Skip to main content

The Pollen Grain

  • Chapter
Embryology of Angiosperms

Abstract

The pollen grain is the carrier of the male gametes or their progenitor cell, in higher plants. In a single unit, each grain contains all the genetic information required to specify an entire haploid plant organism (for example, pollen embryoids in tissue culture), or to unite with the female gamete at fertilization and form a diploid zygote and, hence, a new sporophyte. The male gametes, the sperm cells (or their progenitor, the generative cell) are housed entirely within the cytoplasm of the vegetative cell. This is dehydrated like a seed at maturity, and is filled with storage reserves. The vegetative cell is surrounded by a complex, intricately patterned outer wall, and its nucleus controls at least the initial growth and metabolism of the pollen tube following germination.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Afzelius BM (1955) On the fine structure of the pollen wall inClivia miniata. Bot Not 108:141–143

    Google Scholar 

  • Agababyan VS (1972) Ultrastructure of sporoderm of some primitive Angiospermae (in Russian). Bot Zh (Leningr) 57:955–959

    Google Scholar 

  • Ahokas H (1975) Male-sterile mutants of Barley II. Cytochemistry of non-mutant and msg6cf microspores and pollen. Hereditas 81:33–46

    Article  CAS  Google Scholar 

  • Ahokas H (1978) Cytoplasmic male sterility in Barley II. Physiology and anther cytology of msml. Herediatas 89:7–21

    Article  CAS  Google Scholar 

  • Albertsen MC, Palmer RC (1979) A comparative light and electron microscopic study of microsporo-genesis in male sterile (MSj) and male fertile soybeans (Glycine max L.). Am J Bot 66:253–265

    Article  Google Scholar 

  • Angold RE (1968) The formation of the generative cell in the pollen grain of Endymion nonscriptus. J Cell Sci 3:573–578

    PubMed  CAS  Google Scholar 

  • Ashford AE, Knox RB (1980) Characteristics of pollen diffusates and pollen-wall cytochemistry inpoplars. J Cell Sci 44:1–17

    PubMed  CAS  Google Scholar 

  • Atkinson AW, Gunning BES, John PCL (1972) Sporopollenin in the cell wall of Chlorella and other algae: Ultrastructure, chemistry, and incorporation of 14C-Acetate studied in synchronous culture. Planta 107:1–32

    Article  CAS  Google Scholar 

  • Audran JC, Bouillot J (1981) Sporoderm infrastructural and cytochemical modifications in cytoplasmic male sterile broad bean (Viciafaba L.). Acta Soc Bot Pol 50:223–226

    Google Scholar 

  • Audran JC, Willemse MTM (1982) Wall development and its auto fluorescence of sterile and fertile Vicia faba L. pollen. Protoplasma 110:106–111

    Article  Google Scholar 

  • Bailey IW (1960) Some useful techniques in the study and interpretation of pollen morphology. J Arnold Arbor 41:141–148

    CAS  Google Scholar 

  • Banerjee UC, Rowley JR, Alessio ML (1965) Exine plasticity during pollen grain maturation. J Palynol 1:70–89

    Google Scholar 

  • Barlow K (1978) A study of chromosomal male sterility in wheat. Ph D Thesis Univ N. S. W., Sydney

    Google Scholar 

  • Bar-Shalom D, Mattsson O (1977) Mode of hydration as an important factor in the germination of trinucleate pollen grains. Bot Tiddskr 71:245–251

    Google Scholar 

  • Barth OM (1965) Feinstruktur des Sporoderms einiger brasilianischer Mimosoiden-Polyaden. Pollen Spores 7:429–441

    Google Scholar 

  • Barth OM (1965) Feinstruktur des Sporoderms einiger brasilianischer Mimosoiden-Polyaden. Pollen Spores 35:651–655

    Google Scholar 

  • Bateson W, Punnett RC (1911) On the interrelation of genetic factors. J Genet 1:297–305

    Google Scholar 

  • Belin L, Rowley JR (1971) Demonstration of birch pollen allergen from isolated pollen grains using immunofluorescence and a single radial immunodiffusion technique. Intl Arch Allergy Appl Immunol 40:754–769

    Article  CAS  Google Scholar 

  • Bernhardt P, Calder DM (1981) The floral ecology ofAmyema pendula and A. quandang (Loran-thaceae). Bull Torrey Bot Club 108:213–230

    Article  Google Scholar 

  • Bornet E (1864) Recherches sur le Phucagrostis major Cavol. Ann Sci Nat Bot Biol Veg 5 1:5–51

    Google Scholar 

  • Brewbaker JL (1967) The distribution and phylogenetic significance of binucleate and trinucleate pollen grains in the angiosperms. Am J Bot 54:1069–1083

    Article  Google Scholar 

  • Brewbaker JL, Kwack BH (1974) The calcium-ion and substances influencing pollen growth. In: Linskens HF (ed) Pollen: Physiology and fertilization. North-Holland, Amsterdam, pp 143–151

    Google Scholar 

  • Brooks J, Shaw G (1978) Sporopollenin: A review of its chemistry, palaeochemistry, and geochemistry. Grana 17:91–97

    Article  Google Scholar 

  • Brummitt RK, Ferguson IK, Poole MM (1980) A unique and extraordinary pollen tube in the genus Crossandra (Acanthaceae). Pollen Spores 22:11–16

    Google Scholar 

  • Buchen B, Sievers A (1981) Sporogenesis and pollen grain formation. In: Kiermayer O (ed) Cyto-morphogenesis. Cell Biology Monographs 8:349–376. Springer, Vienna New York

    Google Scholar 

  • Carroll TW, Mayhew DE (1976) Anther and pollen infection in relation to pollen and seed transmissi-bility of two strains of barley stripe mosaic virus in barley. Can J Bot 54:1604–1621

    Article  Google Scholar 

  • Cass DD, Karas I (1975) Development of sperm cells in barley. Can J Bot 43:1051–1062

    Article  Google Scholar 

  • Cavolini (1806) On the flowering of Zostera oceanica Linn. Ann Bot 2:77–91

    Google Scholar 

  • Chandra S, Bhatnagar SP (1974) Reproductive biology of Triticum. II. Pollen germination, pollen tube growth, and its entry into the ovule. Phytomorphology 24:211–217

    Google Scholar 

  • Christensen JE, Horner HT (1974) Pollen pore development and its spatial orientation during micro-sporogenesis in the grass Sorghum bicolor. Am J Bot 61:604–623

    Article  Google Scholar 

  • Christensen JE, Lersten NR (1972) Pollen wall and tapetal orbicular wall development in Sorghum bicolor (Gramineae). Am J Bot 59:43–58

    Article  Google Scholar 

  • Chu C, Hu S (1981) The development and ultrastructure of wheat sperm cell. Sci Sin (in press)

    Google Scholar 

  • Clarke AE, Gleeson PA (1981) Molecular aspects of recognition and response in the pollen-stigma interaction. In: Loewus F, Ryan CA (eds) The phytochemistry of cell recognition and cell surface interactions. Rec Adv Phytochem 15:161–211

    Google Scholar 

  • Clarke AE, Knox RB (1978) Cell recognition in flowering plants. Q Rev Biol 53:3–28

    Article  CAS  Google Scholar 

  • Clarke AE, Gleeson P, Harrison S, Knox RB (1979) Pollen-stigma interactions: Identification and characterization of surface components with recognition potential. Proc Natl Acad Sci USA 76:3358–3362

    Article  PubMed  CAS  Google Scholar 

  • Coccuci A, Jensen WA (1969) Orchid embryology: Pollen tetrads of Epidendrum scutillar in the anther and on the stigma. Planta 84:215–229

    Article  Google Scholar 

  • Condeelis J J (1974) The identification of F-actin in the pollen tube and protoplast of Amaryllis belladonna. Exp Cell Res 88:435–439

    Article  PubMed  CAS  Google Scholar 

  • Cook CDK (1982) Pollination mechanisms in the Hydrocharitaceae. In: Symoens JJ, Hooper SS, Compere P (eds) Studies on aquatic vascular plants. Royal Bot Soc Belgium, Brussels, pp 1–15

    Google Scholar 

  • Cousin MT (1980) Changes induced by mycoplasma-like organisms (MLO), etiologic agents of the Stolbur disease in the different tissues of the anther of Vinca rosea L. (Apocynaceae). Grana 19:99–125

    Article  Google Scholar 

  • Crang RE, Hein NB (1971) Enzyme degradation ofLychnis alba pollen tube walls. Cytologia 36:449–454

    Article  CAS  Google Scholar 

  • Crang RE, May G (1974) Evidence for silicon as a prevalent elemental component in pollen wall structure. Can J Bot 52:2171–2174

    Article  CAS  Google Scholar 

  • Crang RE, Miles GB (1969) An electron microscope study of germinating Lychnis alba pollen. Am J Bot 56:398–405

    Article  Google Scholar 

  • Cresti M, Went JL van (1976) Callose deposition and plug formation in Petunia pollen tubes in situ. Planta 133:35–40

    Article  Google Scholar 

  • Cresti M, Pacini E, Sarfatti G, Simoncioli C (1975) Ultrastructural features and storage function of Lycopersicon peruvianum pollen. In: Mulcahy DL (ed) Gamete competition in plants and animals. North-Holland, Amsterdam, pp 19–28

    Google Scholar 

  • Cresti M, Pacini E, Ciampolini F, Sarfatti G (1977) Germination and pollen tube development in situ ofLy coper sicum peruvianum pollen: Ultrastructural features. Planta 136:239–247

    Article  Google Scholar 

  • Cresti M, Ciampolini F, Pacini E, Sarfatti G, Conini B (1979) Ultrastructural features of Prunus avium L. pollen tubes in vivo. 1. The compatible pollen tube. Caryologia 32:433–440

    Google Scholar 

  • Cresti M, Ciampolini F, Sarfatti G (1980) Ultrastructural investigations in Ly coper sicon peruvianum pollen activation and pollen tube organization after self- and cross-pollination. Planta 150:211–217

    Article  Google Scholar 

  • Cruden RW, Jensen WA (1979) Viscin threads, pollination efficiency and low pollen-ovule ratios. Am J Bot 66:876–879

    Article  Google Scholar 

  • Darwin C (1882) The variation of animals and plants under domestication. Murray, London

    Google Scholar 

  • Dexheimer J (1970) Recherches cytophysiologiques sur les grains de pollen. Rev Cytol Biol Vég Bot 33:169–234

    Google Scholar 

  • Dickinson HG (1970) Ultrastructural aspects of primexine formation in the microspore tetrad of Lilium longiflorum. Cytobiologie 1:437–449

    Google Scholar 

  • Dickinson HG (1976 a) Common factors in exine desposition In: Ferguson IK, Muller J (eds) The evolutionary significance of the exine. Academic Press, London, pp 67–90

    Google Scholar 

  • Dickinson HG (1976 b) The deposition of acetolysis-resistant polymers during the formation of pollen. Pollen Spores 18:321–334

    Google Scholar 

  • Dickinson HG (1982) The development of pollen. Rev Cytol Biol Vég Bot 5:5–19

    Google Scholar 

  • Dickinson HG, Bell PR (1972) The identification of sporopollenin in sections of resin-embedded tissues by controlled acetolysis. Stain Technol 48:17–22

    Google Scholar 

  • Dickinson HG, Heslop-Harrison J (1968) Common mode of deposition for the sporopollenin of sexine and nexine. Nature 220:926–927

    Article  PubMed  CAS  Google Scholar 

  • Dickinson HG, Heslop-Harrison J (1971) The mode of growth of the inner layer of the pollen grain exine in Lilium. Cytobios 4:233–243

    PubMed  CAS  Google Scholar 

  • Dickinson HG, Lawson J (1975) The growth of the pollen tube wall in Oenothera organensis. J Cell Sci 18:519–532

    PubMed  CAS  Google Scholar 

  • Dickinson HG, Lewis D (1973 a) Cytochemical and ultrastructural differences between intraspecific compatible and incompatible pollinations in Raphanus. Proc R Soc Lond B Biol Sci 183:21–35

    Article  Google Scholar 

  • Dickinson HG, Lewis D (1973 b) The formation of the “tryphine” coating the pollen grains of Raphanus and its properties relating to self-incompatibility. Proc R Soc Lond B Biol Sci 184:149–165

    Article  CAS  Google Scholar 

  • Ducker SC, Knox RB (1976) Submarine pollination in sea grasses. Nature 263:705–706

    Article  Google Scholar 

  • Ducker SC, Pettitt JM, Knox RB (1978) Biology of Australian seagrasses: Pollen development and submarine pollination in Amphibolis antarctica andThalassodendron ciliatum (Cymodoceaceae). Aust J Bot 26:265–285

    Article  Google Scholar 

  • Dumas C, Gaude T (1982) Secretions et biologie florale II. Leurs rôles dans l’adhésion et la reconnaissance pollen-stigmate. Données recentes, hypothèses et notion d’immunité végetable. Soc bot Fr Actualités Botaniques (in press)

    Google Scholar 

  • Dunbar A, Erdtman G (1969) On the pollen grains of Aegiceras corniculatum (Myrsinaceae). Grana 9:63–71

    Article  Google Scholar 

  • Erdtman G (1960) The acetolysis method. A revised description. Sven Bot Tidskr 54:531–564

    Google Scholar 

  • Erdtman G (1971) Pollen morphology and plant taxonomy. I. Angiosperms, 2nd ed. Almqvist and Wiksell, Stockholm

    Google Scholar 

  • Faegri K, Iversen J (1975) Textbook of pollen analysis, 3 rd edn. Hafner, New York

    Google Scholar 

  • Ferrari TE, Wallace DH (1977) Incompatibility on Brassica stigmas is overcome by treating pollen with cycloheximide. Science 196:436–438

    Article  PubMed  CAS  Google Scholar 

  • Ford JH (1971) Ultrastructural and chemical studies of pollen wall development in the Epacridaceae. In: Brooks J, Grant PR, Muir M, Gijzel P van, Shaw G (eds) Sporopollenin. Academic Press, London New York, pp 130–173

    Google Scholar 

  • Franchi GG, Pacini E (1980) Wall projections in the vegetative cell of Parietaria officinalis L. pollen. Protoplasma 104:67–74

    Article  Google Scholar 

  • Franke WW, Herth W, Woude JW van der, Morre JD (1972) Tubular and filamentous structures in pollen tubes: Possible role as guide elements in protoplasmic streaming and vectorial migration of secretory vesicles. Planta 105:317–341

    Article  Google Scholar 

  • Freeling M, Cheng DSK (1978) Radiation-induced alcohol dehydrogenase mutants in maize following allyl alcohol selection of pollen. Genet Res 31:107–129

    Article  CAS  Google Scholar 

  • Fritsche CJ (1837) Über den Pollen. Mem Sav Etrang Acad St Petersburg 3:649–672

    Google Scholar 

  • Gaudichaud-Beauprie C (1826) In: Freycinet L de “Voyage autour du Monde”. Botanique Paris

    Google Scholar 

  • Godwin H (1968) Pollen exine formation. Nature 220:389

    Article  Google Scholar 

  • Godwin H, Echlin P, Chapman B (1967) The development of the pollen grain wall in Ipomoea purpurea (L.) Roth. Rev Palaeobot Palynol 3:181–195

    Article  Google Scholar 

  • Golynskaya EL, Bashkirova NV, Tomchuk NN (1976) Phytohemaglutinins of the pistil in Primula as possible proteins of generative incompatibility. Sov Plant Physiol 23:69–76

    Google Scholar 

  • Gooday GW, Fawcett P, Green P, Shaw G (1973) The formation of fungal sporopollenin in the zygospore of Mucor mucedo: A role for the sexual carotenogenesis in the Mucorales. J Gen Microbiol 74:233–239

    CAS  Google Scholar 

  • Gottsberger G, Silberbauer-Gottsberger I, Ehrendorfer F (1980) Reproductive biology in the primitive relict angiosperm Drimys brasiliensis (Winteraceae). Plant Syst Evol 135:11–39

    Article  Google Scholar 

  • Guinet Ph (1981) Mimosoideae: The characters of the pollen grains. Part 1. In: Polhill RM, Raven PH (eds) Advances in legume systematics. Royal Bot Gard Kew, pp 835–857.

    Google Scholar 

  • Guinet Ph, Le Thomas A (1973) Interpretation de la repartition dissymétrique des couches de l’exine dans les pollens composés: Consequences relatives à la notion d’aperture. C R Acad Sci Paris Ser D:276:1545–1548

    Google Scholar 

  • Guinet Ph, Lugardon B (1976) Diversité des structures de l’exine dans le genre Acacia (Mimosaceae). Pollen Spores 18:483–511

    Google Scholar 

  • Gunning BES, Pate JS (1969) Transfer cells: Plant cells with wall ingrowth, specialized in relation to short distance transport of solutes—Their occurrence, structure, and development. Protoplasma 68:107–113

    Article  Google Scholar 

  • Hagemann R (1976) Plastid distribution and plastid competition in higher plants and the induction of plastome mutations by nitroso-urea compounds. In: Bûcher T, Neupert W, Sebald W, Werner S (eds) Genetics and biogenesis of chloroplasts and mitochondria. North-Holland Publishing, Amsterdam, pp 331–338

    Google Scholar 

  • Hagemann R (1981) Unequal plastid distribution during the development of the male gametophyte of angiosperms. Acta Bot Soc Pol 50:321–327

    Google Scholar 

  • Hagman M (1964) The use of disc electrophoresis and serological reactions in the study of pollen and style relationships. In: Linskens HF (ed) Pollen: Physiology and fertilization. North-Holland, Amsterdam, pp 244–250

    Google Scholar 

  • Hamilton RI, Leung E, Nichols C (1977) Surface contamination of pollen by plant viruses. Phytopathology 67: 395–399

    Article  Google Scholar 

  • Hayman DL (1956) The genetical control of incompatibility inPhalaris coerulescens Desf. Aust J Biol Sci 9:321–331

    Google Scholar 

  • Helsper JPFG, Veerkamp JH, Sassen MD A (1977) ß-Glucan synthetase activity in golgi vesicles of Petunia hybrida. Planta 133:303–308

    Article  CAS  Google Scholar 

  • Herrero M, Dickinson HG (1980) Pollen tube growth following compatible and incompatible intraspe-cific pollination inPetunia hybrida. Planta 148:217–221

    Article  Google Scholar 

  • Heslop-Harrison J (1963) An ultrastructural study of pollen wall ontogeny inSilene pendula. Grana 4:7–24

    Article  Google Scholar 

  • Heslop-Harrison J (1966) Cytoplasmic connections between angiosperm meiocytes. Ann Bot 30:221–230

    Google Scholar 

  • Heslop-Harrison J (1968 a) Synchronous pollen mitosis and the formation of the generative cell in massulate orchids. J Cell Sci 3:457–466

    Google Scholar 

  • Heslop-Harrison J (1968 b) The pollen grain wall. Science 161:230–237

    Article  PubMed  CAS  Google Scholar 

  • Heslop-Harrison J (1975 a) Physiology of the pollen-grain surface. Proc R Soc Lond B Biol Sci 190:275–300

    Article  CAS  Google Scholar 

  • Heslop-Harrison J (1975 b) Incompatibility and the pollen-stigma interaction. Annu Rev Plant Physiol 26:403–425

    Article  CAS  Google Scholar 

  • Heslop-Harrison J (1978) Cellular recognition systems in plants. Studies in Biology No. 100. Arnold, London

    Google Scholar 

  • Heslop-Harrison J (1979 a) An interpretation of the hydrodynamics of pollen. Am J Bot 66:737–743

    Article  Google Scholar 

  • Heslop-Harrison J (1979 b) Aspects of the structure, cytochemistry, and germination of the pollen of rye (Seeale cereale L.). Ann Bot Suppl 1:1–47

    Google Scholar 

  • Heslop-Harrison J (1979 c) Pollen walls as adaptive systems. Ann MO Bot Gard 66:813–829

    Article  Google Scholar 

  • Heslop-Harrison J (1980) Compartmentation in anther development and pollen wall morphogenesis. In: Nover L, Lynen F, Mothes K (eds) Cell compartmentation and metabolic channelling. Fischer, Jena and Elsevier/North-Holland Biomedical Press, Amsterdam

    Google Scholar 

  • Heslop-Harrison J, Dickinson HG (1969) Time relationships of sporopollenin synthesis associated with tapetum and microspores in Lilium. Planta 84:199–214

    Article  Google Scholar 

  • Heslop-Harrison J, Heslop-Harrison Y (1970) Evaluation of pollen viability by enzymatically induced fluorescence: Intracellular hydrolysis of fluorescein diacetate. Stain Technol 45:115–120

    PubMed  CAS  Google Scholar 

  • Heslop-Harrison J, Heslop-Harrison Y (1980) Cytochemistry and function of the Zwischenkörper in grass pollens. Pollen Spores 22:5–10

    Google Scholar 

  • Heslop-Harrison J, Heslop-Harrison Y, Shivanna KR (1983) The evaluation of pollen quality and a further appraisal of the fluorochromatic (FCR) test procedure. Theoret Appl Genet 67:367–375

    Article  Google Scholar 

  • Heslop-Harrison J, Heslop-Harrison Y, Knox RB, Howlett B (1973) Pollen-wall proteins: “Gameto-phytic” and “Sporophytic” fractions in pollen walls of Malvaceae. Ann Bot 37:402–412

    Google Scholar 

  • Heslop-Harrison J, Knox RB, Heslop-Harrison Y (1974) Pollen wall proteins: Exine-held fractions associated with the incompatibility response in Cruciferae. Theor Appl Genet 44:133–137

    Article  Google Scholar 

  • Heslop-Harrison Y, Heslop-Harrison J (1982) The microfibrillar component of pollen intine: Some structural features. Ann Bot 50:831–842

    Google Scholar 

  • Hesse M (1978 a) Entwicklungsgeschichte und Ultrastruktur des Pollenkitts bei Tilia (Tiliaceae). Plant Syst Evol 129:13–30

    Article  Google Scholar 

  • Hesse M (1978 b) Entwicklungsgeschichte und Ultrastruktur von Pollenkitt und Exine bei nahe verwandten entomophilen, anemophilen Angiospermensippen, Ranunculaceae, Hamamelidaceae, Platanaceae und Fagaceae. Plant Syst Evol 130:13–42

    Article  Google Scholar 

  • Hesse M (1978 c) Vergleichende Untersuchungen zur Entwicklungsgeschichte und Ultrastruktur von Pollenklebstoffen verschiedener Angiospermen. Linzer Biol Beitr 9:237–258

    Google Scholar 

  • Hesse M (1979 a) Entwicklungsgeschichte und Ultrastruktur von Pollenkitt und Exine bei nahe verwandten entomophilen und anemophilen Sippen der Oleaceae, Scrophulariaceae, Plantaginaceae und Asteraceae. Plant Syst Evol 132:107–139

    Article  Google Scholar 

  • Hesse M (1979 b) Ultrastruktur und Verteilung des Pollenkitts in der insekten- und windblütigen Gattung Acer (Aceraceae). Plant Syst Evol 131:277–289

    Article  Google Scholar 

  • Hesse M (1980 a) Ultrastruktur und Entwicklungsgeschichte des Pollenkitts von Euphorbia cyporissias, E. palustris und Mercurialisperennis (Euphorbiaceae). Plant Syst Evol 135:253–263

    Article  Google Scholar 

  • Hesse M (1980 b) Zur Frage der Anheftung des Pollens an Blüten besuchende Insekten mittels Pollenkitt and Viscinfaden. Plant Syst Evol 133:135–148

    Article  Google Scholar 

  • Hodgkin T, Lyon GD (1982) Germination of Lilium andPetunia pollen on TLC plates and their inhibition by extracts from Brassica tissues. In: Mulcahy DL, Ottaviano E (eds) Pollen: Biology and implications for plant breeding. Elsevier/North-Holland, Amsterdam, pp 343–349

    Google Scholar 

  • Hoefert LL (1969) Fine structure of sperm cells in pollen grain ofBeta. Protoplasma 68:237–240

    Article  Google Scholar 

  • Horner HT Jr (1977) A comparative light- and electron-microscopic study of microsporogenesis in male-fertile and cytoplasmic male-sterile sunflower (Helianthus annuus). Am J Bot 64:745–759

    Article  Google Scholar 

  • Horner HT Jr, Lersten NR (1971) Microsporogenesis in Citrus limon (Rutaceae). Am J Bot 58:72–79

    Article  Google Scholar 

  • Horner HT Jr, Pearson C (1978) Pollen wall and aperture development in Helianthus annuus (Composi-tae: Heliantheae). Am J Bot 65:293–309

    Article  Google Scholar 

  • Horner HT Jr, Rogers MA (1974) A comparative light and electron microscopic study of microsporogenesis in male-fertile and male-sterile pepper (Capsicum annuum). Can J Bot 52:435–441

    Article  Google Scholar 

  • Howlett BJ, Knox RB (1983) Allergic interactions. In: Heslop-Harrison J, Linskens HF (eds) Cellular interactions. Encycl Plant Physiol 14: Springer, Berlin Heidelberg New York (in press)

    Google Scholar 

  • Howlett BJ, Knox RB, Heslop-Harrison J (1973) Pollen-wall proteins: Release of the allergen Antigen E from intine and exine sites in the pollen grains of ragweed andCosmos. J Cell Sci 13:603–619

    CAS  Google Scholar 

  • Howlett BJ, Knox RB, Paxton JD, Heslop-Harrison J (1975) Pollen-wall proteins: Characterization and role in self-incompatibility in Cosmos bipinnatus. Proc R Soc Lond B Biol Sci 188:167–182

    Article  Google Scholar 

  • Howlett BJ, Vithanage HIMV, Knox RB (1979) Pollen antigens, allergens, and enzymes. Curr Adv Plant Sci 35:1–17

    Google Scholar 

  • Howlett BJ, Vithanage HIMV, Knox RB (1981) Immunofluorescence localization of two water-soluble glycoproteins, including the major allergen from pollen of ryegrass, Lolium perenne. Histochem J 13:461–480

    Article  PubMed  CAS  Google Scholar 

  • Huynh KL (1976) Arrangement of some monosulcate, disulcate, trisulcate, dicolpate, and tricolpate pollen types in the tetrads, and some aspects of evolution in the angiosperms. In: Ferguson IK, Muller J (eds) The evolutionary significance of the exine. Academic Press, London, pp 101–124

    Google Scholar 

  • Inouye DW (1975) Why don’t more humming-bird pollinated flowers have dark-colored pollen? Am Nat 109:377–378

    Article  Google Scholar 

  • Izhar S, Frankel R (1971) Mechanism of male sterility in Petunia: The relationship of pH, callose activity in the anthers and the breakdown of microsporogenesis. Theor Appl Genet 41:104–108

    Article  Google Scholar 

  • Jensen WA (1962) Botanical histochemistry. Freeman, San Francisco

    Google Scholar 

  • Jensen WA (1974) Reproduction in flowering plants. In: Robards AW (ed) Dynamic aspects of plant ultrastructure. Academic Press, New York London, pp 481–493

    Google Scholar 

  • Jensen WA, Fisher DB (1968) Cotton embryogenesis: The sperm. Protoplasma 65:277–286

    Article  Google Scholar 

  • Jensen WA, Fisher DB (1970) Cotton embryogenesis: The pollen tube in the stigma and style. Protoplasma 69:215–235

    Article  Google Scholar 

  • Jensen WA, Fisher DB, Ashton M (1968) Cotton embryogenesis: The pollen cytoplasm. Planta 81:206–228

    Article  Google Scholar 

  • Jensen WA, Ashton M, Heckard LR (1974) Pollen of Scrophulariaceae contains stacked ER in cytoplasm. BotGaz 135:210–218

    Article  Google Scholar 

  • Johnson P, Marsh DG (1965) The isolation and characterization of allergens from the pollen of ryegrass (Loliumperenne). Europe Polym J 1:63

    Article  CAS  Google Scholar 

  • Johnson P, Marsh DG (1966) Allergens from common ryegrass pollen. I. Chemical composition and structure. Immunochemistry 3:91

    Article  PubMed  CAS  Google Scholar 

  • Karas I, Cass DD (1976) Ultrastructural aspects of sperm cell formation in rye: Evidence for cell plate involvement in generative cell division. Phytomorphology 26:36–45

    Google Scholar 

  • Kenrick J, Knox RB (1979) Pollen development and cytochemistry in some Australian species of Acacia. Aust J Bot 27:413–427

    Article  Google Scholar 

  • Kenrick J, Knox RB (1981) Post-pollination exudate from stigmas of Acacia (Mimosaceae). Ann Bot 48:103–106

    Google Scholar 

  • Kenrick J, Knox RB (1982) Function of the polyad in reproduction of Acacia (Leguminosae, Mi-mosoideae). Ann Bot 50:721–727

    Google Scholar 

  • King TP, Norman PS, Connell JT (1964) Isolation and characterization of allergens from ragweed pollen. II. Biochemistry 3:458–472

    Article  PubMed  CAS  Google Scholar 

  • King TP, Norman PS, Tao N (1974) Chemical modifications of the major allergen of ragweed pollen, antigen E. Immunochemistry 11:83–92

    Article  CAS  Google Scholar 

  • Knox RB (1971) Pollen-wall proteins: Localization, enzymic, and antigenic activity during development in Gladiolus (Iridaceae). J Cell Sci 9:209–237

    CAS  Google Scholar 

  • Knox RB (1973) Pollen-wall proteins: Pollen-stigma interactions in ragweed and Cosmos (Compositae). J Cell Sci 12:421–443

    CAS  Google Scholar 

  • Knox RB (1976) Cell recognition and pattern formation in plants. In: Graham CF, Wareing PF (eds) The developmental biology of plants and animals. Saunders, Philadelphia, pp 141–168

    Google Scholar 

  • Knox RB (1979) Pollen and allergy. Studies in Biology No 107. Arnold, London

    Google Scholar 

  • Knox RB, Clarke AE (1980) Discrimination of self- and non-self in plants. In: Marchalonis JJ, Cohen N (ed) Contemp Topics Immunobiol. Plenum, New York, 9:1–36

    Google Scholar 

  • Knox RB, Friederich E (1974) Tetrad pollen grain development and sterility in Leschenaultia formosa. New Phytol 73:251–258

    Article  Google Scholar 

  • Knox RB, Heslop-Harrison J (1966) Control of pollen fertility through the agency of the light regime in the grassDichanthium aristattum. Phyton (Austria) 11:256–267

    Google Scholar 

  • Knox RB, Heslop-Harrison J (1969) Cytochemical localization of enzymes in the wall of the pollen grain. Nature 223:92–94

    Article  CAS  Google Scholar 

  • Knox RB, Heslop-Harrison J (1970) Pollen-wall proteins: Localization and enzymic activity. J Cell Sci 6:1–27

    CAS  Google Scholar 

  • Knox RB, Heslop-Harrison J (1971 a) Pollen-wall proteins: Electron-microscopic localization of acid phosphatase in the intine of Crocus vernus. J Cell Sci 8:727–733

    CAS  Google Scholar 

  • Knox RB, Heslop-Harrison J (1971 b) Pollen-wall proteins: Fate of intine-held antigens in compatible and incompatible pollinations of Phalaris tuberosa L. J Cell Sci 9:239–251

    CAS  Google Scholar 

  • Knox RB, Kenrick J (1983) Function of the polyad in the breeding system of Acacia. In: Mulcahy D, Ottaviano E (eds) Pollen: Biology and implications for plant breeding. Elsevier/North-Holland, Amsterdam, pp 411–418

    Google Scholar 

  • Knox RB, Heslop-Harrison J, Reed CE (1970) Localization of antigens associated with the pollen grain wall by immunofluorescence. Nature 225:1066–1068

    Article  PubMed  CAS  Google Scholar 

  • Knox RB, Willing RR, Ashford AE (1972) Role of pollen-wall proteins as recognition substances in interspecific hybridization in poplars. Nature 237:381–383

    Article  CAS  Google Scholar 

  • Knox RB, Heslop-Harrison J, Heslop-Harrison Y (1975) Pollen-wall proteins. In: Duckett JG, Racey PA (eds) The biology of the male gamete. Biol J Linn Soc, vol 7, Suppl. Academic Press, London, pp 177–187

    Google Scholar 

  • Knox RB, Clarke AE, Harrison S, Smith P, Marchalonis JJ (1976) Cell recognition in plants: Determinants of the stigma surface and their pollen interactions. Proc Natl Acad Sci USA 73:2788–2792

    Article  PubMed  CAS  Google Scholar 

  • Knox RB, Vithanage HIMV, Howlett BJ (1980) Botanical immunocytochemistry: A review with special reference to pollen antigens and allergens. Histochem J 12:247–272

    Article  PubMed  CAS  Google Scholar 

  • Kolattukudy PE (1980) Cutin, suberin, and waxes. In: Stumpf PK, Conn EE (eds) The biochemistry of plants, vol 4. Stumpf PK (ed) Lipids: Structure and function. Academic Press, New York, pp 571–645

    Google Scholar 

  • Kress J, Stone DE (1982) Pollen intine structure, cytochemistry and function in monocots. In: Mulcahy GB, Mulcahy DL, Ottaviano E (eds) Pollen: Biology and implications for plant breeding. Elsevier/North-Holland, Amsterdam, pp 159–164

    Google Scholar 

  • Kress J, Stone DE, Seilars SC (1978) Ultrastructure of exineless pollen: Heliconia (Heliconiaceae). Am J Bot 65:1064–1076

    Article  Google Scholar 

  • Kroh M, Knuiman B (1982) Ultrastructure of cell wall and plugs of tobacco pollen tubes after chemical extraction of polysaccharides. Planta 154:241–250

    Article  CAS  Google Scholar 

  • Larson DA (1965) Fine structural changes in the cytoplasm of germinating pollen. Am J Bot 52:139–154

    Article  PubMed  CAS  Google Scholar 

  • Larson DA, Lewis CW (1962) Pollen wall development inParkinsonia aculeata. Grana Palynol 3:21–27

    Article  Google Scholar 

  • Lewis D (1952) Serological reactions of pollen incompatibility substances. Proc R Soc Lond B Biol Sci 140:127–135

    Article  CAS  Google Scholar 

  • Lewis D, Burrage S, Walls D (1967) Immunological reactions of single pollen grains, electrophoresis, and enzymology of pollen protein exudates. J Exp Bot 18:371–378

    Article  CAS  Google Scholar 

  • Lewis GP, Elias TS (1981) Tribe 3. Mimoseae Bronn. (1822). Part 1. In: Polhill RM, Raven PH (eds) Advances in legume systematics. Royal Bot Gard Kew, pp 155–168

    Google Scholar 

  • Lieux M (1980) An atlas of pollen of trees, shrubs, and woody vines of Lousiana and other Southeastern states. Part 1. Ginkgoaceae to Lauraceae. Pollen Spores 22:17–57

    Google Scholar 

  • Linskens HF, Esser K (1957) Über eine spezifische Anfärbung der Pollenschläuche und die Zahl Kal-losepropfen nach Selbstung und Fremdung. Naturwissenschaften 44:16

    Article  Google Scholar 

  • Lloyd FE (1910) Development and nutrition of the embryo, seed, and kernel in the date, Phoenix dacty-lifera. A Rep Miss Bot Gard 21:103–164

    Article  Google Scholar 

  • Maheshwari P (1949) The male gametophyte in angiosperms. Bot Rev 15:1–75

    Article  Google Scholar 

  • Maheshwari P (1950) An introduction to the embryology of angiosperms. McGraw-Hill, New York

    Google Scholar 

  • Marsh DG (1975) Allergens and the genetics of allergy. In: Sela M (ed) The antigens. 3:271–359

    Google Scholar 

  • McConchie CA, Knox RB, Ducker SC (1982 a) Ultrastructure and cytochemistry of the hydrophilous pollen of Lepilaena (Zannichelliaceae). Micron 13:339–340

    Google Scholar 

  • McConchie CA, Knox RB, Ducker SC, Pettitt JM (1982 b) Pollen wall structure and cytochemistry in the seagrass Amphibolis griffithii (Cymodoceaceae). Ann Bot 50:729–732

    Google Scholar 

  • Mepham RH, Lane GR (1969) Formation and development of the tapetal periplasmodium in Tradescantia bracteata. Protoplasma 68:175–192

    Article  Google Scholar 

  • Moore DJ, Mollenhauer HH, Bracker CE (1971) Origin and continuity of Golgi apparatus. In: Beermann W, Reinert H, Ursprung H (eds) Origin and continuity of cell organelles. Springer, Berlin Heidelberg New York, pp 82–118

    Google Scholar 

  • Mühlethaler K (1953) Untersuchungen über die Struktur der Pollenmembran. Mikroskopie (Wien) 8:103–112

    Google Scholar 

  • Mulcahy DL (1983) A comparison of pollen tube growth in bi- and tri-nucleate pollen. In: Mulcahy GB, Mulcahy DL, Ottaviano E (eds) Pollen: Biology and implications for plant breeding. Elsevier/ North-Holland, Amsterdam, pp 29–34

    Google Scholar 

  • Muller-Stoll WR (1956) Über das Verhalten der Exine Nonaperturater Angiosperm-pollen bei Quellung und Keimung. Grana Palynol 1:38–46

    Google Scholar 

  • Nabli MA (1975) Mise en evidence de deux lamelies primordiales, ectexinique et endexinique, dans l’e-xine de quelques Labiatae. C R Acad Sci Paris Ser D 281:251–254

    Google Scholar 

  • Nakamura N, Miki-Hirosige H, Iwanami Y (1979) On the mechanism of callose wall and callose plug formation in germinating pollen. Jap J Palynol 24:33–44

    Google Scholar 

  • Nelson OE (1962) The waxy locus in maize. I. Intralocus recombination frequency estimates by pollen and conventional analyses. Genetics 47:737–742

    PubMed  CAS  Google Scholar 

  • Nettancourt D de (1977) Incompatibility in angiosperms. Springer, Berlin Heidelberg New York

    Google Scholar 

  • Newman IV (1933) Studies in the Australian Acacias. II. The life history of Acacia baileyana (F.v.M.). Part I. Some ecological and vegetative features, spore production and chromosome number. J Linn SocLond Bot 49:145–171

    Article  Google Scholar 

  • Newman IV (1934) Studies in the Australian Acacias. IV. The life history of Acacia baileyana (F.v.M.) Part II. Gametophytes, fertilization, seed production and germination, and general conclusion. Proc Linn Soc NSW 109:277–313

    Google Scholar 

  • Ogden EC, Raynor GS, Hayes JV, Lewis DM, Haines JH (1974) Manual for sampling airborne pollen. Hafner, New York

    Google Scholar 

  • Ottaviano E, Sari-Gorla M, Mulcahy D (1980) Pollen tube growth rates in Zea mays: Implications for genetic improvements of crops. Science 210:437–438

    Article  PubMed  CAS  Google Scholar 

  • Pacini E, Cresti M (1977) Viral particles in developing pollen grains of Olea europaea. Planta 137:1–4

    Article  Google Scholar 

  • Pacini E, Juniper BE (1979) The ultrastructure of pollen grain development in the olive, Olea europaea. 1. Proteins in the pore. New Phytol 83:157–163

    Article  Google Scholar 

  • Pankow H (1957) Über den Pollenkitt bei Galanthus nivalis. Flora 146:240–253

    Google Scholar 

  • Pargney JC (1982) Etude ultrastructural des tubes polliniques angiospermiens: Application de quelques techniques cytochimiques. Can J Bot 60:1167–1176

    Article  Google Scholar 

  • Pettitt JM (1976) Pollen wall and stigma surface in the marine angiosperms Thalassia and Thalassodendron. Micron 7:21–32

    Google Scholar 

  • Pettitt JM (1979) Developmental mechanisms in heterospory: Cytochemical demonstration of spore-wall enzymes associated with B-lectins, polysaccharides and lipids in water ferns. J Cell Sci 38:61–82

    CAS  Google Scholar 

  • Pettitt JM (1980) Reproduction in seagrasses: Nature of the pollen and receptive surface of the stigma in the Hydrocharitaceae. Ann Bot 45:257–271

    CAS  Google Scholar 

  • Pettitt JM, Jermy AC (1975) Pollen in hydrophilous angiosperms. Micron 5:377–405

    Google Scholar 

  • Pettitt JM, McConchie CA, Ducker SC, Knox RB (1980) Unique adaptations for submarine pollination in seagrasses. Nature 286:487–489

    Article  Google Scholar 

  • Pettitt JM, Ducker SC, Knox RB (1981) Submarine pollination in seagrasses. Sci Am 244:135–143

    Google Scholar 

  • Raff J (1981) Cell recognition in Prunus avium L. Ph D Thesis, Univ Melbourne

    Google Scholar 

  • Reiss HD, Herth W (1979) Calcium ionophore A23187 affects localized wall secretion in the tip region of pollen tubes of Lilium longiflorum. Planta 145:225–232

    Article  CAS  Google Scholar 

  • Roland F (1965) Precisions sur la structure et l’ultrastructure d’une tetrade calymee. Pollen Spores 7: 5–8

    Google Scholar 

  • Roland F (1971) Characterization and extraction of the polysaccharides of the intine and of the generative cell wall in the pollen grains of some Ranunculaceae. Grana 11:101–106

    Article  Google Scholar 

  • Rosen WG (1971) Pistil-pollen interactions in Lilium. In: Heslop-Harrison J (ed) Pollen: Physiology and development. Butterworths, London, pp 239–254

    Google Scholar 

  • Rosen WG, Gawlick SR (1966) Relation of lily pollen tube structure to pistil incompatibility and mode of nutrition. In: Proc VI Intl Congr Electron Microscopy, Kyoto. Mazuren, Tokyo, pp 313–314

    Google Scholar 

  • Rosen WG, Gawlick SR, Dashek WV, Siegesmund KA (1964) Fine structure and cytochemistry of Lilium pollen tubes. Am J Bot 51:61–71

    Article  CAS  Google Scholar 

  • Rowley JR (1959) The fine structure of the pollen wall in the Commelinaceae. Grana Palynol 2:3–31

    Article  Google Scholar 

  • Rowley JR (1960) The exine structure of “cereal” and “wild”-type grass pollen. Grana Palynol 2:9–15

    Article  Google Scholar 

  • Rowley JR (1962) Stranded arrangement of sporopollenin in the exine of microspores of Poa annua. Science 137:526–528

    Article  PubMed  CAS  Google Scholar 

  • Rowley JR (1964) Formation of the pore in pollen of Poa annua. In: Linskens HF (ed) Pollen: Physiology and fertilization. North-Holland, Amsterdam, pp 56–69

    Google Scholar 

  • Rowley JR (1971) Implications of the nature of sporopollenin based upon pollen development. In: Brooks J, Grant PR, Muir M, Gijzel P van, Shaw G (eds) Sporopollenin. Academic Press, London, pp 174–219

    Google Scholar 

  • Rowley JR (1975) Lipopolysaccharide embedded within the exine of pollen grain. In: Bailey GW (ed) 33 rd A. Proc EM Soc Am. Claitor’s, Baton Rouge USA, pp 572–573

    Google Scholar 

  • Rowley JR (1978) The origin, ontogeny, and evolution of the exine. Proc IV Inl Palynol Conf Lucknow 1:126–136

    Google Scholar 

  • Rowley JR, Dahl AO (1977) Pollen development in Artemisia vulgaris with special reference to glyco-calyx material. Pollen Spores 19:169–284

    Google Scholar 

  • Rowley JR, Erdtman G (1967) Sporoderm in Populus and Salix. Grana Palynol 7:518–567

    Google Scholar 

  • Rowley JR, Flynn J J (1968) Tubular fibrils and the ontogeny of the yellow water lily pollen grain. J Cell Biol 39:159 a

    Google Scholar 

  • Rowley JR, Flynn J J (1969) Membranes, pressure, and exine form. A reinterpretation of exine formation on aborted pollen grains. Pollen Spores 11:169–180

    Google Scholar 

  • Rowley JR, Prijanto B (1977) Selective destruction of the exine of pollen grains. Geophytology 7:1–23

    Google Scholar 

  • Rowley JR, Southworth D (1967) Deposition of sporopollenin on lamellae of unit membrane dimensions. Nature 213:703–704

    Article  Google Scholar 

  • Rowley JR, Vasanthy G (1980) Sporopollenin accumulation on the surface coating of Cinnamomum pollen and its influence on exine resistance. Abstr Proc 5 th Intl Palynol Conf Cambridge, p 346

    Google Scholar 

  • Rowley JR, Mühlethaler K, Frey-Wyssling A (1959) A route for the transfer of materials through the pollen grain wall. J Biophys Biochem Cytol 6:537–538

    Article  PubMed  CAS  Google Scholar 

  • Rowley JR, Dahl AO, Rowley JS (1980) Coiled construction of exinous units in pollen of Artemisia. In: Bailey GW (ed) 38 th A. Proc EM Soc Am. Claitor’s Baton Rouge USA, pp 252–253

    Google Scholar 

  • Rowley JR, Dahl AO, Rowley JS (1981 a) Substructure in exines of Artemisia vulgaris (Asteraceae). Rev Palaeobot Palynol 35:1–38

    Article  Google Scholar 

  • Rowley JR, Dahl AO, Sengupta S, Rowley JS (1981 b) A model of exine substructure based on dissection of pollen and spore exines. Palynology 5:107–152

    Article  Google Scholar 

  • Russell SD (1980) Participation of male cytoplasm during gamete fusion in an angiosperm, Plumbago zeylanica. Science 210:200–201

    Article  PubMed  CAS  Google Scholar 

  • Russell SD (1982) Fertilization in Plumbago zeylanica: Entry and discharge of the pollen tube in the embryo sac. Can J Bot 60:2219–2230

    Article  Google Scholar 

  • Russell SD (1983) Fertilization in Plumbago zeylanica: Gametic fusion and fate of the male cytoplasm. Am J Bot 70:416–434

    Article  Google Scholar 

  • Russell SD, Cass DD (1981 a) Ultrastructure of the sperms of Plumbago zeylanica. 1. Cytology and association with the vegetative nucleus. Protoplasma 107:85–107

    Article  Google Scholar 

  • Russell SD, Cass DD (1981 b) Ultrastructure and fertilization in Plumbago zeylanica. Acta Bot Soc Pol 50:185–189

    Google Scholar 

  • Russell SD, Cass DD (1983) Unequal distribution of plastids and mitochondria during sperm cell formation inPlumbago zeylanica. In: Mulcahy DL, Ottaviano E (eds) Pollen: Biology and implications for plant breeding. Elsevier, Amsterdam, pp 135–140

    Google Scholar 

  • Saad SI (1963) Sporoderm stratification: The “medine”, a distinct third layer in the pollen wall. Pollen Spores 5:2–39

    Google Scholar 

  • Sampson FB (1977) Pollen tetrads of Hedycarya arborea J.R. et G. Forst. (Monimiaceae) Grana 16:61–73

    Google Scholar 

  • Sampson FB (1981) Synchronous versus asynchronous mitosis within permanent pollen tetrads of the Winteraceae. Grana 20:19–23

    Article  Google Scholar 

  • Sassen MM (1964) Fine structure of Petunia pollen grain and pollen tube. Acta Bot Neerl 13:175–181

    Google Scholar 

  • Satake T (1976) Determination of the most sensitive stage to sterile-type cool injury in rice plants. Res Biol Hokkaido Natl Agric Exp Stn 113:1–35

    Google Scholar 

  • Satake T, Hayase H (1970) Male sterility caused by cooling treatment at the young microspore stage in rice plants. V. Estimation of pollen developmental stage and the most sensitive stage to coolness. Proc Crop Sci Soc Jpn 39:468–473

    Article  Google Scholar 

  • Schill R, Pfeiffer W (1977) Untersuchungen an Orchideenpollinien unter besonderer Berücksichtigung ihrer Feinskulpturen. Pollen Spores 19:5–118

    Google Scholar 

  • Schnepf E, Witzig F, Schill R (1979) Über Bildung und Feinstruktur des Translators der Pollinarien von Asclepias curassavica und Gomphocarpus fructicosus (Asclepiadaceae). Akad Wiss Lit Mainz Math-Naturwiss Kl Tropische Subtrop Pflanzenwelt 25

    Google Scholar 

  • Sedgley M (1979) Structural changes in the pollinated and unpollinated avocado stigma and style. J Cell Sci 38:49–60

    CAS  Google Scholar 

  • Sedgley M (1981) Storage of avocado pollen. Euphytica 30:595–599

    Article  Google Scholar 

  • Shaw G (1971) The chemistry of sporopollenin. In: Brooks J, Grant PR, Muir M, Gijsel P van, Shaw G (eds) Sporopollenin. Academic Press, London New York, pp 305–350

    Google Scholar 

  • Shivanna KR (1982) Pollen-pistil interaction and control of fertilization. In: Johri BM (ed) Experimental embryology of vascular plants. Springer, Berlin Heidelberg New York, pp 131–174

    Chapter  Google Scholar 

  • Shivanna KR, Heslop-Harrison J (1978) Inhibition of the pollen tube in the self-incompatibility response of grasses. Incompatibility Newslett 10:5–7

    Google Scholar 

  • Shivanna KR, Heslop-Harrison J (1981) Membrane state and pollen viability. Ann Bot 47:759–770

    Google Scholar 

  • Shivanna KR, Heslop-Harrison J, Heslop-Harrison Y (1981) Heterostyly in Primula. 2. Sites of pollen inhibition, and effects of pistil constituents on compatible and incompatible pollen tube growth. Protoplasma 107:319–337

    Article  Google Scholar 

  • Singh MB, Marginson R, Knox RB (1983) Evidence for enzyme-substrate involvement in pollen-stigma recognition and adhesion. Nature Sitte P (1953) Untersuchungen zur submikroskopischen Morphologie der Pollen und Sporenmembranen. Mikroskopie 8:290–299

    Google Scholar 

  • Skvarla JJ, Larson DA (1963) Nature of cohesion within pollen tetrads of Typha latifolia. Science 140:173–175

    Article  PubMed  CAS  Google Scholar 

  • Skvarla JJ, Larson D (1966) Fine structural studies ofZea mays pollen. 1. Cell membranes and exine ontogeny. Am J Bot 53:1112–1125

    Article  Google Scholar 

  • Skvarla JJ, Larson DA (1975) An electron microscopic study of pollen morphology in the Compositae with special reference to the Ambrosiinae. Grana Palynol 6:210–269

    Google Scholar 

  • Skvarla J J, Rowley JR (1970) The pollen wall of Canna and its similarity to the germinal aperture of other pollen. Am J Bot 57:519–529

    Article  Google Scholar 

  • Skvarla J J, Raven PH, Praglowski J (1975) The evolution of pollen tetrads in Onagraceae. Am J Bot 62:6–35

    Article  Google Scholar 

  • Skvarla J J, Raven PH, Chissoe WF, Sharp M (1978) An ultrastructural study of viscin threads in Onagraceae pollen. Pollen Spores 20:51–143

    Google Scholar 

  • Smart IJ, Knox RB (1979) Rapid batch fractionation of ryegrass pollen allergens. Intl Archs Allergy Appl Immun 62:173–187

    Google Scholar 

  • Smith FG (1968) “Dyads” in the Proteaceae. Grana Palynol 8:86–87

    Article  Google Scholar 

  • Southworth D (1973) Cytochemical reactivity of pollen walls. J Histochem Cytochem 21:73–80

    Article  PubMed  CAS  Google Scholar 

  • Southworth D (1974) Solubility of pollen exines. Am J Bot 61:36–44

    Article  Google Scholar 

  • Stainier F, Huard D, Bronckers F (1967) Technique de coloration spécifique de l’exine des microspore jeunes groupées en tetrades. Pollen Spores 9:367–370

    Google Scholar 

  • Stanley RG (1971) Pollen metabolism. In: Heslop-Harrison J (ed) Pollen: Development and physiology. Butterworths, London, pp 131–143

    Google Scholar 

  • Stanley RG, Linskens HF (1974) Pollen. Springer, Berlin Heidelberg New York

    Book  Google Scholar 

  • Stone DE, Sellers SC, Kress WJ (1979) Ontogeny of exineless pollen in Heliconia, a banana relative. Ann MO Bot Gard 66:701–730

    Article  Google Scholar 

  • Stone DE, Sellers SC, Kress WJ (1980) Ontogenetic and evolutionary implications of a neotenous exine in Tapeinochilos (Zingiberales: Costaceae) pollen. Am J Bot 68:49–63

    Article  Google Scholar 

  • Thomas A le, Lugardon B (1972) Sur la structure des tétrades de deux Annonacées (Asteranthe asterias etHexalobus monopetalus). CR Acad Sci Paris D275:1749–1752

    Google Scholar 

  • Tomlinson PB (1962) Phylogeny of the Scitamineae—Morphological and anatomical considerations. Evolution 16:192–213

    Article  Google Scholar 

  • Tsinger VN, Petrovskaya-Baranova TP (1961) The pollen grain-wall a living physiologically active structure. Dokl Akad Nauk SSSR 138:466–469

    CAS  Google Scholar 

  • Van Campo M, Guinet Ph (1961) Les pollens composés: l’exemple des Mimosacees. Pollen Spores 3:201–218

    Google Scholar 

  • Van Campo M, Lugardon B (1973) Structure grenue infratectale de l’ectexine des pollens de quelques gymnospermes et angiospermes. Pollen Spores 15:171–187

    Google Scholar 

  • Vasanthy G, Pocock SAJ (1981) A comparative study of anomalous and normal pollen of Rapanea: Morphology, elemental analyses, sterility, and fungal parasitism. Pollen Spores 23:349–379

    Google Scholar 

  • Vasil IK (1973) The new biology of pollen. Naturwissenschaften 60:247–253

    Article  PubMed  CAS  Google Scholar 

  • Vithanage HIMV, Knox RB (1976) Pollen-wall proteins: Quantitative cytochemistry of the origins of intine and exine enzymes in Brassica oleracea. J Cell Sci 21:423–435

    CAS  Google Scholar 

  • Vithanage HIMV, Knox RB (1977) Development and cytochemistry of stigma surface and response to self- and foreign-pollination inHelianthus annuus. Phytomorphology 27:168–179

    CAS  Google Scholar 

  • Vithanage HIMV, Knox RB (1979) Pollen development and quantitative cytochemistry of exine and intine enzymes in sunflower, Helianthus annuus. Ann Bot 44:95–106

    CAS  Google Scholar 

  • Vithanage HIMV, Knox RB (1980) Periodicity of pollen development and quantitative cytochemistry of exine and intine enzymes in the grasses Lolium perenne and Phalaris tuberosa. Ann Bot 45:131–142

    CAS  Google Scholar 

  • Vithanage HIMV, Howlett BJ, Jobson S, Knox RB (1982) Immunoeytochemical localization of water-soluble glycoproteins, including Group I allergen, in pollen of ryegrass, Lolium perenne, using ferritin-labelled antibody. Histochem J 14:949–966

    Article  PubMed  CAS  Google Scholar 

  • Walker J (1974) Aperture evolution in the pollen of primitive angiosperms. Am J Bot 61:1112–1137

    Article  Google Scholar 

  • Walker JW, Doyle JA (1975) The bases of angiosperm phylogeny: Palynology. Ann MO Bot Gard 62:664–723

    Article  Google Scholar 

  • Watson L, Bell EM (1975) Surface and structural survey of some taxonomically diverse grass pollens. Austr J Bot 23:981–990

    Article  Google Scholar 

  • Willemse MTM (1972) Changes in the autofluorescence of the pollen wall during microsporogenesis and chemical treatments. Acta Bot Neerl 21:1–16

    CAS  Google Scholar 

  • Willemse MTM (1981) Microsporogenesis in vivo and in vitro. Autofluorescence of pollen wall of Lilium and changes in pollen wall ofGasteria in Lilium anther. Acta Bot Soc Pol 50:103–110

    Google Scholar 

  • Willemse MTM, Audran JC (1982) Transfer of developing bean pollen in lily anthers. Acta Bot Neerl 31:221–226

    Google Scholar 

  • Willemse MTM, Reznickova SA (1980) Formation of pollen in the anther of Lilium. Development of the pollen wall. Acta Bot Neerl 29:127–140

    Google Scholar 

  • Williams EG, Knox RB, Rouse JL (1982 a) Pollination sub-systems distinguished by pollen tube arrest after incompatible interspecific crosses in Rhododendron (Ericaceae). J Cell Sci 53:255–277

    Google Scholar 

  • Williams EG, Knox RB, Rouse JL (1982 b) Pollen-pistil interactions and the control of pollination. Phytomorphology 31:148–157

    Google Scholar 

  • Williams EG, Ramm-Anderson S, Dumas C, Mau S-L, Clarke AE (1982 c) The effect of isolated components of Prunus avium L. styles on in vitro growth of pollen tubes. Planta 156:517–519

    Article  CAS  Google Scholar 

  • Wodehouse RP (1935) Pollen grains. McGraw-Hill, New York

    Google Scholar 

  • Woude WJ van der, Morre DJ, Bracker CE (1971) Isolation and characterization of secretory vesicles in germinated pollen of Lilium longiflorum. J Cell Sci 8:331–351

    Google Scholar 

  • Yamashita T (1976) Über die Pollenbildung bei Halodule pinifolia und H. unninervis. Beitr Biol Pflanz 52:217–226

    Google Scholar 

  • Zhu C, Hu SY, Xu LY, Li XR, Shen JH (1980) Ultrastructure of sperm cell in mature pollen grain of wheat. Sci Sin 23:371–376

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1984 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Knox, R.B. (1984). The Pollen Grain. In: Johri, B.M. (eds) Embryology of Angiosperms. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-69302-1_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-69302-1_5

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-69304-5

  • Online ISBN: 978-3-642-69302-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics