Skip to main content

Escherichia coli Virus T1: Genetic Controls During Virus Infection

  • Chapter
Current Topics in Microbiology and Immunology

Part of the book series: Current Topics in Microbiology and Immunology ((CT MICROBIOLOGY,volume 102))

Abstract

The study of bacterial viruses has contributed important information for the development of modern biology. The theoretical genetical considerations of Timofeev-Ressovsky, Zimmer, and Delbrück (Timofeev-Ressovsky et al. 1935) in the 1930s and the use of phages as experimental objects (for a review see Cairns et al. 1966) were the basis for many breakthroughs in modern biology. Advances in knowledge of recombination, replication, transcription, and translation and their controls depended essentially on bacterial virus systems. Although there is some apparent discrimination against “lower systems,” the exciting recent progress in genetic engineering results from studies on bacterial viruses. Another illustration of the importance of research on bacterial viruses is the elucidation of the role of a protein kinase in oncogenic viruses, a development which was triggered by the discovery of the first viral protein kinase in T7-infected E. coli (Rahmsdorf et al. 1973).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Arber W (1974) DNA modification and restriction. Prog Nucleic Acid Res Mol Biol 14:1–37

    Article  PubMed  CAS  Google Scholar 

  • Bayer ME (1968) Adsorption of bacteriophages to adhesions between wall and membrane of Esche-richia coli. J Virol 2:346–356

    PubMed  CAS  Google Scholar 

  • Bayer ME, Bayer MH (1981) Fast responses of bacterial membranes to virus adsorption: a fluorescent study. Proc Natl Acad Sci USA 78:5618–5622

    Article  PubMed  CAS  Google Scholar 

  • Bending MM, Drexler H (1977) Transduction of bacteriophage Mu by bacteriophage Tl. J Virol 22:640–645

    Google Scholar 

  • Bonne L, Coquerelle T, Hagen U (1968) Alteration of the DNA molecule in irradiated Tl phages. Stud Biophys 7:131–136

    Google Scholar 

  • Bohne L, Coquerelle T, Hagen U (1970) Radiation sensitivity of bacteriophage DNA. II. Breaks and crosslinks after irradiation in vivo. Int J Radiat Biol 17:205–215

    Article  CAS  Google Scholar 

  • Borchert LD, Drexler H (1980) Tl genes which affect transduction. J Virol 33:1122–1128

    PubMed  CAS  Google Scholar 

  • Bourque LW, Christensen JR (1980) Synthesis of coliphage Tl DNA: requirement for host DNA genes involved in elongation. Virology 102:310–316

    Article  PubMed  CAS  Google Scholar 

  • Bradley DE (1967) Ultrastructure of bacteriophages and bacteriocins. Bacteriol Rev 31:230–314

    PubMed  CAS  Google Scholar 

  • Braun V, Hancock REW, Hantke K, Hartmann A (1976) Functional organization of the outer membrane of E. coli:phage and colicin receptors as components of iron uptake systems. J Supramol Struct Cell Biochem 5:37–58

    CAS  Google Scholar 

  • Bresler SE, Kiselev NA, Manjakov UF, Mosevitsky MJ, Timkovsky AL (1967) Isolation and physi-cochemical investigation of Tl bacteriophage DNA Virology 33:1–9

    CAS  Google Scholar 

  • Bresler SE, Dadivanyan LP, Mosevitskii MJ (1972) Examination of recombinant DNA molecules of bacteriophage Tl using electron microscopic autoradiography. Mol Biol 6:226–230

    CAS  Google Scholar 

  • Brody EN, Mackal RP, Evans EA Jr (1967) Properties of infectious Tl deoxyribonucleic acid. J Virol 1:76–85

    PubMed  CAS  Google Scholar 

  • Cairns J, Stent GS, Watson JD (eds) (1966) Phage and the origins of molecular biology. Cold Spring Harbor, New York

    Google Scholar 

  • Christensen JR (1974) Complementation by restricted phage Tl. J Virol 14:1411–1418

    PubMed  CAS  Google Scholar 

  • Christensen JR (1976) Red system of bacteriophage λ complements the growth of a bacteriophage Tl gene 4 mutant. J Virol 17:713–717

    PubMed  CAS  Google Scholar 

  • Christensen JR, Geiman JM (1973) A new effect of the rexgene of phage λ: premature lysis after infection by phage Tl. Virology 56:285–290

    Article  PubMed  CAS  Google Scholar 

  • Christensen JR, Tolmach LDJ (1955) On the early stages of infection of Escherichia coli by bacteriophage Tl. Arch Biochem Biophys 57:195–207

    Article  PubMed  CAS  Google Scholar 

  • Christensen JR, Gawron MC, Halpem J (1978) Exlusion of bacteriophage Tl by bacteriophage λ. I. Early exclusion requires λ. N gene product and host factors involved in N gene expression. J Virol 25:527–534

    CAS  Google Scholar 

  • Christensen JR, Figurski DH, Schreil WH (1981) The synthesis of coliphage Tl DNA: degradation of the host chromosome. Virology 108:373–380

    Article  PubMed  CAS  Google Scholar 

  • Coquerelle TM, Hagen U (1972) Loss of adsorption and injection abilities in γ-irradiated phage Tl. Int J Radiat Biol 21:31–41

    Article  CAS  Google Scholar 

  • Creaser EH, Taussig A (1957) The purification and chromatography of bacteriophages on anion-exchange cellulose. Virology 4:200–208

    Article  PubMed  CAS  Google Scholar 

  • Delbrueck M (1945) The burst size distribution in the growth of bacterial viruses (bacteriophages). J Bact 50:131–135

    Google Scholar 

  • Delbrueck M, Bailey WT (1946) Induced mutations in bacterial viruses. Cold Spring Harbor Symp Quant Biol 11:33–37

    Google Scholar 

  • Drexler H (1970) Transduction by bacteriophage Tl. Proc Natl Acad Sci USA 66:1083–1088

    Article  PubMed  CAS  Google Scholar 

  • Drexler H (1972a) Transduction of Gal+ by coliphage Tl. Role of hybrids of bacterial and prophage A deoxyribonucleic acid. J Virol 9:273–279

    PubMed  CAS  Google Scholar 

  • Drexler H (1972b) Transduction of Gal+ by coliphage Tl. II. Role of transcription control in the efficiency of transduction. J Virol 9:280–285

    PubMed  CAS  Google Scholar 

  • Drexler H (1973) Transduction of Gal+ by coliphage Tl. III. Requirement for transcription and translation in recipient cells. J Virol 12:1072–1077

    PubMed  CAS  Google Scholar 

  • Drexler H (1977) Specialized transduction of the Bio+d region by coliphage Tl. Mol Gen Genet 152:59–63

    Article  PubMed  CAS  Google Scholar 

  • Drexler H, Christensen JR (1979) Transduction of bacteriophage by bacteriophage Tl. J Virol 30:543–550

    PubMed  CAS  Google Scholar 

  • Drexler H, Kylberg KJ (1975) Effect of UV irradiation on transduction by coliphage Tl. J Virol 16:263–266

    PubMed  CAS  Google Scholar 

  • Figurski DH, Christensen JR (1974) Functional characterization of the genes of bacteriophage Tl. Virology 59:397–407

    Article  PubMed  CAS  Google Scholar 

  • French RC, Graham AF, Lesley SM, van Rooyen CE (1952) The contribution of phosphorus from T2r+ bacteriophage to progeny. J Bact 64:597–607

    PubMed  CAS  Google Scholar 

  • Garen A, Puck TT (1951) The first two steps of the invasion of host cells by bacterial viruses II. J Exp Med 94:177–189

    Article  PubMed  CAS  Google Scholar 

  • Gawron MC, Christensen JR, Shoemaker TM (1980) Exclusion of bacteriophage Tl by bacteriophage λ. II. Synthesis of Tl-specifie macromolecules under N-mediated excluding conditions. J Virol 35:93–104

    PubMed  CAS  Google Scholar 

  • Geiman JM, Christensen JR, Drexler H (1974) Interactions between the vegetative states of phages λ and Tl. J Virol 14:1430–1434

    PubMed  CAS  Google Scholar 

  • Gill GS, MacHattie LA (1975) Oriented extrusion of DNA from coliphage Tl particles. Virology 65: 297:303

    Google Scholar 

  • Gill GS, MacHattie LA (1976) Limited permutations of the nucleotide sequence in bacteriophage Tl DNA. J Mol Biol 104:505–515

    Article  PubMed  CAS  Google Scholar 

  • Graham AC, Stocker BAD (1977) Genetics of sensitivity of Salmonella species to colicin M and bacteriophages T5, Tl and ES18. J Bact 130:1214–1223

    PubMed  CAS  Google Scholar 

  • Grinius L (1980) Nucleic acid transport driven by ion gradient across cell membrane. FEBS Lett 113(1):1–10

    Article  PubMed  CAS  Google Scholar 

  • Hancock REW, Braun V (1976) Nature of the energy requirement for the irreversible adsorption of bacteriophages Tl and Φ 80 to Escherichia coli. J Bact 125:409–415

    PubMed  CAS  Google Scholar 

  • Hausmann R, Gold M (1966) The enzymatic methylation of ribonucleic acid and deoxyribonu-cleic acid. IX. Deoxyribonucleic acid methylase in bacteriophage-infected Escherichia coli. J Biol Chem 241:1985–1994

    PubMed  CAS  Google Scholar 

  • Herrlich P, Rahmsdorf HJ, Pai SH, Schweiger M (1974) Translational control induced by bacterio-phage T7. Proc Natl Acad Sci USA 71:1088–1092

    Article  PubMed  CAS  Google Scholar 

  • Hirsch-Kauffmann M, Sauerbier W (1968) Inhibition of modification and restriction for phages A and Tl by coinfecting T3. Mol Gen Genet 102:89–94

    Article  PubMed  CAS  Google Scholar 

  • Hirsch-Kauffmann M, Pfennig-Yeh M, Ponta H, Herrlich P, Schweiger M (1976) A virus-specified mechanism for the prevention of multiple infection -T7 -and T3-mutual and superin-fection exclusion. Mol Gen Genet 149:243–249

    Article  PubMed  CAS  Google Scholar 

  • Hotz G, Mauser R (1969) Infectious DNA from coliphage Tl. Some properties of the spheroplast assay system. Mol Gen Genet 104:178–182

    Article  PubMed  CAS  Google Scholar 

  • Hotz G, Mauser R (1970) Infectious DNA from coliphage Tl. EL Host-cell reactivation of UV-irra-diated molecules. Mol Gen Genet 108:233–242

    Article  PubMed  CAS  Google Scholar 

  • Hotz G, Mauser R, Walser R (1971) Infectious DNA from coliphage Tl. III. Occurrence of single strand breaks in stored, thermally treated, and UV-irradiated molecules. Int J Radiat Biol 19:519–536

    Article  CAS  Google Scholar 

  • Howard BD (1967) Phage lambda mutants deficient in rII exclusion. Science 158:1588–1589

    Article  PubMed  CAS  Google Scholar 

  • Jacquemin-Sablon A, Lanni YT (1973) Lambda-repressed mutants of bacteriophage T5.I. Isolation and genetical characterization. Virology 56:230–237

    Article  PubMed  CAS  Google Scholar 

  • Jiresova M, Janecek J (1977) Inhibition of β -galactosidase synthesis in E. coli after infection with different DNA and RNA phages. Folia Microbiol (Praha) 22:173–181

    Article  CAS  Google Scholar 

  • Kepes A, Meury J, Robin A, Jimeno J (1977) Some ion transports in R coli (Transport of potassium and of anionic sugars). In: Semenza G, Carafoli E (eds) Biochemistry of membrane transport. FEBS Symposion No 42. Springer, Berlin Heidelberg New York, pp 633–647

    Google Scholar 

  • Kerr C, Sadowski PD (1972) Gene 6 exonuclease of bacteriophage Tl. I. Purification and properties of the enzyme. J Biol Chem 247:305–310

    PubMed  CAS  Google Scholar 

  • Klein A, Sauerbier W (1965) Role of methylation in host-controlled modification of phage Tl. Biochem Biophys Res Commun 18:440–445

    Article  PubMed  CAS  Google Scholar 

  • Kotval JS, Christensen JR (1981) Requirement for protein synthesis for survival of unmodified bacteriophage Tl in a restricting host. J Virol 37:931–935

    PubMed  CAS  Google Scholar 

  • Krisch R (1972) Lethal effects of iodine-125 decay by electron capture in Escherichia coli and in bacteriophage T. Int J Radiat Biol 21:167–189

    Article  CAS  Google Scholar 

  • Krisch R, Krasin F, Sauri CJ (1978) DNA breakage, repair, and lethality accompanying iodine-125 decay in microorganisms. Curr Top Radiat Res Q 12:355–368

    PubMed  CAS  Google Scholar 

  • Kylberg KJ, Bendig MM, Drexler H (1975) Characterization of transduction by bacteriophage Tl: time of production and density of transducing particles. J Virol 16:854–858

    PubMed  CAS  Google Scholar 

  • Labedan B, Goldberg EB (1979) Requirement for membrane potential in injection of phage T4 DNA. Proc Natl Acad Sci USA 76:4669–4673

    Article  PubMed  CAS  Google Scholar 

  • Labedan B, Letellier L (1981) Membrane potential changes during the first step of coliphage infection. Proc Natl Acad Sci USA 78:215–219

    Article  PubMed  CAS  Google Scholar 

  • Lederberg S (1957) Suppression of the multiplication of heterologous bacteriophages in lysogenic bacteria. Virology 3:496–513

    Article  PubMed  CAS  Google Scholar 

  • Lee CS, Pyreitz RE, Thomas CA Jr (1976) Kinetic studies on the cyclization of T7 and Tl DNAs. Biopolymers 15:671–686

    Article  PubMed  CAS  Google Scholar 

  • Lehman JR, Pratt EA (1960) On the structure of the glucosylated hydroxymethyl cytosine nucleo-tides of coliphages T2, T4, and T6. J Biol Chem 235:3254–3259

    PubMed  CAS  Google Scholar 

  • Lindberg AA (1973) Bacteriophage receptors. Annu Rev Microbiol 27:101–117

    Article  Google Scholar 

  • MacHattie LA (1977) DNA maturation by the “headful” mode in bacteriophage Tl. J Mol Biol 110: 441–465

    Article  PubMed  CAS  Google Scholar 

  • MacHattie LA, Rhoades M, Thomas CA JR (1972) Large repetition in the non-permuted nucleotide sequence of bacteriophage Tl DNA J Mol Biol 72:645–656

    Article  PubMed  CAS  Google Scholar 

  • McCorquodale DJ (1975) The T-odd bacteriophages. CRC Crit Rev Microbiol: 101–159

    Google Scholar 

  • Male CJ, Christensen JR (1970) Synthesis of messenger ribonucleic acid after bacteriophage Tl infection. J Virol 6:727–737

    PubMed  CAS  Google Scholar 

  • Martin DTM, Adair CA, Ritchie DA (1976) Polypeptides specified by bacteriophage Tl. J Gen Virol 33:309–319

    Article  PubMed  CAS  Google Scholar 

  • Michalke WE (1967) Erhöhte Rekombinationshäufigkeit an den Enden des Tl-Chromosoms. Mol Gen Genet 99:12–33

    Article  PubMed  CAS  Google Scholar 

  • Mosin AF, Tsyb TS, Petrovka KM (1972) Decrease in the survival of Tl phage exposed to UV irradiation at early stages of E. coli B-cell infection. Radiobiologiya 12:873–878

    CAS  Google Scholar 

  • Mosin AF, Petrovka KM, Tsyb TS (1974) Photoreactivation of Tl bacteriophage irradiated in a complex with E. coli B in the early stages of infection. Radiobiologiya 14:58–62

    CAS  Google Scholar 

  • Mosin AF (1977a) Some features of reaction of intracellular bacteriophage-Tl to UV irradiation. Microbios 20:115–123

    CAS  Google Scholar 

  • Mosin AF (1977b) Effect of chloramphenicol and cyanide on increase in UV resistance of intracellular bacteriophage Tl. Microbios 20:125–131

    CAS  Google Scholar 

  • Neilands JB (1979) The ironic function of bacteriophage receptors. Trends Biochem Sci 4:115–118

    Article  CAS  Google Scholar 

  • Pao CC, Speyer JF (1975) Mutants of T7 bacteriophage inhibited by lambda prophage. Proc Natl Acad Sci USA 72:3642–3646

    Article  PubMed  CAS  Google Scholar 

  • Ponta H, Grätzel M, Pfennig-Yen M, Hirsch-Kauffmann M, Schweiger M (1977) Membrane alteration induced by T7 virus infection. FEBS Lett 73:207–209

    Article  PubMed  CAS  Google Scholar 

  • Ponta H, Pfennig-Yen M, Wagner EF, Schweiger M, Herrlich P (1979) Radiation sensitivity of messenger RNA. Mol Gen Genet 175:13–17

    Article  PubMed  CAS  Google Scholar 

  • Potts TV, Christensen JR (1974) Physiological study of cooperative infection by restricted bacteriophage Tl. J Virol 14:1319–1325

    PubMed  CAS  Google Scholar 

  • Rahmsdorf HJ, Herrlich P, Pai SH, Schweiger M, Wittmann HG (1973) Ribosomes after infection with bacteriophage T4 and T7. Mol Gen Genet 127:259–271

    Article  PubMed  CAS  Google Scholar 

  • Ramsay N, Ritchie DA (1980) A physical map of the permuted genome of bacteriophage Tl. Mol Gen Genet 179:669–675

    Article  PubMed  CAS  Google Scholar 

  • Reider E, Wagner EF, Schweiger M (1979) Control of phosphoenolpyruvate-dependent phospho-transferase-mediated sugar transport in Escherichia coli by energization of the cell membrane. Proc Natl Acad Sci USA 76:5529–5533

    Article  PubMed  CAS  Google Scholar 

  • Ritchie DA, Malcolm FE (1970) Heat-stable and density mutants of phages Tl, T3 and T7. J Gen Virol 9:35–43

    Article  PubMed  CAS  Google Scholar 

  • Ritchie DA, Joicey DH (1978) Formation of concatemeric DNA as an intermediate in the replication of bacteriophage Tl DNA molecules. J Gen Virol 41:609–622

    Article  PubMed  CAS  Google Scholar 

  • Ritchie DA, Joicey DH (1980) Identification of some steps in the replication of bacteriophage Tl DNA Virology 103:191–198

    Article  PubMed  CAS  Google Scholar 

  • Ritchie DA, Christensen JR, Pergh JC, Bourque LW (1980b) Genes of coliphage Tl whose products promote general recombination. Virology 105:371–378

    Article  CAS  Google Scholar 

  • Roberts JR (1981) Restriction and modification enzymes and their recognition sequences. Nucleic Acids Res 9:r75–r96

    Article  PubMed  CAS  Google Scholar 

  • Roberts MD, Drexler H (1981a) Isolation and genetic characterization of Tl-transducing mutants with increased transducing frequency. Virology 112:662–669

    Article  PubMed  CAS  Google Scholar 

  • Roberts MD, Drexler H (1981b) Tl mutants with increased transduction frequency are defective in host chromosome degradation. Virology 112:670–677

    Article  PubMed  CAS  Google Scholar 

  • Sauerbier W, Hirsch-Kauffmann M (1968) Transfer of ultraviolet light-induced thymine dimer from parental to progeny DNA in bacteriophage Tl and T4. Biochem Biophys Res Commun 33:32–37

    Article  PubMed  CAS  Google Scholar 

  • Sauerbier W, Hercules K (1978) Gene and transcription unit mapping by radiation effects. Annu Rev Genet 12:329–363

    Article  PubMed  CAS  Google Scholar 

  • Schairer HU, Haddock BA (1972) β -galactoside accumultation in a Mg2+, Ca2+-activated ATPase deficient mutant of E.coli. Biochem Biophys Res Commun 48:544–551

    Article  CAS  Google Scholar 

  • Schmidt, A, Hotz G (1973) Occurrence of double-strand breaks in coliphage Tl-DNAby iodine-125 decay. Int J Radiat Biol 24:307–313

    Article  CAS  Google Scholar 

  • Schweiger M, Herrlich P (1974) DNA-directed enyzme synthesis in vitro. Curr Top Microbiol Immunol 65:59–132

    PubMed  CAS  Google Scholar 

  • Schweiger M, Hirsch-Kauffmann M (1982) The role of cell membranes in infection with bacterial viruses and colicins. In: Cohen P, Van Heyningen S (eds) Molecular action of toxins and viruses. Elsevier, Amsterdam, pp 191–217

    Google Scholar 

  • Schweiger M, Wagner EF (1979) Nucleoside-triphosphate-mediated discrimination of gene expression in Tl-infected E. coli. In: Koch G, Richter D (eds) Regulation of macromolecular synthesis by low molecular weight mediators. Academic, pp 249–262

    Google Scholar 

  • Schweiger M, Wagner EF, Hirsch-Kauffmann M, Ponta H, Herrlich P (1978) Biochemistry of development of E. coli viruses T7 and Tl. FEBS Lett 43:171–186

    Google Scholar 

  • Spoerel N, Herrlich P, Bickel T (1979) A novel bacteriophage defence mechanism: the anti-restriction protein. Nature 278:30–34

    Article  PubMed  CAS  Google Scholar 

  • Stephan GM, Miltenburger HG, Hotz G (1970) Ultraviolet-induced strand breaks in 5-bromouracil-substituted DNA of phage Tl. Z Naturforsch B 25:1037–1042

    PubMed  CAS  Google Scholar 

  • Taylor DE, Grant RB (1976) Inhibition of bacteriophage λ, Tl and T7 development by Rplasmids of H incompatibility group. Antimicrob Agents Chemother 10:762–764

    PubMed  CAS  Google Scholar 

  • Tikhonenko AS (1970) Ultrastructure of bacterial viruses. Plenum, New York. Translated from Russian by Haigh B

    Google Scholar 

  • Timofeev-Ressovsky NW, Zimmer KG, Delbrück M (1935) Über die Natur der Genmutation und der Genstruktur 13. Nachr d Akad Wissensch Göttingen, Math-Phys Kl Fachgruppe VI, 1

    Google Scholar 

  • Toni M, Conti G, Schito GC (1976) Viral protein synthesis during replication of bacteriophage Tl. Biochem Biophys Res Commun 68:545–552

    Article  PubMed  CAS  Google Scholar 

  • Toothman P, Herskowitz I (1980) Rex-dependent exclusion of lambdoid phages. Virology 102: 133–146

    Article  PubMed  CAS  Google Scholar 

  • Trautner TA (1960) Genetische und physiologische Beziehungen zwischen den Bacteriophagen Tl und D20. Z Vererbungsl 91:317–324

    Article  Google Scholar 

  • Trouwborst T, Winkler KC (1972a) Protection against aerosol-inactivation of bacteriophage Tl by peptides and amino acids. J Gen Virol 17:1–11

    Article  PubMed  CAS  Google Scholar 

  • Trouwborst T, De Jong JC (1972b) Mechanism of the inactivation of the bacteriophage Tl in aerosols. Appl Microbiol 23:938–941

    PubMed  CAS  Google Scholar 

  • Trouwborst T, De Jong JC, Winkler KC (1972) Mechanism of inactivaton in aerosols of bacteriophage Tl. J Gen Virol 15:235–242

    Article  PubMed  CAS  Google Scholar 

  • Trouwborst T, Kuyper S, De Jong JC, Plantinga AD (1974a) Inactivation of some bacterial and animal viruses by exposure to liquid-air interfaces. J Gen Virol 24:155–165

    Article  PubMed  CAS  Google Scholar 

  • Trouwborst T, Kuyper S, Teppema JS (1974b) Structural damage of bacteriophage Tl by surface inactivation. J Gen Virol 25:75–81

    Article  PubMed  CAS  Google Scholar 

  • Wagner EF (1978) Regulation der Genaktivitäten und der Membranenergie in der Tl-Virus Entwicklung. Thesis, Technische Universität Graz

    Google Scholar 

  • Wagner EF, Schweiger M (1980) Development of E. coli virus Tl: ATP-mediated discrimination of gene expression. J Biol Chem 255:540–542

    PubMed  CAS  Google Scholar 

  • Wagner EF, Ponta H, Schweiger M (1977a) Development of E. colivirus Tl: The pattern of gene expression. Mol Gen Genet 150:21–28

    Article  PubMed  CAS  Google Scholar 

  • Wagner EF, Ponta H, Schweiger M (1977b) Development of Escherichia coli virus Tl: Repression of host gene expression. Eur J Biochem 80:255–260

    Article  PubMed  CAS  Google Scholar 

  • Wagner EF, Auer B, Schweiger M (1979) Development of E. coli virus Tl: Escape from host restriction. J Virol 29:1229–1231

    PubMed  CAS  Google Scholar 

  • Wagner EF, Ponta H, Schweiger M (1980) Development of E. coli virus Tl: The role of the proton-motive force. J Biol Chem 255:534–539

    PubMed  CAS  Google Scholar 

  • Walling L, Christensen JR (1981) The synthesis of coliphage Tl DNA: Studies on the roles of Tl genes 1,2 and 4. Virology 114:309–318

    Article  PubMed  CAS  Google Scholar 

  • Wookey P, Rosenberg H (1978) Involvement of inner and outer membrane components in the transport of iron and in colicin B action in Escherichia coli. J Bact 133:661–666

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1983 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Wagner, E.F., Auer, B., Schweiger, M. (1983). Escherichia coli Virus T1: Genetic Controls During Virus Infection. In: Cooper, M., et al. Current Topics in Microbiology and Immunology. Current Topics in Microbiology and Immunology, vol 102. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-68906-2_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-68906-2_4

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-68908-6

  • Online ISBN: 978-3-642-68906-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics