Skip to main content

Cusp Bifurcation in Pituitary Thyrotropin Secretion

  • Conference paper
Structural Stability in Physics

Part of the book series: Springer Series in Synergetics ((SSSYN,volume 4))

Summary

Patients with primary hyperthyroidism treated to attain normal serum concentrations of thyroxine (T4) and triiodothyronine (T3), show a bimodal distribution of pituitary thyrotropic responsiveness to exogenous protirelin (TRH). To the contrary, the hormonal constellation of primary hypothyroidism produces a unimodal distribution. THOM’s catastrophe theory is applied to formulate a qualitative, macroscopic model of the thyrotropic responsiveness. The adapted cusp catastrophe demonstrates how the inhibition by T4 and T3 and the stimulation by TRH cooperate on the thyrotropic function. Moreover, a microscopic, stochastic model of a stimulus-secretion coupling system of pituitary thyrotropic cells is constructed to end up with a probability potential associated with a cusp catastrophe. Comparison of the macroscopic with the microscopic model shows that a reversible allosteric transition is an essential feature of the system.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Benham C.J. & J.J.Kozak: Denaturation: An Example of a Catastrophe. II. Two-state Transitions. J. theor. Biol. 63(1976), 125–149.

    Article  Google Scholar 

  2. Benham C.J. & J.J.Kozac: An Example of a Catastrophe. III. Phase Diagrams for Multistate Transformations. J. Theor. Biol. 66(1977), 679–693.

    Article  Google Scholar 

  3. Cooke J. & E.C. Zeeman: A Clock and Wavefront Model for Control of the Number of Repeated Structures during Animal Morphogenesis. J. Theor. Biol. 58(1976), 455–476.

    Article  Google Scholar 

  4. Douglas W.W.: Stimulus-Secretion Coupling: The Concept and Clues from Chromaffin and other Cells. Br. J. Pharmacol. 34(1968), 451–474.

    Google Scholar 

  5. Go N. & Y. Anan: Regulatory Functions of Allosteric Enzymes in Far-from-Equilibrium Systems. J. theor. Biol. 66(1977), 475–483.

    Article  Google Scholar 

  6. Güttinger W.: Catastrophe Geometry in Physics and Biology, p. 2–30. In: M. Conrad, W. Güttinger, and M. DalCin, ed., “Physics and Mathematics of the Nervous System”. Springer Verlag, Berlin-Heidelberg-New York, 1974.

    Google Scholar 

  7. Haken H.: Syergetics, an Introduction: Nonequilibrium Phase Transitions and Self-Organization in Physics, Chemistry, and Biology. Springer Verlag, Berlin- Heidelberg-New York, 1977.

    Google Scholar 

  8. Kurosumi K. & H. Fujita: Functional Morphology of Endocrine Glands. Georg Thieme Publ. Stuttgart and Igaku Shoin Ltd. Tokyo, 1974.

    Google Scholar 

  9. Kurtz T.G.: The Relationship between Stochastic and Deterministic Models for Chemical Reactions. J. Chem. Phys. 57(1972), 2976–2978.

    Article  ADS  Google Scholar 

  10. Landolt A.M.: Ultrastructure of Human Sella Tumors. Acta Neurochirurgica, Suppl. 22, Springer Verlag, Wien-New York, 1975.

    Google Scholar 

  11. Lax M.: Fluctuation and Coherence Phenomena in Classical and Quantum Physics, p. 271–478. In: M. Chrétien, E.P. Gross, and S. Deser, ed., “Statistical Physics, Phase Transitions and Superfluidity”. Gordon and Breach Science Publ., New York-London-Paris, 1968.

    Google Scholar 

  12. McQuarrie D.A.: Stochastic Approach to Chemical Kinetics. J. Appl. Prob. 4(1967), 413–478.

    Article  MathSciNet  MATH  Google Scholar 

  13. Monod J., J. Wyman & J.P. Changeux: On the Nature of Allosteric transitions: A Plausible Model. J. Mol. Biol. 12(1965), 88–118.

    Article  Google Scholar 

  14. Oppenheim I., K.E. Shuler & G.H. Weiss: Stochastic and Deterministic Formulation of Chemical Rate Equations. J. Chem. Phys. 50(1969), 460–466.

    Article  ADS  Google Scholar 

  15. Rosen R.: The Generation and Recognition of Patterns in Biological Systems. p. 222–341. In: D.E. Matthews, ed., “Mathematics and the Life Sciences”. Springer Verlag, Berlin-Heidelberg-New York, 1977.

    Google Scholar 

  16. Sanchez-Franco F., M.D. Garcia, L. Cacicedo, A. Martin-Zurro, F. Escobar del Rey & G.Morreale de Escobar: Transient Lack of Thyrotropin (TSH) Response to Thyrotropin-Releasing Hormone (TRH) in Treated Hyperthyroid Patients with Normal or Low Serum Thyroxine (T4) and Triiodothyronine (T3). J. Clin. Endocrinol. & Metab. 38(1974), 1098–1102.

    Article  Google Scholar 

  17. Seif F.J.: Mathematical Model of Pituitary Thyrotropic Function. Experientia 33(1977), 1243–1244.

    Article  Google Scholar 

  18. Seif F.J.: Cusp Catastrophe Model of Pituitary Thyrotropic Function Stimula- table by Protirelin. Biomedizinische Technik 23(1978), Suppl. p.131.

    Google Scholar 

  19. Sterling K. & M.A. Brenner: Free Thyroxine in Human Serum: Simplified Measurement with the Aid of Magnesium Precipitation. J. Clin. Invest. 45(1966), 153–163.

    Article  Google Scholar 

  20. Thom R.: Topological Models in Biology. p. 89–116. In: C.H. Waddington, ed., “Towards a Theoretical Biology”, Vol. 3, Edinburgh Univ. Press, Edinburgh, 1970.

    Google Scholar 

  21. Thom R.: Stabilité structurelle et morphogénèse. Essai d’une théorie générale des modèles. W.A. Benjamin Inc., Reading, Mass., 1972.

    Google Scholar 

  22. Trifaro J.M.: Common Mechanismes of Hormone Secretion. Ann. Rev. Pharmacol. Toxicol. 17(1977), 27–47.

    Article  Google Scholar 

  23. Varela F.J., J.C. Rowley III. & D.T. Moran: The Control of Ciliary Movements: An Application of the Cusp Catastrophe. J. theor. Biol. 65(1977), 531–553.

    Article  MathSciNet  Google Scholar 

  24. Wahl R., D. Geiseler & E. Kallee: Adsorption Equilibria of Thyroid Hormones in the Liver Cell. Eur. J. Biochem. 80(1977), 25–33.

    Article  Google Scholar 

  25. Woodcock A.E.R.: Catastrophe Theory and the Modelling of Biological Systems, p. 342–385. In: D.E. Matthews, ed., “Mathematics and the Life Sciences”. Springer Verlag, Berlin-Heidelberg-New York, 1977.

    Google Scholar 

  26. Zeeman E.C.: Differential Equations for the Heartbeat and Nerve Impulse, p. 8–67. In: C.H. Waddington, ed., “Towards a Theoretical Biology”, Vol 4, Edinburgh Univ. Press, Edinburgh, 1972.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1979 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Seif, F.J. (1979). Cusp Bifurcation in Pituitary Thyrotropin Secretion. In: Güttinger, W., Eikemeier, H. (eds) Structural Stability in Physics. Springer Series in Synergetics, vol 4. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-67363-4_25

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-67363-4_25

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-67365-8

  • Online ISBN: 978-3-642-67363-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics