Skip to main content

Mechanisms of Failure of Synaptic Transmission During Anoxia

  • Conference paper
Cellular and Molecular Basis of Synaptic Transmission

Part of the book series: NATO ASI Series ((ASIH,volume 21))

Summary

Evidence from intracellular recording and voltage-clamping in hippocampal slices indicates that brief anoxia (2–4 min) strongly depresses excitability and synaptic potentials by raising K conductance and inactivating Ca-currents. Both effects could be caused by a rise in intracellular free Ca2+, but other explanations are not excluded.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Andersen P (1960) Interhippocampal impulses. Acta Physiol Scand 48: 178–208

    Article  PubMed  CAS  Google Scholar 

  • Atwater I, Dawson CM, Ribalet B and Rojas E (1979) Potassium permeability activated by intracellular calcium ion concentration in the pancreatic 0-cell. J Physiol 288: 575–588

    PubMed  CAS  Google Scholar 

  • Balestrino M, Aitken PG and Somjen GG (1986) The effects of moderate changes of extracellular K+ and Ca2+ on synaptic and neural function in the CA1 region of the hippocampal slice. Brain Res 377: 229–239

    Article  PubMed  CAS  Google Scholar 

  • Brooks CMcC and Eccles JC (1947) A study of the effects of anaesthesia and asphyxia on the monosynaptic pathway through the spinal cord. J Neurophysiol 10: 349–360

    PubMed  CAS  Google Scholar 

  • Brown DA and Griffith WH (1983) Persistent slow inward calcium current in voltage-clamped hippocampal neurones of the guinea-pig. J Physiol 337: 303–320

    PubMed  CAS  Google Scholar 

  • Castle NA and Haylett DG (1987) Effect of channel blockers on potassium efflux from metabolically exhausted frog skeletal muscle. J Physiol 383: 31–43

    PubMed  CAS  Google Scholar 

  • Cook DL and Hales CN (1984) Intracellular ATP directly blocks K+ channels in pancreatic /J-cells. Nature 311: 271–273.

    Article  PubMed  CAS  Google Scholar 

  • Eckert R and Chad JE (1984) Inactivation of Ca channels. Prog Biophys Mol Biol M: 215–267

    Google Scholar 

  • Fujiwara N, Higashi H, Shimoki K and Yoshimura M (1987) Effects of hypoxia on rat hippocampal neurones in vitro. J Physiol 384: 131–151

    PubMed  CAS  Google Scholar 

  • Glötzner F (1967) Intracelluläre Potentiale, EEG und corticale

    Google Scholar 

  • Gleichspannung an der sensomotorisehen Rinde der Katze bei akuter Hypoxie. Archiv Psychiat Nervenkr 210: 274–296

    Google Scholar 

  • Grossman RG and Williams VF (1971) Electrical activity and ultrastructure of cortical neurons and synapses in ischemia. In: Brierly JB and Meldrum BS (eds). Brain Hypoxia. JB Lippincott Co Philadelphia: 61–75

    Google Scholar 

  • Hansen AJ (1985) Effect of anoxia on ion distribution in the brain. Physiol Rev 65: 101–148.

    PubMed  CAS  Google Scholar 

  • Hansen AJ, Hounsgaard J and Jahnsen H (1982) Anoxia increases potassium conductance in hippocampal nerve cells. Acta Physiol Scand 115: 301–310

    Article  PubMed  CAS  Google Scholar 

  • Jahnsen H (1986) Responses to neurons in isolated preparations of the mammalian central nervous system. Prog Neurobiol 27: 351–372

    Article  PubMed  CAS  Google Scholar 

  • Johnston D, Hablitz JJ and Wilson WA (1980) Voltage clamp discloses slow inward current in hippocampal burst-firing neurones. Nature 286: 391–393

    Article  PubMed  CAS  Google Scholar 

  • Kakei M, Noma A and Shibasaki T (1985) Properties of adenosine-triphosphate-regulated potassium channels in guinea-pig ventricular cells. J Physiol 363: 441–462

    PubMed  CAS  Google Scholar 

  • Krnjevic K (1975) Coupling of neuronal metabolism and electrical activity. In: Ingvar DH and Lassen NA (eds). Brain Work: The coupling of function, metabolism and blood flow in the brain. Alfred Benzon Symposium VIII/Copenhagen Munsgaard: 65–78

    Google Scholar 

  • Krnjevic K, Cherubini E and Ben-Ari Y (1987) Effects of anoxia on synaptic transmission and calcium currents in immature hippocampus. Soc Neurosci Abstr 13: 1355

    Google Scholar 

  • Krnjevic K and Leblond J (1987) Mechanism of hyperpolarizing response of hippocampal cells in isolated slices to anoxia. J Physiol 382: 79 P

    Google Scholar 

  • Krnjevic K and Leblond J (1987b) Anoxia reversibly suppresses neuronal Ca-currents in rat hippocampal slices. Can J Physiol Pharmacol 65: 2157–2161

    Article  PubMed  CAS  Google Scholar 

  • Krnjevic K, Puil E and Werman R (1978a) EGTA and motoneuronal after potentials. J Physiol 275: 199–223

    PubMed  CAS  Google Scholar 

  • Lipton P and Whittingham TS (1979) The effect of hypoxia on evoked potentials in the in vitro hippocampus. J Physiol 287: 427–438

    PubMed  CAS  Google Scholar 

  • Lipton P and Whittingham TS (1984) Engery metabolism and brain slice function. In: Dingledine R (ed). Brain slices. Plenum Press New York: 113–153

    Google Scholar 

  • Morris ME, Krnjevic K and Leblond J (1987) Changes in extracellular [K+] and [Ca2+] evoked by anoxia in rat hippocampal slices. Soc Neurosci Abstr 13: 1355

    Google Scholar 

  • Noma A (1983) ATP-regulated K+ channels in cardiac muscle. Nature 305: 147–148

    Article  PubMed  CAS  Google Scholar 

  • Noma A and Shibasaki T (1985) Membrane current through adenosine- triphophate-regulated potassium channels in guinea-pig ventricular cells. J Physiol 363: 463–480

    PubMed  CAS  Google Scholar 

  • Porter EL (1912) Variations in irritability of the reflex arc. Variations under asphyxial conditions, with blood-gas determinations. Amer. J Physiol 31: 223–244

    Google Scholar 

  • Sanchez-Prieto J, Sihra TS and Nicholls DG (1987) Characterization of the exocytotic release of glutamate from guinea-pig cerebral cortical synaptosomes. J Neurochem 49: 58–64

    Article  PubMed  CAS  Google Scholar 

  • Speckmann E-J, Caspers H and Sokolov H (1970) Aktivitätsänderungen spinaler Neurone während und nach einer Asphyxie. Pflügers Arch 319 122–138

    Article  PubMed  CAS  Google Scholar 

  • Spruce AE, Standen NB and Stanfield PR (1985) Voltage-dependent ATP- sensitive potassium channels of skeletal muscle membrane. Nature 316: 736–738

    Article  PubMed  CAS  Google Scholar 

  • Sugar O and Gerard RW (1938) Anoxia and brain potentials. J. Neurophysiol 1: 558–572

    Google Scholar 

  • Trübe G, Rorsman P and Ohno-Shosaku T (1986) Opposite effects of tolbutamide and diazoxide on the ATP-dependent K+ channel in mouse pancreatic beta-cells. Pflügers Arch 407: 493–499

    Google Scholar 

  • van Harreveld, A (1944) Survival of reflex contraction and inhibition during cord asphyxiation. Amer J Physiol 141: 97–101

    Google Scholar 

  • Verworn M (1900) Ermüdung, Erschöpfung und Erholung der nervösen Centra des Rückenmarkes. Arch f (Anat) Physiol 1900 (Suppl): 152–176

    Google Scholar 

  • Yamamoto C and Kurokawa M (1970) Synaptic potentials recorded in brain slices and their modification by changes in the level of tissue ATP. Exp Brain Res 10: 159–170

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1988 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Krnjević, K., Leblond, J. (1988). Mechanisms of Failure of Synaptic Transmission During Anoxia. In: Zimmermann, H. (eds) Cellular and Molecular Basis of Synaptic Transmission. NATO ASI Series, vol 21. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-73172-3_18

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-73172-3_18

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-73174-7

  • Online ISBN: 978-3-642-73172-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics