–80

    Article  Google Scholar 

  • Price LH, ConwellY, Nelson C (1983) Lithium augmentation of combined neuroleptic- tricyclic treatment in delusion depression. Am J Psychiatry 140: 318–322

    CAS  Google Scholar 

  • Price LH, Charney DS, Heninger G (1985) Efficacy of lithium-tranylcypromine treatment in refractory depression. Am J Psychiatry 142: 619–623

    PubMed  CAS  Google Scholar 

  • Price LH, Charney DS, Heninger GH (1986) Variability of response to lithium augmentation in refractory depression. Am J Psychiatry 143: 1387–1392

    PubMed  CAS  Google Scholar 

  • Price LH, Charney DS, Delgado PL, Heninger GR (1989) Lithium treatment and serotonergic function: neuroendocrine and behavioral responses to intravenous tryptophan in affective disorder. Arch Gen Psychiatry 46: 13–19

    Article  PubMed  CAS  Google Scholar 

  • Racagni G, Brunello G (1984) Transynaptic mechanisms in the action of antidepressant drugs. Trends Pharmacol Sci 5: 527–531

    Article  CAS  Google Scholar 

  • Rasmussen K, Aghajanian GK (1988) Potency of antipsychotics in reversing the effects of a hallucinogenic drug on locus coeruleus neurons correlates with 5-HT2 binding affinity. Neuropsychopharmacology 1:101 –107

    Google Scholar 

  • Reich T, Clayton PJ, Winokur G (1969) Family history studies. V. The genetics of mania. Am J Psychiatry 125: 1358–1369

    Google Scholar 

  • Reisine T, Johnson R, Wiech N, Ursillo R, Yamamura HI (1982) Rapid desensitization of central beta-receptors and up-regulation of alpha-2-receptors following antidepressant treatment. In: Costa E, Racagni G (eds) Typical and atypical antidepressants: molecular mechanisms. Raven, New York, pp 63–67

    Google Scholar 

  • Schubert J (1973) Effects of chronic lithium treatment on monoamine metabolism in rat brain. Psychopharmacologia 32: 310–311

    Article  Google Scholar 

  • Scott J A, Crews FT (1983) Rapid decrease in rat brain beta adrenergic receptor binding during combined antidepressant alpha-2 antagonist treatment. J Pharmacol Exp Ther 224: 640–645

    PubMed  CAS  Google Scholar 

  • Sheard MH, Aghajanian GK (1970) Neuronally activated metabolism of brain serotonin: effect of lithium. Life Sci 9: 285–290

    Article  PubMed  CAS  Google Scholar 

  • Sherman WR, Leavitt AL, Honchar MP, Hallcher LM, Phillips BE (1981) Evidence that lithium alters phosphoinositide metabolism: chronic administration elevate primarily wjo-inositol-1 -phosphate in cerebral cortex of the rat. J Neurochem 36: 1947–1951

    Article  PubMed  CAS  Google Scholar 

  • Sherman WR, Gish BG, Honchar MP, Munsell LY (1986) Effects of lithium on phosphoinositide metabolism in vivo. Fed Proc 45: 2639–2646

    PubMed  CAS  Google Scholar 

  • Sherrington R, Brynjolfsson J, Petursson H, Potter M, Dudleston K, Barraclough B, WasmuthJ, Dobbs, M, Gurling H (1988) Localization of a susceptibility locus for schizophrenia on chromosome 5. Nature 336: 164–167

    CAS  Google Scholar 

  • Shopsin B, Gershon S, Goldstein M, Friedman E, Wilk S (1975) Use of synthesis inhibitors in defining a role for biogenic amines during imipramine treatment in depressed patients. Psychopharmacol Commun 1: 239–249

    PubMed  CAS  Google Scholar 

  • Shopsin B, Friedman E, Gershon S (1976) Parachlorophenylalinine reversal of tranylcypromine effects in depressed patients. Arch Gen Psychiatry 33: 811–819

    Article  PubMed  CAS  Google Scholar 

  • Shukla GS (1985) Combined lithium and valproate treatment and subsequent withdrawal: serotonergic mechanism of their interaction in discrete brain regions. Prog Neuropsycho- pharmacol Biol Psychiatry 9: 153–156

    Article  CAS  Google Scholar 

  • Simopoulos AM, Pinto A, Babikow PW, Kurland A, Savage C (1970) Psychotomimetic properties and therapeutic potentials of dexoxadrol on convalescing alcoholics. Dis Nerv Sys 203–207

    Google Scholar 

  • Snider RM, Fisher SK, Agranoff BW (1987) Inositide-linked second messengers in the central nervous system. In: Meltzer HY (ed) Psychopharmacology: the third generation in Progress, Raven, New York, p 317

    Google Scholar 

  • Snyder, SH (1987) Molecular strategies in neuropsychopharmacology: old and new. In: Meltzer HY (ed) Psychopharmacology: the third generation in progress. Raven, New York, p 17

    Google Scholar 

  • Stockmeier CA, Martino AM, Kellar KJ (1985) A strong influence of serotonin axons on beta-adrenergic receptors in rat brain. Science 230: 323–325

    Article  PubMed  CAS  Google Scholar 

  • Sulser F, Gillespie DD, Mirshra R, Manier DH (1984) Desensitization by antidepressants of central norepinephrine receptor systems coupled to adenylate cyclase. Ann NY Acad Sci 91–101

    Google Scholar 

  • Swerdlow NR, Koob GF (1987) Lesions of the dorsomedial nucleus of the thalamus, medial prefrontal cortex and pedunculopontine nucleus: effects on locomotor activity mediated by nucleus accumbens-ventral pallidal circuitry. Brain Res 412: 233 - 243

    Article  PubMed  CAS  Google Scholar 

  • Tagliamonte A, Tagliamonte P, Perez-Cruet P, Stern S, Gessa GL (1971) Effects of psychotropic drugs on tryptophan concentration in the rat brain. J Pharmacol Exp Ther 177: 475–480

    PubMed  CAS  Google Scholar 

  • Vatal M, Aiyar AS (1984) Phosphorylation of brain synaptosmal proteins in lithium-treated rats. Biochem Pharmacol 33: 829–83

    Article  PubMed  CAS  Google Scholar 

  • Vetulani J, Sulser F (1975) Action of various antidepressant treatments reduces reactivity of noradrenergic cyclic AMP-generating system in rat limbic forebrain. Nature 257: 495

    Article  PubMed  CAS  Google Scholar 

  • Wang HY, Friedman E (1988) Chronic lithium: desensitization of autoreceptors mediating serotonin release. Psychopharmacology 94: 312–314

    PubMed  CAS  Google Scholar 

  • White R, Lalouel J-M (1988) Chromosome mapping with DNA markers. Sci Am 258: 4048

    Article  Google Scholar 

  • Wiech NL, Ursillo RC (1980) Acceleration of desipramine-induces decrease of rat cortico- cerebral beta-adrenergic receptors by yohimbine. Commun Psychopharmacol 4: 95–100

    PubMed  CAS  Google Scholar 

  • Winokur G, Tanna VL (1969) Possible role of X-linked dominant factor in manic depressivedisease. Dis Nervous Sys 30: 89–94

    CAS  Google Scholar 

  • Worley PF, Heller WA, Snyder SH, Baraban JM (1988) Lithium blocks a phosphoinositide- mediated cholinergic response in hippocampal slices. Science 239: 1428–1429

    Article  PubMed  CAS  Google Scholar 

  • Wu JC, Bunney WE (1990) The biological basis of an antidepressant response to sleep deprivation and relapse: review and hypothesis. Am J Psychiatry 147: 14 — 21

    PubMed  CAS  Google Scholar 

  • Zhou GZ,Gong DW, Jian CC, Yao JL, Gao H, ZhuYX, Pan BS, Zhang AZ (1987) An endogenous ligand from human cerebrospinal fluid for the phencyclidine receptors. Acta Pharmacol Sin 8: 110–112

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1990 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Bunney, W.E., Bunney, B.G. (1990). A View of Psychopharmacology, Neuroscience, and the Major Psychoses. In: Bunney, W.E., Hippius, H., Laakmann, G., Schmauss, M. (eds) Neuropsychopharmacology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-74034-3_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-74034-3_2

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-74036-7

  • Online ISBN: 978-3-642-74034-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics