Skip to main content

Pressure Flow

  • Chapter
Transport in Plants I

Part of the book series: Encyclopedia of Plant Physiology ((PLANT,volume 1))

Abstract

Retrospectively it seems unfortunate that the discovery of blood circulation in animals (proved by Harvey, 1628) coincided with studies in xylem- and not phloem-sap transport in plants, because the similarity between blood transport and sieve-tube transport has become increasingly apparent. Attempts to apply positive pressure circulation models proved abortive (Hales, 1733) because xylem-sap pressures are not positive when sap transport is most vigorous. Furthermore, the driving force for flow was established as solar evaporation, which induces negative-pressure gradients contrasting with the circulation of blood. Phloem transport studies developed slowly after the discovery of sieve tubes (Hartig, 1837) and his proposal of positive pressure transport in 1860. The concept of circulation was renewed by Münch (1930) who demonstrated that water could be collected from partially isolated sieve tubes by reverse osmosis. According to Münch’s scheme, pressure developed osmotically as a consequence of solute secretion into the sieve tubes and this provided the necessary driving mechanism for transport. Since water was transported along with solutes, its return via the xylem was proposed to complete a circulatory pathway.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Aikman, D.P., Anderson, W.P.: A quantitative investigation of a peristaltic model for phloem translocation. Ann. Botany N.S. 35, 761–772 (1971).

    Google Scholar 

  • Anderson, R., Cronshaw, J.: Sieve-element pores in Nicotiana. J. Ultrastruct. Res. 32, 458–471 (1970).

    Article  PubMed  CAS  Google Scholar 

  • Antoszewski, R., Kaminska, M.K., Dzieciol, U.: Translocation profile of assimilates in the strawberry petiole. Trans. 3rd Symp. Accumulation and Translocation: Series E No. 3, Warsaw 31–40 (1973).

    Google Scholar 

  • Barclay, G.F., Fensom, D.S.: Passage of carbon black through sieve plates of unexcised Heracleum sphondylium after microinjection. Acta Botan. Neerl. 22, 228–232 (1973).

    Google Scholar 

  • Bennett, C.W.: Correlation between movement of the curly-top virus and translocation of food in tobacco and sugar beet. J. Agr. Res. 54, 479–502 (1937).

    Google Scholar 

  • Biddulph, O.: Mechanisms of translocation of plant metabolites, p. 143–164 (1969).

    Google Scholar 

  • Bidwell, R.G.S.: A possible mechanism for the control of photoassimilate translocation. Trans. 3rd Symp. Accumulation and Translocation. Series E No. 3, Warsaw 77–89 (1973).

    Google Scholar 

  • Bose, J.C.: Plants and their autographs. London: Longmans, Green and Co. 1947.

    Google Scholar 

  • Brown, C.L.: Discussion: Phloem transport and its relation to growth. In: The formation of wood in forest trees. p. 300 (ed. M.H. Zimmermann). New York: Academic Press 1964.

    Google Scholar 

  • Canny, M.J.: Phloem translocation. London: Cambridge Univ. Press 1973.

    Google Scholar 

  • Cataldo, D.A., Christy, A.L., Coulson, C.L., Ferrier, J.M.: Phloem transport of THO in Beta vulgaris. Plant Physiol. 49, 690–695 (1972).

    Article  PubMed  CAS  Google Scholar 

  • Choi, I.C., Aronoff, S.: Photosynthate transport using tritiated water. Plant Physiol. 41, 1119–1129 (1966).

    Article  PubMed  CAS  Google Scholar 

  • Christy, A.L., Ferrier, J.M.: A mathematical treatment of Münch’s pressure-flow hypothesis of phloem transport. Plant Physiol. 52, 531–538 (1973).

    Article  PubMed  CAS  Google Scholar 

  • Crafts, A.S.: Phloem anatomy, exudation, and transport of organic nutrients in cucurbits. Plant Physiol. 7, 183–225 (1932).

    Article  Google Scholar 

  • Crafts, A.S.: Sieve-tube structure and translocation in the potato. Plant Physiol. 8, 81–104 (1933).

    Article  PubMed  CAS  Google Scholar 

  • Crafts, A.S., Crisp, C.E.: Phloem transport in plants. San Francisco: Freeman 1971.

    Google Scholar 

  • Dainty, J.: The water relations of plants. In: physiology of plant growth and development (ed. M.B. Wilkins). Maidenhead, England: McGraw Hill 1969.

    Google Scholar 

  • Diamond, J.M.: The mechanism of isotonic water absorption and secretion. Symp. Soc. Exptl. Biol. Cambridge 329–347 (1965)

    Google Scholar 

  • Dixon, H.H.: Bast Sap. Scient. Proc. Roy. Dublin Soc. 20, 487–494 (1933).

    Google Scholar 

  • Dixon, H.H., Ball, N.G.: Transport of organic substances in plants. Nature 109, 236–237 (1922).

    Article  Google Scholar 

  • Dixon, H.H., Gibbon, M.W.: Bast-sap in plants. Nature 130, 661 (1932).

    Article  Google Scholar 

  • Esau, K.: The phloem. Encyclopedia of plant anatomy, vol. 2. Berlin-Stuttgart: Gebrüder Borntraeger 1969.

    Google Scholar 

  • Eschrich, W., Evert, R.F., Young, J.H.: Solution flow in tubular semipermeable membranes. Planta 107, 279–300 (1972).

    Article  CAS  Google Scholar 

  • Frey-Wyssling, A.: Die Stoffausscheidungen der höheren Pflanzen. 378 p. Berlin: Springer 1935.

    Google Scholar 

  • Geiger, D.R., Saunders, M.A., Cataldo, D.A.: Translocation and accumulation of translocate in the sugar beet petiole. Plant Physiol. 44, 1657–1665 (1969).

    Article  PubMed  CAS  Google Scholar 

  • Giaquinta, R.T., Geiger, D.R.: Mechanism of inhibition of translocation by localized chilling. Plant Physiol. 51, 372–377 (1973).

    Article  PubMed  CAS  Google Scholar 

  • Hales, S.: Vegetable staticks. Oldbourne Bk. London (1727), reprinted 1967.

    Google Scholar 

  • Hall, S.M., Milburn, J.A.: Phloem transport in Ricinus. Its dependence on the water balance of the tissues. Planta 109, 1–10 (1973).

    Article  CAS  Google Scholar 

  • Hammel, H.T.: Measurement of turgor pressure and its gradient in the phloem of oak. Plant Physiol. 43, 1042–1048 (1968).

    Article  PubMed  CAS  Google Scholar 

  • Hartig, T.: Vergleichende Untersuchungen über die Organisation des Stammes der einheimischen Waldbäume. Jahresber. Fortschr. Forstwiss. u. forstl. Naturk. 1, 125–168 (1837).

    Google Scholar 

  • Hartig, T.: Beiträge zur physiologischen Forstbotanik. Allgem. Forst- u. Jagdztg. 36, 257–261 (1860).

    Google Scholar 

  • Harvey, W.: Exercitatis de motu cordis et sanguinis. Frankfort-on-Main (1628).

    Google Scholar 

  • Hodge, W.H.: Toddy collection in Ceylon. Principes. J. Palm Soc. (Miami) 7, 70–79 (1963).

    Google Scholar 

  • Huber, B., Schmidt, E., Jahnel, H.: Untersuchungen über den Assimilatstrom. Tharandt. Forstl. Jahrb. 88, 1017–1050 (1937).

    Google Scholar 

  • Kennedy, J.S., Mittler, T.E.: A method of obtaining phloem sap via the mouth parts of aphids. Nature 171, 528 (1953).

    Article  Google Scholar 

  • King, R.W., Zeevart, J.A.D.: Enhancement of phloem exudation from cut petioles by chelating agents. Plant Physiol. 53, 96–103 (1974).

    Article  PubMed  CAS  Google Scholar 

  • Lang, A.: A working model of a sieve tube. J. Exptl. Botany 24, 896–904 (1973).

    Article  Google Scholar 

  • Lawton, J.R.: Seasonal variation in the secondary phloem of some forest trees from Nigeria. New Phytol. 71, 335–348 (1972).

    Article  Google Scholar 

  • Lüttge, U.: Structure and function of plant glands. Ann. Rev. Plant Physiol. 22, 23–44 (1971).

    Article  Google Scholar 

  • MacRobbie, E.A.: Phloem translocation. Biol. Rev. 46, 429–481 (1971).

    Article  Google Scholar 

  • Mason, T.G., Lewin, C.T.: On the rate of carbohydrate transport in the greater yam Dioscorea alata. Proc. Roy. Irish Acad. 18, 203–205 (1926).

    Google Scholar 

  • Mason, T.G., Maskell, E.J.: Studies on the transport of carbohydrates in the cotton plant. I. A study of diurnal variation in the carbohydrates of leaf, bark and wood, and of the effects of ringing. Ann. Botany (London) 42, 189–253 (1928).

    Google Scholar 

  • Mason, T.G., Maskell, E.J., Phyllis, E.: Further studies in transport in the cotton plant. III. Concerning the independence of solute movement in the phloem. Ann. Botany (London) 50, 23–58 (1936).

    CAS  Google Scholar 

  • Milburn, J.A.: Phloem exudation from castor bean: induction by massage. Planta 95, 272–276 (1970).

    Article  Google Scholar 

  • Milburn, J.A.: An analysis of the response in phloem exudation on application of massage to Ricinus. Planta 100, 143–154 (1971).

    Article  Google Scholar 

  • Milburn, J.A.: Phloem transport in Ricinus. Pestic. Sci. 3, 653–665 (1972a).

    Article  Google Scholar 

  • Milburn, J.A.: Phloem physiology and protective sealing mechanism. Nature 236, 82 (1972 b).

    Article  Google Scholar 

  • Milburn, J.A.: Phloem transport in Ricinus: Concentration gradients between source and sink. Planta 117, 303–319 (1974).

    Article  Google Scholar 

  • Milburn, J.A.: Xylem and phloem transport in Ricinus. Johri Commemoration volume. Meerut, U.P., India: Sarita Prakashan (1975).

    Google Scholar 

  • Milburn, J.A., Sprent, J.I.: Observations on conducting tissues of Ricinus by Scanning Electronmicroscopy (SEM). (In prep.)

    Google Scholar 

  • Mittler, T.E.: Studies on the feeding and nutrition of Tuberolachnus salignus (Gmelin) (Homoptera Aphididae). J. Exptl. Biol. 34, 334–341 (1957).

    Google Scholar 

  • Mohl, H. von: Einige Andeutungen über den Bau des Bastes. Botan. Z. 13, 873–881, 889–897 (1855). (Referred to in Esau (1969) p. 12).

    Google Scholar 

  • Molotovsky, G.K.: O pyty po proverke teorü Miunkha. Botan. J. U.S.S.R. 19, 225–230 (1934).

    Google Scholar 

  • Münch, E.: Die Stoffbewegungen in der Pflanze. Jena: Fischer 1930.

    Google Scholar 

  • Noel, A.R.A.: The girdled tree. Botan. Rev. 36, 162–195 (1970).

    Article  Google Scholar 

  • Peel, A.J.: Further evidence for the relative immobility of water in sieve tubes of willow. Physiol. Plantarum 23, 667–672 (1970).

    Article  Google Scholar 

  • Peel, A.J., Field, R.J., Coulson, C.L., Gardner, D.C.J.: Movement of water and solutes in sieve tubes of willow in response to puncture by aphid stylets. Physiol. Plantarum 22, 768–775 (1969).

    Article  CAS  Google Scholar 

  • Siddiqui, A.W., Spanner, D.C.: The state of the pores in functioning sieve plates. Planta 91, 181–189 (1970).

    Article  Google Scholar 

  • Su, J.W., Swanson, C.A.: Effect of petiole anoxia on phloem transport in squash. Plant Physiol. 51, 368–371 (1973).

    Article  Google Scholar 

  • Tammes, P.M.L.: Observations on the bleeding of palm trees. Extr. Rec. Trav. Neerl. 30, 514–536 (1933).

    Google Scholar 

  • Tammes, P.M.L.: On the rate of translocation of the bleeding-sap in the fruit stalk of Arenga. Proc. Sect. Sci. Koninkl. Ned. Acad. Wetenschap. 55, 141–143 (1952).

    Google Scholar 

  • Tammes, P.M.L., Ie, T.S.: Studies on phloem exudation from Yucca flaccida flow. IX Passage of carbon black particles through sieve-plate pores of Yucca. Acta Botan. Neerl. 20, 309–317 (1971).

    Google Scholar 

  • Tate, J.: Methods and annual sequence of foraging by the sap sucker. The Auk. 90, 840–856 (1973).

    Google Scholar 

  • Tyree, M.T., Fensom, D.S.: Some experimental and theoretical observations concerning mass flow in the vascular bundles of Heracleum. J. Exptl. Botany 21, 304–324 (1970).

    Article  Google Scholar 

  • Tyree, M.T., Zimmermann, M.H.: The theory and practice of measuring transport coefficients and sap flow in the xylem of red maple stems (Acer rubrum). J. Exptl. Botany 22, 1–18 (1971).

    Article  Google Scholar 

  • Van Die, J., Tammes, P.M.L.: Studies of phloem exudation from Yucca flaccida flow III Prolonged bleeding from isolated parts of the young inflorescence. Koninkl. Ned. Acad. Wetenschap. Proc, Ser. C 69, 648–654 (1966).

    Google Scholar 

  • Weatherley, P.E.: Translocation in sieve tubes. Some thoughts on structure and mechanism. Physiol. Veget. 10, 731–742 (1972).

    Google Scholar 

  • Weatherley, P.E., Johnson, R.P.C.: The form and function of the sieve tube: A problem in reconciliation. Int. Rev. Cytol. 24, 149–192 (1968).

    Article  PubMed  CAS  Google Scholar 

  • Weatherley, P.E., Peel, A.J., Hill, G.P.: The physiology of the sieve tube. Preliminary experiments using aphid mouth parts. J. Exptl. Botany 10, 1–16 (1959).

    Article  Google Scholar 

  • Weevers, T., Westernberg, J.: Versuche zur Prüfung der Münchschen Theorie der Stoffbewegungen in der Pflanze. Proc. Sec. Sci. Koninkl. Ned. Acad. Wetenschap. 34, 1173–1178 (1931).

    Google Scholar 

  • Ziegler, H.: Untersuchungen über die Leitung und Sekretion der Assimilate. Planta 47, 447–500 (1956).

    Article  CAS  Google Scholar 

  • Ziegler, H., Mittler, T.: Über den Zuckergehalt der Siebröhren- bzw. Siebzellensäfte von Heracleum mantegazzianum und Picea abies (L) Karst. Z. Naturforsch. 14b, 278–281 (1959).

    Google Scholar 

  • Ziegler, H., Vieweg, G.H.: Der experimentelle Nachweis einer Massenströmung in Phloem von Heracleum mantegazzianum Somm. et Lev. Planta 56, 402–415 (1961).

    Article  CAS  Google Scholar 

  • Zimmermann, M.H.: Longitudinal and tangential movement within the sieve-tube system of white ash (Fraxinus americana L). Beih. Z. Schweiz. Forst. 30, 289–300 (1960).

    Google Scholar 

  • Zimmermann, M.H.: Movement of organic substances in trees. Science 133, 73–79 (1961).

    Article  PubMed  CAS  Google Scholar 

  • Zimmermann, M.H.: Translocation velocity and specific mass transfer in the sieve tubes of Fraxinus americana L. Planta 84, 272–278 (1969a).

    Article  Google Scholar 

  • Zimmermann, M.H.: Translocation of nutrients. In: Physiology of plant growth and development (ed. M.B. Wilkins). New York: McGraw Hill 1969b.

    Google Scholar 

  • Zimmermann, M.H.: Transport in the phloem. In: Trees, structure and function by Zimmermann, M.H., and Brown, C.L., p. 221–279. Berlin-Heidelberg-New York: Springer 1971.

    Google Scholar 

  • Zimmermann, M.H.: Long-distance transport (Conceptual developments in plant physiology, 1924–1974). Plant Physiol. 54, 472–479 (1974).

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1975 Springer-Verlag Berlin · Heidelberg

About this chapter

Cite this chapter

Milburn, J.A. (1975). Pressure Flow. In: Zimmermann, M.H., Milburn, J.A. (eds) Transport in Plants I. Encyclopedia of Plant Physiology, vol 1. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-66161-7_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-66161-7_14

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-66163-1

  • Online ISBN: 978-3-642-66161-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics