Skip to main content

Abstract

Plasma diagnostics is a broad area of technology that encompasses a diverse, venerable field of experimental techniques designed to provide information about the characteristics of a plasma. Plasmas used in microelectronics processing fall into the broad category of low temperature plasmas. Typical plasma characteristics include electron densities between 109 and 1012 cm-3, electron temperatures from 0.1 to 10 eV, pressures of a few Torr to millitorr or below and excitation frequencies from dc to microwave. These parameters span a relatively wide range of conditions and make the selection of the best diagnostic tools challenging.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 299.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 379.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. J.F. Waymouth, Phys. Fluids 11, 1843–1854 (1964).

    Article  Google Scholar 

  2. L.J. Overzet, and M.B. Hopkins, J. Appl. Phys. 74, 4323-4330 (1993).

    Article  CAS  Google Scholar 

  3. M.D. Bowden, F. Kimura, H. Muta, K. Uchino, K. Muraoka, and M. Maeda, J. Vac. Sci. Technol. A 11, 2893–2896 (1993).

    Article  CAS  Google Scholar 

  4. F.F. Chen, “Electric Probes”, in Plasma Diagnostic Techniques, (ed. R.H. Huddlestone, and S.L. Leonard), (Academic Press, New York, 1965), pp. 113–200.

    Google Scholar 

  5. L. Schott, “Electrical Probes”, in Plasma Diagnostics, (ed. W. Lochte-Holtgreven), (North-Holland Publishing Company, Amsterdam, 1968), pp. 668–731.

    Google Scholar 

  6. J.D. Swift, and M.J.R. Schwar, Electrical Probes for Plasma Diagnostics, (American Elsevier Publshing Company, New York, 1969).

    Google Scholar 

  7. V.A. Godyak, “Measuring EEDF in Gas Discharge Plasmas”, in Plasma-Surface Interactions and Processing of Materials, (ed. O. Auciello, A. Gras-Marti, J.A. Valles-Abarca, and D.L. Flamm), NATO ASI Series, 176, (Kluwer Academic Publishers, Dordrecht, 1988), pp. 95–134.

    Google Scholar 

  8. V.A. Godyak, R.B. Piejak, and B.M. Alexandrovich, Plasma Sources Sci. Technol. 1, 36–58 (1992).

    Article  CAS  Google Scholar 

  9. D.N. Ruzic, Electric Probes for Low Temperature Plasmas, AVS Monograph Series, (American Vacuum Society Press, New York, 1994).

    Google Scholar 

  10. P.A. Miller, and M.E. Riley, J. Appl. Phys. 82, 3689–3709 (1997).

    Article  CAS  Google Scholar 

  11. P.A. Miller, G.A. Hebner, K.E. Greenberg, P.D. Pochan, and B.P. Aragon, J. Res. Nat. Inst. Stand. Technol. 100, 427–439 (1995).

    Article  CAS  Google Scholar 

  12. J. Laframboise, “Theory of Cylindrical and spherical Langmuir Probes in a Collisionless Plasma at Rest”, in Rarefied Gas Dynamics, (ed. J.H. de Leeuw), (Academic Press, 1966), pp. 22–44.

    Google Scholar 

  13. C. Steinbruchel, J. Vac. Sci. Technol. A 8, 1663–1667 (1990).

    Article  CAS  Google Scholar 

  14. M. Mausbach, J. Vac. Sci. Technol. A 15, 2923–2929 (1997).

    Article  CAS  Google Scholar 

  15. M.H. Khater, L.J. Overzet, and B.E. Cherrington, J. Vac. Sci. Technol. B 16, 490–495 (1998).

    Article  CAS  Google Scholar 

  16. M.J. Druyvesteyn, Z. Phys. 64, 781 (1930).

    Article  CAS  Google Scholar 

  17. V.A. Godyak, R.B. Piejak, and B.M. Alexandrovich, Phys. Rev. Lett. 68, 40–43 (1992).

    Article  CAS  Google Scholar 

  18. V.A. Godyak, R.B. Piejak, and B.M. Alexandrovich, J. Appl. Phys. 73, 3657–3663 (1993).

    Article  Google Scholar 

  19. A.P. Paranjpe, J.P. McVittie, and S.A. Self, J. Appl. Phys. 67, 6718–6727 (1990).

    Article  CAS  Google Scholar 

  20. R.R.J. Gagne, and S. Cantin, J. Appl. Phys. 43, 2639–2647 (1972).

    Article  Google Scholar 

  21. M.B. Hopkins, J. Res. Natl. Inst. Stand. Technol. 100, 415–425 (1995).

    Article  CAS  Google Scholar 

  22. B.M. Annaratone, and N.St. J. Braithwaite, Meas. Sci. Technol. 2, 795–800 (1991).

    Article  Google Scholar 

  23. N. Benjamin, Rev. Sci. Instrum. 53, 1541 (1982).

    Article  Google Scholar 

  24. R.H. Lovberg, “Magnetic Probes”, in Plasma Diagnostic Techniques, (ed. R.H. Huddlestone, and S.L. Leonard), (Academic Press, New York, 1965), pp. 69–112.

    Google Scholar 

  25. M. Tuszewski, Phys. Rev. Lett. 77, 1286–1289 (1996).

    Article  CAS  Google Scholar 

  26. V.A. Godyak, and V.I. Kolobov, Phys. Rev. Lett. 79, 4589–4592 (1997).

    Article  CAS  Google Scholar 

  27. R. Piejak, V. Godyak, and B. Alexandrovich, J. Appl. Phys. 81, 3416–3421 (1997).

    Article  CAS  Google Scholar 

  28. S.L. Leonard, “Basic Macroscopic Measurements”, in Plasma Diagnostic Techniques, (eds. R.H. Huddlestone, and S.L. Leonard), (Academic Press, New York, 1965), pp. 7–67.

    Google Scholar 

  29. M.A. Sobolewski, J. Vac. Sci. Technol. A 10, 3550–3562 (1992).

    Article  CAS  Google Scholar 

  30. P.J. Hargis et al., Rev. Sci. Instrum. 65, 140–154 (1994).

    Article  CAS  Google Scholar 

  31. N. Spiliopoulos, D. Mataras, and D.E. Rapakoulias, J. Vac. Sci. Technol. A 14, 2757–2765 (1996).

    Google Scholar 

  32. M.A. Heald, and C.B. Wharton, Plasma Diagnostics with Microwaves (Wiley, New York, 1965).

    Google Scholar 

  33. L.J Overzet, J. Res. Natl. Inst. Stand. Technol. 100, 401 (1995).

    Article  CAS  Google Scholar 

  34. G.A. Hebner, J. Vac. Sci. Technol. A 14, 2158 (1996).

    Article  CAS  Google Scholar 

  35. N. Niemoller, V. Shculz-von der Gathen, A. Stampa, and H.F. Dobele, Plasma Sources Sci. Technol. 6, 478 (1997).

    Article  Google Scholar 

  36. C.B. Fleddermann, J.H. Beberman, and J.T. Verdeyen, J. Appl. Phys. 58, 1344 (1985).

    Article  CAS  Google Scholar 

  37. M. Haverlag. A. Kono, D. Passchier, G.M.W. Kroesen, W.J. Goedheer, and F.J. de Hoog, J. Appl. Phys. 70, 3472 (1991) and reference therein.

    Article  Google Scholar 

  38. T. Hayashi, A. Kono, and T. Goto, Jpn. J. Appl. Phys. 36, 4651 (1997).

    Article  CAS  Google Scholar 

  39. C.B. Fleddermann, and G.A. Hebner, J. Vac. Sci. Technol. A 15, 1955 (1997).

    Article  CAS  Google Scholar 

  40. T.H. Ahn, K. Nakamura, H. Sugai, Purazuma, Kaku Yugo Gakkaishi 73, 106 (1997).

    CAS  Google Scholar 

  41. B.H. Hutchenson, Principles of Plasma Diagnostics, (Cambridge Univ Press, NY, 1992), pp. 80.

    Google Scholar 

  42. J.A. Simson, Rev. Sci. Instrum., 32, 1283 (1961).

    Article  Google Scholar 

  43. G.W. Gibson, Jr., H.H. Sawin, I. Tepermeister, D.E. Ibbotson, and J.T.C. Lee, J. Vac. Sci. Technol. 12, 2333 (1994).

    Article  CAS  Google Scholar 

  44. S.G. Ingram, N.St.J. Braithwaite, J. Phys D: Appl. Phys. 21, 1496 (1988).

    Article  CAS  Google Scholar 

  45. J.R. Woodworth, M.E. Riley, P.A. Miller, C.A. Nichols, and T.W. Hamilton, J. Vac. Sci. Technol. A 15, 3015 (1997).

    Article  CAS  Google Scholar 

  46. C.A. Nichols, J.R. Woodworth, and T.W. Hamilton, J. Vac. Soc. Technol. 16, 1998.

    Google Scholar 

  47. M.G. Blain, J.E. Stevens, J.R. Woodworth, and C.A. Nichols, paper 98-2986, American Institute of Aeronautics & Astronautics, 29th Conf. On Plasma Dynamics & Lasers, (Albuquerque, NM, June 1998).

    Google Scholar 

  48. J. Liu, G.L. Huppert, and H.H. Sawin, J. Appl. Phys 68, 3916 (1990).

    Article  CAS  Google Scholar 

  49. J.R. Woodworth, M.E. Riley, P.A. Miller, G.A. Hebner, and T.W. Hamilton, J. Appl. Phys. 81, 5950 (1997).

    Article  CAS  Google Scholar 

  50. E.S. Aydil B.O.M. Quiniou, J.T.C. Lee, J.A. Gregus, and R.A. Gottscho, Materials Science in Semiconductor Processing 1, (Pergamon Press, 1988), p. 75

    Google Scholar 

  51. A.D. Kuypers, and H.J. Hopman, J. Appl. Phys. 63, 1894 (1988).

    Article  Google Scholar 

  52. A.D. Kuypers, and H.J. Hopman, J. Appl. Phys. 67, 1229 (1990).

    Article  CAS  Google Scholar 

  53. A. Manenschijn, GCAM Janssen, E. van der Drift, and S. Radelaar, J. Appl. Phys. 69, 1253 (1991).

    Article  CAS  Google Scholar 

  54. J.W. Coburn, Rev. Sci. Inst. 41, 1219 (1970).

    Article  CAS  Google Scholar 

  55. E.M. Purcell, Phys. Rev. 54, 818 (1938).

    Article  CAS  Google Scholar 

  56. H.Z. Sar-El, Rev. Sci. Inst. 38, 1210 (1967).

    Article  Google Scholar 

  57. J.S. Risley, Rev. Sci. Inst. 43, 95 (1972).

    Article  Google Scholar 

  58. L. Shi, H.J. Frankena, and H. Mulder, Rev. Sci. Inst. 60, 332 (1989).

    Article  CAS  Google Scholar 

  59. J.H. Craig, Jr., and W.G. Durrer, J. Vac. Sci., Technol. A7, 3337, (1989).

    Google Scholar 

  60. I. Lindau, J.C. Helmer, and J. Uebbing, Rev. Sci. Instrum. 44, 265 (1973).

    Article  CAS  Google Scholar 

  61. J.K. Olthoff, R.J. Van Brunt, S.B. Radovanov, J.A. Rees, and R. Surowiec, J. Appl. Phys 75, 115 (1994).

    Article  CAS  Google Scholar 

  62. R.J.M. Snijkers, M.J.M. van Sambeek, G.M.W. Kroesen, and F.J. de Hoog, Appl. Phys. Lett. 63, 308, (1993).

    Article  CAS  Google Scholar 

  63. M. Zeuner, H. Neumann, and J. Meichsner, J. Appl. Phys. 81, 2985 (1997).

    Article  CAS  Google Scholar 

  64. J. Janes, and C. Huth, J. Vac. Soc. Technol. A 10, 3522, (1992).

    Article  CAS  Google Scholar 

  65. J. Janes, U. Vanziger, P. Hoffmann, G. Neumann, H.C. Scheer, B. Schneemann, and U. Kohler, Rev. Sci. Instrum. 63, 48, (1992).

    Article  CAS  Google Scholar 

  66. Hiden Analytical Corp, Warrington, England; Pfeiffer Vacuum Technology, Nashua, New Hampshire.

    Google Scholar 

  67. J.R. Woodworth, private communication

    Google Scholar 

  68. P.K. Loewenhardt, H. Hanawa, D.X. Ma, P. Salzman, K. Chuc, A. Sato, V. Todorov, and G.Z. Yin, Proc. Electrochem. Soc. 96, 236 (1996).

    Google Scholar 

  69. B.L. Preppernau, and T.A. Miller, Laser-based diagnostics of reactive plasmas in Glow Discharge Spectroscopy, (ed. R.K. Marcus), (Plenum, New York, 1993), pp. 483–508.

    Google Scholar 

  70. G.S. Selwyn, Optical Diagnostic Techniques for Plasma Processing, AVS Monograph Series, M-11 (AVS Press, New York, 1993).

    Google Scholar 

  71. G.R. Harrison, MIT Wavelength Tables, (MIT Press, Massachusetts, 1948).

    Google Scholar 

  72. F.M. Phelps, MIT Wavelength Tables, Wavelengths by Element, (MIT Press, Massachusetts, 1982).

    Google Scholar 

  73. D.R. Lide, CRC Handbook of Chemistry and Physics, (CRC Press, Boca Raton, 1995).

    Google Scholar 

  74. W.L. Wiese, M.W. Smith, and B.M. Glennon, Atomic Transition Probabilities, Vol. 1–3 (U.S. Department of Commerce, National Institute of Standards and Technology, 1966). Also available electronically.

    Google Scholar 

  75. C.E. Moore, Atomic Energy Levels, Vol. 1–3 (U.S. Department of Commerce, National Institute of Science and Technology, 1971). Also available electronically.

    Google Scholar 

  76. S. Baskin, and J.O. Stoner, Jr., Atomic Energy Levels and Grotrian Diagrams, Vol. 1 Hydrogen IPhosphorus XV, (North-Holland, Amsterdam, 1975).

    Google Scholar 

  77. S. Baskin, and J.O. Stoner, Jr., Atomic Energy Levels and Grotrian Diagrams, Vol. 2 Sulfer I—Titanium XXII, (North-Holland, Amsterdam, 1975).

    Google Scholar 

  78. S.N. Suchard, Spectroscopic Data, Heteronuclear Diatomic Molecules, Part A & B, (Plenum, New York), 1975

    Google Scholar 

  79. S.N. Suchard, and J.E. Melzer, Spectroscopic Data, Homonuclear Diatomic Molecules, (Plenum, New York, 1976).

    Google Scholar 

  80. G. Herzberg, Molecular Spectra and Molecular Structure, Vol. 1 Spectra of Diatomic Molecules, 2nd edn. (Krieger, Malabar, Florida, 1989).

    Google Scholar 

  81. G. Herzberg, Vol. 2 Infrared and Raman Spectra of Polyatomic Molecules, 2nd edn. (Krieger, Malabar, Florida, 1991).

    Google Scholar 

  82. G. Herzberg, Vol. 3 Electronic Spectra and Electronic Structure of Polyatomic Molecules, 2nd edn. (Krieger, Malabar, Florida, 1991).

    Google Scholar 

  83. H. Okabe, Photochemistry of Small Molecules, (Wiley, New York, 1978).

    Google Scholar 

  84. R.W.B. Pearse, and A.G. Gaydon, Identification of Molecular Spectra, (Wiley, New York, 1963).

    Google Scholar 

  85. F.A. Jenkins, and H.E. White, Fundamentals of Optics, (McGraw-Hill, New York, 1957).

    Google Scholar 

  86. J.R. Woodworth, and R. Veerasingam, Bull. Am. Phys. Soc. 42, (8), Paper OWP4-1, Proceedings of the 50th Annual Gaseous Electronics Conference October 1997, pp. 1755.

    Google Scholar 

  87. J.K. Olthoff, and K.E. Greenberg, J. Res. Natl. Inst. Stand. Technol. 100, 327 (1995).

    Article  CAS  Google Scholar 

  88. H.M. Anderson, M.P. Splichal, J.T. Pender, and J.L. Cecchi, Paper PS1WeA5, 43rd National Symposium of the American Vacuum Society Philadelphia, October 1996, pp. 132.

    Google Scholar 

  89. Applied Materials Corporation, 3050 Bowers Ave. Santa Clara, CA.

    Google Scholar 

  90. J.R. Woodworth, M.G. Blain, R.L. Jarecki, T.W. Hamilton, and B.P. Aragon, J. Vac. Sci. Technol. A, 17(6), 3209 (1999).

    Article  CAS  Google Scholar 

  91. J.A.R. Samson, Techniques of Vacuum Ultraviolet Spectroscopy, (Wiley, New York, 1967).

    Google Scholar 

  92. Galileo Electro Optics Corp. Sturbridge, Massachussetts.

    Google Scholar 

  93. J.A. Samson, and D.L. Ederer, Experimental Methods in the Physical Sciences: Vol. 31 & 32: Vacuum Ultraviolet Spectroscopy, (Academic Press, San Diego, 1998).

    Google Scholar 

  94. A.N. Zaidel, and E.Y. Shreider, Vacuum Ultraviolet Spectroscopy (Halsted/ John Wiley, New York, 1970) (This is a translation of Spektroskopiya Vakuumnogo Ultrafioleta, Moskow, 1967).

    Google Scholar 

  95. W.T. Connor, and H.H. Sawin, Appl. Phys. Lett. 60, 557 (1992).

    Article  Google Scholar 

  96. V.M. Donnelly, J. Vac. Sci. Technol. A 14, 1076 (1996).

    Article  CAS  Google Scholar 

  97. M.V. Malyshev, and V.M. Donnelly, J. Vac. Sci. Technol. A 15, 550 (1997).

    Article  CAS  Google Scholar 

  98. L.D.B. Kiss, J.-P. Nicolai, W.T. Conner, and H.H. Sawin, J. Appl. Phys. 71, 3186 (1992).

    Article  CAS  Google Scholar 

  99. R. Kramer, Chemometric Techniques for Quantitative Analysis, (Dekker, New York, 1998).

    Book  Google Scholar 

  100. A.C.G. Mitchell, and M.W. Zemansky, Resonance Radiation and, Excited Atoms, (Cambridge University Press, Cambridge, 1934).

    Google Scholar 

  101. G.A. Hebner, J. Appl. Phys. 80, 2624 (1996).

    Article  CAS  Google Scholar 

  102. D. Leonhardt, C.R. Eddy, Jr., V.A. Shamamian, R.F. Fernsler, and J.E. Butler, J. Appl. Phys. 83, 2971 (1998).

    Article  CAS  Google Scholar 

  103. N. Sadeghi, M. van de Grift, D. Vender, G.M.W. Kroesen, and F.J. de Hoog, Appl. Phys. Lett. 70, 835 (1997).

    Article  CAS  Google Scholar 

  104. P.A. Miller, G.A. Hebner, R.L. Jarecki Jr., and T. Ni, J. Vac. Sci. Technol. A 16, 3240 (1998)

    Article  CAS  Google Scholar 

  105. J.P. Booth, G. Cunge, F. Neuilly, and N. Sadeghi, Plasma Sources Sci. Technol. 7, 423 (1998).

    Article  CAS  Google Scholar 

  106. M.H. Loh, and M.A. Cappelli, Appl. Phys. Lett. 70, 1052 (1997).

    Article  CAS  Google Scholar 

  107. K. Sasaki, Y. Kawai, C. Suzuki, and K. Kadota, J. Appl. Phys. 83, 7482 (1998).

    Article  Google Scholar 

  108. K.C. Baucom, K.P Killeen, and H.K. Moffat, J. Electron. Mater. 24, 1703 (1995).

    Article  CAS  Google Scholar 

  109. T. Goto, and M. Hori, Jpn. J. Appl. Phys. 35, 6521 (1996).

    Article  CAS  Google Scholar 

  110. M. Haverlag, E. Stoffels, W.W. Stoffels, G.M.W. Kroesen, and F.J. de Hoog, J. Vac. Sci. Technol. A 14, 3 (1996).

    Google Scholar 

  111. J. Wormhoudt, A.C. Stanton, A.D. Richards, and H.H. Sawin, J. Appl. Phys. 61, 142 (1987).

    Article  CAS  Google Scholar 

  112. B.C. Smith, Fundamentals of Fourier Transform Infrared Spectroscopy, (CRC Press, Boca Raton FL, 1996).

    Google Scholar 

  113. see for example; R. Beer, Remote Sensing Using Fourier Transform Spectroscopy, (Wiley, New York, 1992), P.R. Griffiths, and J.A. DeHaseth, Fourier Transform Infrared Spectrometry, (Wiley, New York, 1986); R.J. Bell, Introductory Fourier Transform Spectroscopy, (Academic Press, New York, 1972).

    Google Scholar 

  114. B.A. Paldus, C.C. Harb, T.G. Spence, B. Wilke, J. Xie, J.S. Harris, and R.N. Zare, J. Appl. Phys. 83, 3991 (1998).

    Article  CAS  Google Scholar 

  115. P. Zalicki, Y. Ma, R.N. Zare, E.H. Wahl, J.R. Dadamio, T.G. Owano, and C.H. Kruger, Chem. Phys. Lett. 234, 269 (1995).

    Article  CAS  Google Scholar 

  116. M.D. Levenson, B.A. Paldus, T.G. Spence, C.C. Harb, J.S. Harris, and R.N. Zare, Chem. Phys. Lett. 290, 335 (1998).

    Article  CAS  Google Scholar 

  117. A. Campargue, D. Romanini, and N. Sadeghi, J. Phys. D: Appl. Phys. 31, 1168 (1998).

    Article  CAS  Google Scholar 

  118. A. Corney, Atomic and Laser Spectroscopy, (Clarendon Press, Oxford, 1977).

    Google Scholar 

  119. W. Demtroder, Laser Spectroscopy, 2nd edn. (Springer-Verlang, Berlin, 1996).

    Google Scholar 

  120. C.B. Fleddermann, and G.A. Hebner, J. Appl. Phys. 83, 4030 (1997).

    Article  Google Scholar 

  121. B.K. McMillin, and M.R. Zachariah, J. Vac. Sci. Technol. A 15, 230 (1997).

    Article  CAS  Google Scholar 

  122. G. Cunge, P. Chabert, and J.P. Booth, Plasma Sources Sci. Technol. 6, 349 (1997).

    Article  CAS  Google Scholar 

  123. N.M. Mackie. V.A. Venture, and E.R. Fisher, J. Phys. Chem. B 101, 9425 (1997).

    Article  CAS  Google Scholar 

  124. See G.A. Hebner, J. Appl. Phys. 80, 3215 (1996), and G.A. Hebner, C.B. Fleddermann, P.A. Miller, and G.A. Hebner, J. Vac. Sci. Technol., A 15, 2698 (1997).

    Article  CAS  Google Scholar 

  125. G.A. Hebner, and C.B. Fleddermann, J. Appl. Phys. 83, 5102 (1998).

    Article  CAS  Google Scholar 

  126. G.S. Selwyn, L.D. Baston, and H.H. Sawin, Appl. Phys. Lett. 51, 898 (1987).

    Article  CAS  Google Scholar 

  127. J.R. Dunlop, A.D. Tserepi, B.L. Preppernau, T.M. Cerny, and T.A. Miller, Plasma Chem. Plasma Process. 12, 89 (1992).

    Article  CAS  Google Scholar 

  128. B.N. Ganguly, and P. Bletzinger, J. Appl. Phys. 82, 4772 (1997).

    Article  CAS  Google Scholar 

  129. G. Cunge, J.P. Booth, and J. Derouard, Chem. Phys. Lett. 263, 645 (1996).

    Article  CAS  Google Scholar 

  130. A. Mandl, Phys. Rev. A 14, 345 (1976).

    Article  CAS  Google Scholar 

  131. S. Vacquie, A. Gleizes, and M. Sabsabi, Phys. Rev. A 35, 1615 (1987).

    Article  CAS  Google Scholar 

  132. H. Hotop, and W.C. Lineberger, J. Phys. Chem. Ref. Data 4, 539 (1975).

    Article  CAS  Google Scholar 

  133. J. Kramer, J. Appl. Phys. 60, 3072 (1986).

    Article  CAS  Google Scholar 

  134. D.K. Doughty, and J.E. Lawler, Appl. Phys. Lett. 45, 611 (1984).

    Article  CAS  Google Scholar 

  135. G.A. Hebner, K.E. Greenberg, and M.E. Riley, J. Appl. Phys. 76, 4036 (1994).

    Article  CAS  Google Scholar 

  136. Y.W. Choi, M.D. Bowden, and K. Muraoka, Appl. Phys. Lett. 69, 1361 (1996).

    Article  CAS  Google Scholar 

  137. J. Sheffield, Plasma Scattering of Electromagnetic Radiation, (Academic, New York, 1975).

    Google Scholar 

  138. T. Hori, M. Kogano, M.D. Bowden, K. Uchino, K. Muraoka, J. Appl. Phys. 83, 1909 (1998).

    Article  CAS  Google Scholar 

  139. I. Abraham, C. Woods, and G.A. Hebner, private communication.

    Google Scholar 

  140. G.A. Hebner, unpublished.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Hebner, G.A., Miller, P.A., Woodworth, J.R. (2000). Overview of Plasma Diagnostic Techniques. In: Shul, R.J., Pearton, S.J. (eds) Handbook of Advanced Plasma Processing Techniques. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-56989-0_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-56989-0_5

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-63096-5

  • Online ISBN: 978-3-642-56989-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics