Skip to main content

Effect of Extracellular Chloride Depletion on Non-synaptic Epileptiform Activities

  • Conference paper
  • First Online:
XXVI Brazilian Congress on Biomedical Engineering

Part of the book series: IFMBE Proceedings ((IFMBE,volume 70/2))

  • 1177 Accesses

Abstract

Changes in chloride homeostasis are associated with epilepsy. High intracellular levels of this ion promote increased neuronal excitability. It has been observed that the control of transmembrane fluxes of chloride ions involves the operation of channels, pumps and transporters, mechanisms that do not depend directly on the synaptic circuitry. However, there are still differences regarding the modulation of chloride during epileptiform activities. Thus, the present work investigated the extracellular depletion of chloride ions in the non-synaptic epileptiform activities (AENS) induced in hippocampal slices of Wistar rats by means of extracellular electrophysiological records in the dentate gyrus. The low extracellular chloride (7 mM) maneuver caused an increase in the frequency of firing in the first few minutes of perfusion, followed by changes in the extracellular electrical potential morphology. The analysis of the intrinsic optical signal (IOS) also showed a reduction of light transmittance during the maneuver. Changes in extracellular electrical potential were attributed to the possible occurrence of intracellular alkalosis during perfusion with low [Cl]o, with consequent development of a neuronal hyperexcitability.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kahle, K.T., Staley, K.J., Nahed, B.V., Gamba, G., Hebert, S.C., Lifton, R.P., Mount, D.B.: Roles of the cation-chloride cotransporters in neurological disease. Nat. Clin. Pract. Neurol. 4(9), 490–503 (2008)

    Article  Google Scholar 

  2. Huberfeld, G., Wittner, L., Clemenceau, S., Baulac, M., Kaila, K., Miles, R., RIVERA, C.: Perturbed chloride homeostasis and GABAergic signaling in human temporal lobe epilepsy. J. Neurosci. 27(37), 9866–9873 (2007)

    Google Scholar 

  3. Alvarez-Leefmans, F.X., Delpire, E.: Physiology and Pathology of Chloride Transporters and Channels in the Nervous System: From Molecules to Diseases, 1st edn. Elsevier, London (2009)

    Google Scholar 

  4. De Konink, Y.: Altered chloride homeostasis in neurological disorders: a new target. Curr. Opin. Pharmacol. 7(1), 93–99 (2007)

    Article  Google Scholar 

  5. Ben-Ari, Y.: Excitatory actions of GABA during development: the nature of the nurture. Nat. Rev. Neurosci. 3, 728–739 (2002)

    Article  Google Scholar 

  6. Almeida, A.C.G., Rodrigues, A.M., Scorza, F.A., Cavalheiro, E.A., Teixeira, H.Z., Duarte, M.A., Silveira, G.A., Arruda, E.Z.: Mechanistic hypotheses for nonsynaptic epileptiform activity induction and its transition from the interictal to ictal state: computational simulation. Epilepsia 49(7), 1–17 (2008)

    Google Scholar 

  7. Yamamoto, C., Kawai, N.: Generation of the seizure discharge in thin sections from guinea pig brain in chloride-free medium in vitro. Jpn. J. Physiol. 18, 620–631 (1968)

    Article  Google Scholar 

  8. Avoli, M., Drapeau, C., Perrealut, J., Louvel, J., Pumain, R.: Epileptiform activity induced by low chloride medium in the CA1 subfield of the hippocampal slice. J. Neurophysiol. 64, 1747–1757 (1990)

    Article  Google Scholar 

  9. Hochman, D.W., D’ambrosio, Janigro, D., Scwartzkroin, P.A.: Extracellular chloride and the maintenance of spontaneous epileptiform activity in rat hippocampal slices. J. Neurophysiol. (81), 49–59 (1999)

    Google Scholar 

  10. Hochman, D., Schwartzkroin, P.: Chloride-cotransport blockade desynchronizes neuronal discharge in the “epileptic” hippocampal slice. J. Neurophysiol. 83, 406–417 (2000)

    Article  Google Scholar 

  11. Schweitzer, J.S., Patrylo, P.R., Dudek, F.E.: Prolonged field bursts in the dentate gyrus: dependence on low calcium, high potassium, and nonsynaptic mechanisms. J. Neurophysiol. 68, 2016–2025 (1992)

    Article  Google Scholar 

  12. Somjen, G.G.: Ions in the Brain: Normal Function, Seizures, and Stroke. Oxford University Press, New York (2004)

    Google Scholar 

  13. Russell, J.M.: Sodium-potassium-chloride cotransport. Physiol. Rev. 80(1), 211–277 (2000)

    Article  Google Scholar 

  14. Almeida, A.C.G., Rodrigues, A.M., Duarte, M.A., Silveira, G.A., Scorza, F.A., Arida, R. M., Costa, J.C., Cavalheiro, E.A.: Biophysical aspects of the nonsynaptic epileptiform activity. In: Kannez, F.S. (ed.) Underlying Mechanisms of Epilepsy, vol. 1, pp. 189–218. Intech Open Access Publisher (2011)

    Google Scholar 

  15. De La Rosa, L.A., Vilariño, M., Vieytes, M.R., Botana, L.M.: Okadaic acid, a protein phosphatase inhibitor, stimulates the activity of Na+/H+ and Na+-independent Cl/HCO3 exchangers in human lymphocytes. Naunyn-Schmiedeberg’s Arch. Pharmacol. 365(1), 74–81 (2002)

    Article  Google Scholar 

  16. Raley-Susman, K.M., Sapolsky, R.M., Kopito, R.R.: Cl/HCO3 exchange function differs in adult and fetal rat hippocampal neurons. Brain Res. 614(2), 308–314 (1993)

    Article  Google Scholar 

  17. Leniger, T., Thöne, J., Wieman, M.: Topiramate modulates pH of hippocampal CA3 neurons by combined effects on carbonic anhydrase and Cl/HCO3—exchange. Br. J. Pharmacol. 142(5), 831–842 (2004)

    Article  Google Scholar 

  18. Bonnet, U., Wiemann, M., Bingmann, D.: CO2/HCO3 withdrawal from the bath medium of hippocampal slices: biphasic effect on intracellular pH and bioelectric activity of CA3-neurons. Brain Res. 796(2), 161–170 (1998)

    Article  Google Scholar 

  19. Hille, B.: Charges and potentials at the nerve surface: divalent ions and pH. J. Gen. Physiol. 51(2), 221–236 (1968)

    Article  Google Scholar 

  20. Carbone, E., Testa, P.L., Wanke, E.: Intracellular pH and ionic channels in the Loligo vulgaris giant axon. Biophys. J. 35(2), 393–413 (1981)

    Article  Google Scholar 

  21. Rodrigues, A.M., Santos, L.E.C., Covolan, L., Hamani, C., Almeida, A.C.G.: pH during non-synaptic epileptiform activity-computational simulations. Phys. Biol. 12(5), 56007 (2015)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the Brazilian agencies FAPEMIG, FAPESP, CNPq, PROCAD/CAPES, CAPES, FINEP and INCT of Translational Neuroscience (MCT/CNPq/FAPESP).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. G. Cecílio .

Editor information

Editors and Affiliations

Ethics declarations

Authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Cecílio, S.G., Santos, L.E.C., Vieira, D.A., Rocha, C.R.J., Rodrigues, A.M., Almeida, A.C.G. (2019). Effect of Extracellular Chloride Depletion on Non-synaptic Epileptiform Activities. In: Costa-Felix, R., Machado, J., Alvarenga, A. (eds) XXVI Brazilian Congress on Biomedical Engineering. IFMBE Proceedings, vol 70/2. Springer, Singapore. https://doi.org/10.1007/978-981-13-2517-5_84

Download citation

  • DOI: https://doi.org/10.1007/978-981-13-2517-5_84

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-13-2516-8

  • Online ISBN: 978-981-13-2517-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics