Biological Soil Crusts: Characteristics and Distribution

  • J. Belnap
  • B. Büdel
  • O. L. Lange
Part of the Ecological Studies book series (ECOLSTUD, volume 150)


Biological soil crusts result from an intimate association between soil particles and cyanobacteria, algae, microfungi, lichens, and bryophytes (in different proportions) which live within, or immediately on top of, the uppermost millimeters of soil. Soil particles are aggregated through the presence and activity of these biota, and the resultant living crust covers the surface of the ground as a coherent layer (Fig. 1.1). This definition does not include communities where soil particles are not aggregated by these organisms (e.g., cyanobacterial/algal horizons in littoral sand and mudflats), where organisms are not in close contact with the soil surface (e.g., thick moss-lichen mats growing on top of decaying organic material, as in boreal regions), nor where the majority of the biomass is above the soil surface (e.g., large club-moss mats found in North American grasslands or dense stands of fruticose lichens, such as Niebla and Teloschistes species from the coastal fog deserts of California and of Namibia, respectively). However, the boundaries between the latter communities and biological soil crusts are fluid. In a similar fashion, there is no strict dividing line between the cyanobacterial, green algal, and fungal species that occur in soil-crust communities, yet are also found in a multitude of additional habitats (e.g., intertidal mats, tree trunks and leaves, rock faces).

Fig. 1.1.

Schematic block diagram of a biological soil crust with typical colonizers. Thickness of the layer about 3 mm, organisms not drawn to scale. (Illustration Renate Klein-Rödder)


Soil Crust Biological Soil Crust Sonoran Desert Crust Lichen Fruticose Lichen 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Belnap J (1993) Recovery rates of cryptobiotic soil crusts: inoculant use and assessment methods. Great Basin Nat 53(1):89–95Google Scholar
  2. Bewley JD, Krochko JE (1982) Desiccation-tolerance. In: Lange OL, Nobel PS, Osmond CB, Ziegler H (eds) Physiological plant ecology II. Water relations and carbon assimilation. Encyclopedia of plant physiology 12B. Springer, Berlin Heidelberg New York, pp 325–378CrossRefGoogle Scholar
  3. Bilger W, Bohuschke M, Ehling-Schulz M (1997) Annual time course of the contents of carotenoids and UV-protective pigments in the cyanobacterium Nostoc commune. Bibl Lichenol 67:223–234Google Scholar
  4. Büdel B, Lange OL (1994) The role of cortical and epinecral layers in the lichen genus Peltula. Cryptogam Bot 4:262–269Google Scholar
  5. Büdel B, Wessels DCJ (1986) Parmelia hueana Gyeln., a vagrant lichen from the Namib Desert, SWA/Namibia. I. Anatomical and reproductive adaptations. Dinteria 18:3–15Google Scholar
  6. Büdel B, Karsten U, Garcia-Pichel F (1997) Ultraviolet-absorbing scytenemin and mycosporine-like amino acid derivatives in exposed, rock-inhabiting cyanobacterial lichens. Oecologia 112:165–172CrossRefGoogle Scholar
  7. Crum H (1993) A lichenologists view of lichen manna. Contrib Univ Mich Herb 19:293–306Google Scholar
  8. Demmig-Adams A, Máguas C, Adams III WW, Meyer A, Kilian E, Lange OL (1990a) Effect of high light on the efficiency of photochemical energy conversion in a variety of lichen species with green and blue-green phycobionts. Planta 180:400–409CrossRefGoogle Scholar
  9. Demmig-Adams B, Adams III WW, Czygan F-C, Schreiber U, Lange OL (1990b) Differences in the capacity for radiationless energy dissipation in the photochemical apparatus of green and blue-green algal lichens associated with differences in carotenoid composition. Planta 180:582–589CrossRefGoogle Scholar
  10. Dietz S, Büdel B, Lange OL, Bilger W (2000) Transmittance of light through the cortex of lichens from contrasting habitats. Bibl Lichenol 75:171–182Google Scholar
  11. Eldridge DJ, Greene RSB (1994) Microbiotic soil crusts: a review of their roles in soil and ecological processes in the rangelands of Australia. Aust J Soil Res 32:389–415CrossRefGoogle Scholar
  12. Eldridge DJ, Tozer ME (1996) Distribution and floristics of bryophytes in soil crusts in semi-arid and arid eastern Australia. Aust J Bot 44:223–247CrossRefGoogle Scholar
  13. Eldridge DJ, Tozer ME (1997) A practical guide to soil lichens and bryophytes of Australia’s dry country. Dep Land and Water Cons, SydneyGoogle Scholar
  14. Elenkin AA (1901) Wanderflechten der Steppen und Wüsten. Bull Jard Imp Bot St Pétersbourg 1:1–45Google Scholar
  15. Evans RD, Johansen JR (1999) Microbiotic crusts and ecosystem processes. Crit Rev Plant Sci 18:183–225CrossRefGoogle Scholar
  16. Frey W, Kürschner H (1988) Bryophytes of the Arabian Peninsula and Socotra. Floristics, phytogeography and definition of the Xerthermic Pangaean element. Nova Hedwigia 46:37–120Google Scholar
  17. Frey W, Kürschner H (1991a) Lebensstrategien von terrestrischen Bryophyten in der Judäischen Wüste. Bot Acta 104:172–182Google Scholar
  18. Frey W, Kürschner H (1991b) Das Fossombronio-Gigaspermetum mouretii in der Judäischen Wüste. 2. Ökosoziologie und Lebensstrategien. Cryptogam Bot 2/3:73–84Google Scholar
  19. Frey W, Kürschner H (1991 c) Morphologische und anatomische Anpassungen der Arten in terrestrischen Bryophytengesellschaften entlang eines ökologischen Gradienten in der Judäischen Wüste. Bot Jahrb Syst 112:529–552Google Scholar
  20. Frey W, Kürschner H (1998) Wüstenmoose: Anpassungen und Überlebensstrategien im täglichen Kampf mit der Sonne. Biol Unserer Zeit 28:231–240CrossRefGoogle Scholar
  21. Galun M (1963) Autecological and synecological observations on lichens of the Negev, Israel. Isr J Bot 12:179–186Google Scholar
  22. Galun M, Bubrick P, Garty J (1982) Structural and metabolic diversity of two desert-lichen populations. J Hattori Bot Lab 53:321–324Google Scholar
  23. Garcia-Pichel F, Castenholz RW (1991) Characterization and biological implications of scytonemin, a cyanobacterial sheath pigment. J Phycol 27: 395–409CrossRefGoogle Scholar
  24. Garcia-Pichel F, Castenholz RW (1993) Occurrence of UV-absorbing, mycosporine-like compounds among cyanobacterial isolates and an estimate for their screening capacity. Appl Environ Microbiol 59:163–169PubMedGoogle Scholar
  25. Gauslaa Y, Solhaug KA (1999) High-light damage in air-dry thalli of the old forest lichen Lobaria pulmonaria — interactions of irradiance, exposure duration and high temperature. J Exp Bot 50:697–705Google Scholar
  26. Harper KT, Marble JR (1988) A role for nonvascular plants in management of arid and semiarid rangeland. In: Tueller PT (ed) Vegetation science applications for rangeland analysis and management. Kluwer Academic Publishers, Dordrecht, pp 135–169CrossRefGoogle Scholar
  27. Hartung W, Gimmler H (1994) A stress-physiological role for abscisic acid (ABA) in lower plants. Prog Bot 55:157–173CrossRefGoogle Scholar
  28. Hellwege EM, Dietz K-J, Volk OH, Hartung W (1994) Abscisic acid and the induction of desiccation tolerance in the extremely xerophilic liverwort Exormotheca holstii. Planta 194:525–531CrossRefGoogle Scholar
  29. Jahns HM (1988) The lichen thallus. In: Galun M (ed) Handbook of lichenology, 1. CRC Press, Boca Raton, pp 95–143Google Scholar
  30. Johansen JR (1993) Cryptogamic crusts of semiarid and arid lands of North America. J Phycol 29:140–147CrossRefGoogle Scholar
  31. Johansen JR, Rushforth SR (1986) Cryptogamic soil crusts: seasonal variation. Great Basin Nat 46:632–640Google Scholar
  32. Kappen L (1973) Response to extreme environments. In: Ahmadjian V, Hale ME (ed) The lichens. Academic Press, New York, pp 311–380CrossRefGoogle Scholar
  33. Kappen L (1988) Ecophysiological relationships in different climatic regions. In: Galun M (ed) Handbook of lichenology, 2. CRC Press, Boca Raton, pp 37–100Google Scholar
  34. Kappen L, Lange OL (1972) Die Kälteresistenz einiger Makrolichenen. Flora 161:1–29Google Scholar
  35. Komáromy ZP (1976) Soil algal growth types as edaphic adaptation in Hungarian forest and grass steppe ecosystems. Acta Bot Acad Sci Hung 22:373–379Google Scholar
  36. Lange OL (1953) Hitze-und Trockenresistenz der Flechten in Beziehung zu ihrer Verbreitung. Flora 140:39–97Google Scholar
  37. Lange OL (1955) Untersuchungen über die Hitzeresistenz der Moose in Beziehung zu ihrer Verbreitung. I. Die Resistenz stark ausgetrockneter Moose. Flora 142:381–399Google Scholar
  38. Lange OL (1965) Der CO2-Gaswechsel von Flechten bei tiefen Temperaturen. Planta 64:1–19CrossRefGoogle Scholar
  39. Lange OL, Belnap J, Reichenberger H (1998) Photosynthesis of the cyanobacterial soil crust lichen Collema tenax for arid lands in southern Utah, USA: role of water content on light and temperature response of CO2 exchange. Funct Ecol 12:195–202CrossRefGoogle Scholar
  40. Lange OL, Leisner MR, Bilger W (1999) Chlorophyll fluorescence characteristics of the cyanobacterial lichen Peltigera rufescens under field conditions II. Diel and annual distribution of metabolic activity and possible mechanisms to avoid photoinhibition. Flora 194:413–430Google Scholar
  41. Leisner MR, Bilger W, Czygan F-C, Lange OL (1993) Lipophilous carotenoids of cyanobacterial lichens from different habitats, including an extreme desert site. Cryptogam Bot 4:74–82Google Scholar
  42. Leisner MR, Bilger W, Czygan F-C, Lange OL (1994) Light exposure and the composition of lipophilous carotenoids in cyanobacterial lichens. J Plant Physiol 143:514–519CrossRefGoogle Scholar
  43. Lovelock CE, Osmond CB, Seppelt RD (1995) Photoinhibition in the Antarctic moss Grimmia antarctici Card. when exposed to cycles of freezing and thawing. Plant Cell Environ 18:1395–1402CrossRefGoogle Scholar
  44. Poelt J, Baumgärtner H (1964) Über Rhizinenstränge bei placodialen Flechten. Österr Bot Z 111:1–18CrossRefGoogle Scholar
  45. Proctor MCF (1981) Physiological ecology of bryophytes. In: Schulze-Motel W (ed) Advances in bryology 1. Cramer, Vaduz, pp 79–166Google Scholar
  46. Rikkinen J (1995) What’s behind the pretty colours? A study on the photobiology of lichens. Bryobrothera 4:1–239Google Scholar
  47. Rogers RW (1977) Lichens of hot arid and semi-arid lands. In: Seaward MRD (ed) Lichen ecology. Academic Press, London, pp 211–252Google Scholar
  48. Rosentreter R (1993) Vagrant lichens in North America. Bryologist 96:333–338CrossRefGoogle Scholar
  49. Rumrich U, Rumrich M, Lange-Bertalot H (1989) Diatmeen als “Fensteralgen” in der Namib-Wüste und anderen ariden Gebieten von SWA/Namibia. Dinteria 20:23–29Google Scholar
  50. Rundel PW, Lange OL (1980) Water relations and photosynthetic response of a desert moss. Flora 169:329–335Google Scholar
  51. Sanders WB (1994) Role of lichen rhizomorphs in thallus propagation and substrate colonization. Cryptogam Bot 4:283–289Google Scholar
  52. Scherer S, Ernst A, Chen T-W, Böger P (1984) Rewetting of drought-resistant blue-green algae: time course of water uptake and reappearance of respiration, photosynthesis and nitrogen fixation. Oecologia 62:418–423CrossRefGoogle Scholar
  53. Schneider G (1979) Die Flechtengattung Psora sensu Zahlbruckner. Bibl Lichenol 13: 1–291Google Scholar
  54. Schubert R (1982) Lichens of central Asia. J Hattori Bot Lab 53:341–343Google Scholar
  55. Solhaug KA, Gauslaa Y (1996) Parietin, a photoprotective secondary product of the lichen Xanthoria parietina. Oecologia 108:412–418CrossRefGoogle Scholar
  56. Starks TL, Shubert LE, Trainor FR (1981) Ecology of soil algae: a review. Phycologia 20:65–80CrossRefGoogle Scholar
  57. Timdal E (1986) A revision of Psora (Lecideaceae) in North America. Bryology 89:253–275CrossRefGoogle Scholar
  58. Vogel S (1955) Niedere “Fensterpflanzen” in der südafrikanischen Wüste. Eine ökologische Schilderung. Beitr Biol Pflanz 31:45–135Google Scholar
  59. Volk OH (1979) Beiträge zur Kenntnis der Lebermoose (Marchantiales) aus Südwestafrika (Namibia) I. Mitt Bot Staatssamml Münch 15:223–242Google Scholar
  60. Volk OH (1984) Beiträge zur Kenntnis der Marchantiales in Südwest-Afrika/Namibia IV. Nova Hedwigia 39:117–143Google Scholar
  61. West NE (1990) Structure and function of soil microphytic crusts in wildland ecosystems of arid and semi-arid regions. Adv Ecol Res 20:179–223CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2001

Authors and Affiliations

  • J. Belnap
  • B. Büdel
  • O. L. Lange

There are no affiliations available

Personalised recommendations