Skip to main content
Log in

Solution flow in tubular semipermeable membranes

  • Published:
Planta Aims and scope Submit manuscript

Summary

Solution flow in tubular semipermeable membranes was studied as a model for assimilate transport in sieve tubes. A mass flow of solution was demonstrated both in closed turgid tubes and in open tubes without turgor pressure. These results can be explained in terms of hydrostatic and osmotic pressure differences across the semipermeable membrane without consideration of a decrease in hydrostatic pressure along the direction of solution flow. A theoretical model based on nonequilibrium thermodynamics is developed that is in fairly good quantitative agreement with the experimental results. Münch's original experiment demonstrating solution flow is analyzed and shown not to depend on a gradient of hydrostatic pressure but rather to depend on the same driving forces operative in these experiments. On the basis of these findings a “volume-flow” mechanism of phloem transport is proposed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aikman, D. P., Anderson, W. P.: A quantitative investigation of a peristaltic model for phloem translocation. Ann. Bot. 35, 761–772 (1971).

    Google Scholar 

  • Canny, M. J.: The mechanism of translocation. Ann. Bot. 26, 603–617 (1962).

    Google Scholar 

  • Crafts, A. S., Crisp, C. E.: Phloem transport in plants. San Francisco: Freeman 1971.

    Google Scholar 

  • Curtis, O. F.: The translocation of solutes in plants. New York: McGraw-Hill 1935.

    Google Scholar 

  • Dubois, M., Gilles, K. A., Hamilton, J. K., Rebers, P. A., Smith, F.: Colorimetric method for determination of sugars and related substances. Analyt. Chem. 28, 350–356 (1956).

    Google Scholar 

  • Eschrich, W.: Bidirektionelle Translokation in Siebröhren. Planta (Berl.) 73, 37–49 (1967).

    Google Scholar 

  • Fensom, D. S.: The bioelectric potentials of plants and their functional significance. I. An electrokinetic theory of transport. Canad. J. Bot. 35, 573–582 (1957).

    Google Scholar 

  • Fisher, D. B.: Kinetics of C14-translocation in soybean. III. Theoretical considerations. Plant Physiol. 45, 119–125 (1970).

    Google Scholar 

  • Hammel, H. T.: Measurement of turgor pressure and its gradient in the phloem of oak. Plant Physiol. 43, 1042–1048 (1968).

    Google Scholar 

  • Ho, L. C., Peel, A. J.: Investigation of bidirectional movement of tracers in sieve tubes of Salix viminalis L. Ann. Bot. 33, 833–844 (1969).

    Google Scholar 

  • Katchalsky, A., Curran, P. F.: Nonequilibrium thermodynamics in biophysics. Cambridge, Mass.: Harvard Univ. Press 1965.

    Google Scholar 

  • Kaufmann, M. R., Kramer, P. J.: Phloem water relations and translocation. Plant Physiol. 42, 191–194 (1967).

    Google Scholar 

  • Lee, D. R., Arnold, D. C., Fensom, D. S.: Some microscopical observations of sieve tubes of Heracleum using Nomarski optics. J. exp. Bot. 22, 25–38 (1971).

    Google Scholar 

  • MacRobbie, E. A. C.: Phloem translocation. Facts and mechanisms: a comparative survey. Biol. Rev. 46, 429–481 (1971).

    Google Scholar 

  • Münch, E.: Dynamik der Saftströmungen. Ber. dtsch. bot. Ges. 44, 68–71 (1927).

    Google Scholar 

  • Münch, E.: Die Stoffbewegungen in der Pflanze. Jena: Fischer 1930.

    Google Scholar 

  • Spanner, D. C.: The translocation of sugar in sieve tubes. J. exp. Bot. 9, 332–342 (1958).

    Google Scholar 

  • Spanner, D. C.: The electro-osmotic theory of phloem transport in the light of recent measurements on Heracleum phloem. J. exp. Bot. 21, 325–334 (1970).

    Google Scholar 

  • Spanner, D. C., Jones, R. L.: The sieve tube wall and its relation to translocation. Planta (Berl.) 92, 64–72 (1970).

    Google Scholar 

  • Thaine, R.: Transcellular strands and particle movement in mature sieve tubes. Nature (Lond.) 192, 772–773 (1961).

    Google Scholar 

  • Thaine, R.: A translocation hypothesis based on the structure of plant cytoplasm. J. exp. Bot. 13, 152–160 (1962).

    Google Scholar 

  • Thaine, R.: Movement of sugars through plants by cytoplasmic pumping. Nature (Lond.) 222, 873–875 (1969).

    Google Scholar 

  • Trip, P., Gorham, P. R.: Bidirectional translocation of sugars in sieve tubes of squash plants. Plant Physiol. 43, 877–882 (1968).

    Google Scholar 

  • Tyree, M. T., Fensom, D. S.: Some experimental and theoretical observations concerning mass flow in the vascular bundles of Heracleum. J. exp. Bot. 21, 304–324 (1970).

    Google Scholar 

  • Vries, H. de: Über die Bedeutung der Circulation und der Rotation des Protoplasma für Stofftransport in der Pflanze. Bot. Z. 43, 1–6, 16–26 (1885).

    Google Scholar 

  • Weatherley, P. E., Johnson, R. P. C.: The form and function of the sieve tube: A problem in reconciliation. Int. Rev. Cytol. 24, 149–192 (1968).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Supported by the Deutsche Forschungsgemeinschaft and the U.S. National Science Foundation with research grants to the first two authors, and by a U.S. Public Health Service Research Career Development Award (K4-GM-21, 171) from the institute of General Medical Sciences to the third author.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Eschrich, W., Evert, R.F. & Young, J.H. Solution flow in tubular semipermeable membranes. Planta 107, 279–300 (1972). https://doi.org/10.1007/BF00386391

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00386391

Keywords

Navigation