Skip to main content

Principles of Cancer Chemotherapy

  • Chapter
Oncologic Therapies

Abstract

The use of anticancer drugs as part of the treatment strategy for cancer has greatly improved the overall prognosis of cancer. Though the principles of cancer chemotherapy stem from, with rare exceptions, empirical observations made in early clinical trials involving children, the overall approach to cancer chemotherapy will continue to evolve as more clinical protocols adapt to emerging knowledge about carcinogenesis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Chabner BA (1990) Clinical strategies for cancer treatment: the role of drugs. In: Chabner BA, Collins JM (eds) Cancer chemotherapy. Principles and practice. Lippincott, Philadelphia, pp 1–15

    Google Scholar 

  2. Henderson EH, Samaha RJ (1969) Evidence that drugs in multiple combinations have materially advanced the treatment of human malignancies. Cancer Res 29:2272–2280

    CAS  Google Scholar 

  3. Erlichman C, Fine S, Wong A et al (1988) A randomized trial of fluorouracil and folinic acid in patients with metastatic colorectal carcinoma. J Clin Oncol 6:469–475

    PubMed  CAS  Google Scholar 

  4. Hryniuk WM, Bush H (1984) The importance of dose intensity in chemotherapy of metastatic breast cancer. J Clin Oncol 2:1281–1288

    PubMed  CAS  Google Scholar 

  5. Frei E III, Canellos G (1980) Dose: a critical factor in cancer chemotherapy. Am J Med 69:585–594

    Article  PubMed  Google Scholar 

  6. Hryniuk WA, Figueredo A, Goodyear M (1987) Applications of dose intensity to problems in chemotherapy of breast and colorectal cancer. Semin Oncol 14[Suppl 4]: 3–11

    PubMed  CAS  Google Scholar 

  7. Ayash L, Elias A, Ibrahim J et al (1997) High-dose multimodality therapy with autologous stem cell support for stage IIIB breast cancer: the DFC/BIH experience. Proc Am Soc Clin Oncol 16:90

    Google Scholar 

  8. Smith MA, Ungerleider RS, Horowitz ME et al (1991) Influence of doxorubicin dose intensity on response and outcome for patients with osteogenic sarcoma and Ewing’s sarcoma. J Nati Cancer Inst 83:1460–1470

    Article  CAS  Google Scholar 

  9. Cheung N-KV, Heller G (1991) Chemotherapy dose intensity correlates strongly with response, median survival, and median progression-free survival in metastatic neuroblastoma. J Clin Oncol 9:1050–1058

    PubMed  CAS  Google Scholar 

  10. Howell SB (1988) Intraperitoneal chemotherapy for ovarian carcinoma. J Clin Oncol 6:1673–1675

    PubMed  CAS  Google Scholar 

  11. Savarese DMF, Hsieh C, Stewart FM (1997) Clinical impact of chemotherapy dose escalation in patients with hematologic malignancies and solid tumors. J Clin Oncol 15:2981–2995

    PubMed  CAS  Google Scholar 

  12. Wrigley E, Weaver A, Jayson G et al (1996) A randomized trial investigating the dose intensity of primary chemotherapy in patients with ovarian carcinoma: a comparison of chemotherapy given every four weeks with the same chemotherapy given at three-week intervals Ann Oncol 7:705–711

    Article  PubMed  CAS  Google Scholar 

  13. Wittes RE (1986) Adjuvant chemotherapy-clinical trials and laboratory models. Cancer Treat Rep 70:87–103

    PubMed  CAS  Google Scholar 

  14. Martin DS (1981) The scientific basis for adjuvant chemotherapy. Cancer Treat Rev 8:169–189

    Article  PubMed  CAS  Google Scholar 

  15. Berg SL, Grisell DL, DeLaney TF et al (1991) Principles of treatment of pediatric solid tumors. Pediatr Clin North Am 38:249–267

    PubMed  CAS  Google Scholar 

  16. Goldie JH, Coldman AJ (1986) Theoretical considerations regarding the early use of adjuvant chemotherapy. Recent Res Cancer Res 103:30–35

    Article  CAS  Google Scholar 

  17. Early Breast Cancer Trialists’ Collaborative Group (1988) Effects of adjuvant tamoxifen and of cytotoxic therapy on mortality in early breast cancer. N Engl J Med 319:1681–1692

    Article  Google Scholar 

  18. Weiss GR, Coltman CA (1990) Conference summary overview. In: Salmon SE (ed) Adjuvant therapy of cancer VI. Saunder, Philadelphia, pp 623–629

    Google Scholar 

  19. Moertel CG, Fleming TR, Macdonald JS et al (1990) Levamisole and fluorouracil for adjuvant therapy of resected can cer. N Engl J Med 322:352–358

    Article  PubMed  CAS  Google Scholar 

  20. O’Connell MJ, Gunderson IX, Fleming TR (1988) Surgical adjuvant therapy of rectal cancer. Semin Oncol 15:138–145

    PubMed  Google Scholar 

  21. Gilewski T, Bitran JD (1996) Adjuvant chemotherapy. In: Perry MC (ed) The chemotherapy source book. Williams and Wilkins, Baltimore, pp 79–100

    Google Scholar 

  22. Ragaz J, Baird R, Rebbeck P et al (1997) Preoperative (neoadjuvant-PRE) versus postoperative (POST) adjuvant chemotherapy (CT) for stage I-II breast cancer (SI-II BC). Long-term analysis of British Columbia randomized trial. Proc Am Soc Clin Oncol 16:142

    Google Scholar 

  23. Belani CP, Luketich J, Landreneau RJ et al (1997) Efficacy of paclitaxel, 5-fluorouracil and cisplatin (PFT) regimen for carcinoma of the esophagus. Proc Am Soc Clin Oncol 16:283

    Google Scholar 

  24. Wanebo HJ, Chougule P, Akerley W et al (1997) Preoperative paclitaxel, carboplatin and radiation in advanced head and neck cancer (stage III and IV) induces a high rate of complete pathologic response (CR) at the primary site and cino ma of the esophagus. Proc Am Soc Clin Oncol 16:283

    Google Scholar 

  25. Balis FM, Holcenberg JS, Poplack DG (1997) General principles of chemotherapy. In: Pizzo PA, Poplack DG (eds) Principles and practice of pediatric oncology. Lippincott Raven, Philadelphia, pp 215–272

    Google Scholar 

  26. Miller AA, Ratain MJ, Schilsky RL (1996) Principles of pharmacology. In: Perry MC (ed) The chemotherapy source book. Williams and Wilkins, Baltimore, pp 27–41

    Google Scholar 

  27. Kohn KW, Jackman J, O’C onnor PM (1994) Cell cycle control and cancer chemotherapy. J Cell Biochem 54:440–452

    Article  PubMed  CAS  Google Scholar 

  28. O’C onnor PM, Kohn KW (1992) A fundamental role for cell cycle regulation in the chemosensitivity of cancer cells? Semin Cancer Biol 3:409–416

    PubMed  Google Scholar 

  29. Calvert AH, Newell DR, Grumbell LA et al (1989) Carboplatin dosage: prospective evaluation of a simple formula based on renal function. J Clin Oncol 7:1748–1756

    PubMed  CAS  Google Scholar 

  30. Chatelut E, Canal P, Brunner V et al (1995) Prediction of carboplatin clearance from standard morphological and biological patient characteristics. J Nati Cancer Inst 87:573–580

    Article  CAS  Google Scholar 

  31. Ratain MJ, Schilsky RL, Conley BA et al (1990) Pharmacodynamics in cancer therapy. J Clin Oncol 8:1739–1753

    PubMed  CAS  Google Scholar 

  32. Cockcroft DW, Gault MN (1976) Prediction of clearance from serum creatinine. Nephron 16:31–41

    Article  PubMed  CAS  Google Scholar 

  33. Borsi JD, Moe PJ (1987) Prognostic importance of systemic clearance of methotrexate in childhood. Cancer Chemother Pharmacol 19:261–264

    Article  PubMed  CAS  Google Scholar 

  34. Lind MJ, Margison JM, Cerny T et al (1989) Prolongation of ifosfamide elimination half-life in obese patients due to altered drug distribution. Cancer Chemother Pharmacol 25:139–142

    Article  PubMed  CAS  Google Scholar 

  35. Freyer G, Ligneua B, Tranchand B et al (1997) Pharmacokinetic studies in cancer chemotherapy: usefulness in clinical practice. Cancer Treat Rev 23:153–169

    Article  PubMed  CAS  Google Scholar 

  36. Krynetski EY, Tai HL, Yates CR et al (1996) Genetic polymorphism of thiopurine S-methyltransferase: clinical importance and molecular mechanisms. Pharmacogenetics 6:279–290

    Article  PubMed  CAS  Google Scholar 

  37. Wei X, McLeod HL, McMurrough J et al (1996) Molecular basis of human dihydropyrimidine dehydrogenase deficiency and 5-fluorouracil toxicity. J Clin Invest 93:610–615

    Article  Google Scholar 

  38. Lalitha I, King CD, Whitington PF et al (1998) Genetic predisposition to the metabolism of irinotecan (CPT-11) role of uridine diphosphate glucuronosyltransferase isoform 1A1 in the glucuronidation of its active metabolite (SN-38) in human liver microsomes. J Clin Invest 101:847–854

    Article  Google Scholar 

  39. Gupta E, Safa AR, Wang X et al (1996) Pharmacokinetic modulation of irinotecan and metabolites by cyclosporin A. Cancer Res 56:1309–1314

    PubMed  CAS  Google Scholar 

  40. Goldie JH, Coldman AJ (1984) The genetic origin of drug resistance in neoplasms: implications for systemic therapy. Cancer Res 44:3643–3653

    PubMed  CAS  Google Scholar 

  41. Ling V (1997) Multidrug resistance: molecular mechanisms and clinical relevance. Cancer Chemother Pharmacol 40[Suppl]:S3–S8

    Article  PubMed  CAS  Google Scholar 

  42. Chan HSL, Thorner P, Haddad G et al (1990) Immunohistochemical detection of P-glycoprotein: prognostic correlation in soft tissue sarcoma of childhood. J Clin Oncol 8:689–704

    PubMed  CAS  Google Scholar 

  43. Chan HSL, Haddad G, Thorner PS et al (1991) P-glycoprotein as a predictor of the outcome of therapy for neuroblastoma. N Engl J Med 325:1608–1614

    Article  PubMed  CAS  Google Scholar 

  44. Durie BGM, Dalton WS (1988) Reversal of drug resistance in multiple myeloma with verapamil. Br J Hematol 68:203–206

    Article  CAS  Google Scholar 

  45. Dalton WS, Grogan TM, Meltzer PS et al (1989) Drug resistance in multiple myeloma and non-Hodgkin’s lymphoma: detection of P-glycoprotein and potential circumvention by addition of verapamil to chemotherapy. J Clin Oncol 7:415–424

    PubMed  CAS  Google Scholar 

  46. Ozols RF, Cunnion RE, Klecker RW et al (1987) Verapamil and Adriamycin in the treatment of drug-resistant ovarian cancer patients. J Clin Oncol 5:641–647

    PubMed  CAS  Google Scholar 

  47. Hall AG, Tilby MJ (1992) Mechanisms of action of, and modes of resistance to, alkylating agents used in the treatment of hematological malignancies. Blood Rev 6:163–173

    Article  PubMed  CAS  Google Scholar 

  48. Bruce WR, Meeker BE, Valeriote FA (1966) Comparison of the sensitivity of normal hematopoietic and transplanted lymphoma colony-forming cells to chemotherapeutic agents administered in vivo. J Natl Cancer Inst 37:233–245

    PubMed  CAS  Google Scholar 

  49. Garcia ST, McQuillan A, Panasci I (1988) Correlation between the cytotoxicity of melphalan and DNA crosslinks as detected by the ethidium bromide fluorescence assay in the F1 variant of B16 melanoma cells. Biochem Pharmacol 37:3189–3192

    Article  PubMed  CAS  Google Scholar 

  50. Pedersen-Bjergaard J, Ersboll J, Sorensen HM et al (1985). Risk of acute nonlymphocytic leukemia and preleukemia in patients treated with cyclophosphamide for non-Hodgkin’s lymphoma. Comparison with results obtained in patients treated for Hodgkin’s disease and ovarian carcinoma with other alkylating agents}. Ann Intern Med 103:195–200

    PubMed  CAS  Google Scholar 

  51. Calsou P, Salles B (1993) Role of DNA repair in the mechanisms of cell resistance to alkylating agents and cisplatin. Cancer Chemother Pharmacol 32:85–89

    Article  PubMed  CAS  Google Scholar 

  52. Hare CB, Elion GB, Colvin OM et al (1997) Characterization of the mechanisms of busulfan resistance in a human glioblastoma multiforme xenograft. Cancer Chemother Pharmacol 40:409–414

    Article  PubMed  CAS  Google Scholar 

  53. Friedman HS, Skapek SX, Colvin OM et al (1988) Melphalan transport, glutathione levels, and glutathione-S-transferase activity in human medulloblastoma. Cancer Res 48:5397–5402

    PubMed  CAS  Google Scholar 

  54. Colvin OM, Friedman HS, Gamcsik MP et al (1993) Role of glutathione in cellular resistance to alkylating agents. Adv Enzyme Regul 33:19–26

    Article  PubMed  CAS  Google Scholar 

  55. Ahmad S, Okine L, Le B et al (1987) Elevation of glutathione in phenylalanine mustard-resistant murine L1210 leukemia cells. J Biol Chem 262:15048–15053

    PubMed  CAS  Google Scholar 

  56. Robson CN, Lewis AD, Wolf CR et al (1987) Reduced levels of drug-induced DNA cross-linking in nitrogen mustardresistant Chinese hamster ovary cells expressing elevated glutathione-S-transferase activity. Cancer Res 47: 6022–6027

    PubMed  CAS  Google Scholar 

  57. Goldberg GJ, Moore MJ (1997) Nitrogen mustards. In: Teicher B (ed) Cancer therapeutics: experimental and clinical agents. Humana Press, Totowa, pp 3–22

    Google Scholar 

  58. Chang TKH, Weber GF, Crespi CL et al (1993) Differential activation of cyclophosphamide and ifosphamide by cytochromes P-450 2B and 3A in human liver microsomes. Cancer Res 53:5629–5637

    PubMed  CAS  Google Scholar 

  59. Wright JE (1997) Phosphoramide and oxazaphosphorine mustards. In: Teicher B (ed) Cancer therapeutics: experimental and clinical agents. Humana Press, Totowa, pp 23–80

    Google Scholar 

  60. Chen TL, Passos-Coelho JL, Noe DA et al (1995) Non-linear pharmacokinetics of cyclophosphamide in patients with metastatic breast cancer receiving high-dose chemotherapy followed by autologous bone marrow transplantation. Cancer Res 55:810–817

    PubMed  CAS  Google Scholar 

  61. Grochow LB (1996) Covalent DNA-binding drugs. In: Perry MC (ed) The chemotherapy source book. Williams and Wilkins, Baltimore, pp 293–316

    Google Scholar 

  62. Dechant KL, Brogden RN, Pilkington T et al (1991) Ifosfamide/Mesna. A review of its antineoplastic activity, pharmacokinetic properties and therapeutic efficacy in cancer. Drugs 42:428–467

    Article  PubMed  CAS  Google Scholar 

  63. Kaiser GP, Beijnen JH, Bult A et al (1994) Ifosfamide metabolism and pharmacokinetics (review). Anticancer Res 14:517–532

    Google Scholar 

  64. Kupfer A, Aeschlimann C, Wermuth B et al (1994) Prophylaxis and reversal of ifosfamide encephalopathy with methylene-blue. Lancet 343:763–764

    Article  PubMed  CAS  Google Scholar 

  65. Goldenberg GJ, Lee M, Lam HYP et al (1977) Evidence for carrier-mediated transport of melphalan by L5178Y lymphoblasts in vitro. Cancer Res 37:755–760

    PubMed  CAS  Google Scholar 

  66. Dulik DL, Fenselau C (1987) Conversion of melphalan to 4 (glutathionyl) phenylalanine: a novel mechanism for conjugation by glutathione-S-transferases. Drug Metab Dispos 15:195–199

    PubMed  CAS  Google Scholar 

  67. Samuels BL, Bitran JD (1995) High-dose intravenous melphalan: a review. J Clin Oncol 13:1786–1799

    PubMed  CAS  Google Scholar 

  68. Nagura E, Ichikawa A, Kamiya O et al (1997) A randomized study comparing VMCP and MMPP in the treatment of multiple myeloma. Cancer Chemother Pharmacol 39: 279–285

    Article  PubMed  CAS  Google Scholar 

  69. Cunningham D, Paz-Ares L, Milan S et al (1994) High-dose melphalan and autologous bone marrow transplantation as consolidation in previously untreated myeloma. J Clin Oncol 12:759–763

    PubMed  CAS  Google Scholar 

  70. Gouyette A, Hartman O, Pico JL (1986) Pharmacokinetics of high-dose melphalan in children and adults. Cancer Chemother Pharmacol 16:184–189

    Article  PubMed  CAS  Google Scholar 

  71. Ardiet C, Tranchand B, Biron P et al (1986) Pharmacokinetics of high-dose intravenous melphalan in children and adults with forced diuresis: report on 26 cases. Cancer Chemother Pharmacol 16:300–305

    Article  PubMed  CAS  Google Scholar 

  72. Bengala C, Tibaldi C, Pazzagli I et al (1997) High-dose (HD) thiotepa and melphalan (L-PAM) with hemopoietic progenitor support as consolidation treatment following paclitaxel (TXL)-containing chemotherapy in metastatic breast cancer (MBC): a phase II study with pharmacokinetic profile analysis. Proc Am Soc Clin Oncol 16:98

    Google Scholar 

  73. Alberts DS, Chang SY, Chen HSG et al (1979) Kinetics of intravenous melphalan. Clin Pharmacol Ther 26:73–80

    PubMed  CAS  Google Scholar 

  74. Begleiter A, Goldenberg GJ (1983) Uptake and decomposition of chlorambucil by L5178Y lymphoblasts in vitro. Biochem Pharm 32:535–539

    Article  PubMed  CAS  Google Scholar 

  75. Alberts DS, Chang SY, Chen HSG et al (1980) Comparative pharmacokinetics of chlorambucil and melphalan in man. Rec Res Cancer Res 74:124–127

    Article  CAS  Google Scholar 

  76. Marmour D, Grob-Menendez F, Duyck F et al (1992) Very late return of spermatogenesis after chlorambucil therapy: case reports. Fertil Steril 58:845–846

    Google Scholar 

  77. Wong E, Holden CA, Broadbent V et al (1986) Histiocytosis presenting as intertrigo and responding to topical nitrogen mustard. Clin Exp Dermatol 11:183–187

    Article  PubMed  CAS  Google Scholar 

  78. Chabner BA, Allegra CJ, Curt GA et al (1996) Antineoplastic agents. In: Hardman GH, Gilman AG, Limbird LE (eds) Goodman and Gilman’s the pharmacological basis of therapeutics. McGraw-Hill, New York, pp 1233–1287

    Google Scholar 

  79. Bradley MO, Sharkey NA, Kohn KW (1980) Mutagenicity and cytotoxicity of various nitrosoureas in V-79 Chinese hamster cells. Cancer Res 40:2719–2725

    PubMed  CAS  Google Scholar 

  80. Mitchell EP, Schein PS (1986) Contributions of nitrosoureas to cancer treatment. Cancer Treat Rep 70:31–41

    PubMed  CAS  Google Scholar 

  81. Kokkinakis DM, Moschel RC, Pegg AE et al (2000) Potentiation of BCNU antitumor efficacy by 9-substituted O6-benzylguanines. Effect of metabolism. Cancer Chemother Pharmacol 45:69–77

    Article  PubMed  CAS  Google Scholar 

  82. Egyhazi S, Edgren MR, Hansson J et al (1997) Role of O6-methylguanine DNA methyltransferase, glutathione transferase M3-3 and glutathione in resistance to carmustine in a human non-small cell lung cancer cell line. Eur J Cancer 33:447–452

    PubMed  CAS  Google Scholar 

  83. Burger PC, Kamenar E, Schold SC et al (1981) Encephalopathy following high-dose BCNU therapy. Cancer 48:1318–1327

    Article  Google Scholar 

  84. Lind MJ, Ardiet C (1993) Pharmacokinetics of alkylating agents. Cancer Surv 17:157–188

    PubMed  CAS  Google Scholar 

  85. Levin VA, Hoffman W.Weinkam RJ (1978) Pharmacokinetics of BCNU in man: preliminary study of 20 patients. Cancer Treat Rep 62:1305–1312

    PubMed  CAS  Google Scholar 

  86. Kornblith P, Walker M (1988) Chemotherapy for malignant gliomas. J Neurosurg 68:1–17

    Article  PubMed  CAS  Google Scholar 

  87. Sipos EP, Tyler B, Piantadosi S et al (1997) Optimizing interstitial delivery of BCNU from controlled release polymers for the treatment of brain tumors. Cancer Chemother Pharmacol 39:383–389

    Article  PubMed  CAS  Google Scholar 

  88. Sponzo RW, De Vita VT, Oliverio VT (1973) Physiologic disposition of l-(2-chloroethyl)-3-cyclohexyl-l-nitrosourea (CCNU) and l-(2-chloroethyl)-3-(4-methylcyclohexyl)-l-nitrosourea (MeCCNU) in man. Cancer 31:1154–1156

    Article  PubMed  CAS  Google Scholar 

  89. Kastrissios H, Chao NJ, Blaschke TF (1996) Pharmacokinetics of high-dose oral CCNU in bone marrow transplant patients. Cancer Chemother Pharmacol 38:425–430

    Article  PubMed  CAS  Google Scholar 

  90. Iliadis A, Launay-Iliadis M-C, Lucas C et al (1996) Pharmacokinetics and pharmacodynamics of nitrosourea fotemustine: a French cancer centre multicentric study. Eur J Cancer 32A:455–460

    Article  PubMed  CAS  Google Scholar 

  91. Leyvraz S, Spataro V, Bauer J et al (1997) Treatment of ocular melanoma metastatic to the liver by hepatic arterial chemotherapy. J Clin Oncol 15:2589–2595

    PubMed  CAS  Google Scholar 

  92. Jacquillat C, Khayat D, Banzet P et al (1990) Final report of a French multicenter Phase II study of nitrosourea fotemustine in 153 evaluable patients with disseminated malignant melanoma including patients with cerebral metastases. Cancer 66:1873–1878

    Article  PubMed  CAS  Google Scholar 

  93. Frenay M, Giroux B, Khoury S et al (1991) Phase II study of fotemustine in recurrent supra-tentorial malignant gliomas. Eur J Cancer 27:852–856

    Article  PubMed  CAS  Google Scholar 

  94. Cotto C, Berille J, Souquet PJ et al (1996) A phase II trial of fotemustine and cisplatin in central nervous system metastases from non-small cell lung cancer. Eur J Cancer 32A:69–71

    Article  PubMed  CAS  Google Scholar 

  95. Hayes MT, Bartley J, Parsons PG et al (1997) Mechanism of action of fotemustine, a new chloroethylnitrosourea anticancer agent: evidence for the formation of two DNA-reactive intermediates contributing to cytotoxicity. Biochemistry 36:10646–10654

    Article  PubMed  CAS  Google Scholar 

  96. Tranchard B, Lucas C, Biron P et al (1993) Phase I pharmacokinetics study of high-dose fotemustine and its metabolite 2-chloroethanol in patients with high-grade gliomas. Cancer Chemother Pharmacol 32:46–52

    Article  Google Scholar 

  97. Marathi UK, Kroes RA, Dolan ME et al (1993) Prolonged depletion of O6-methylguanine-DNA methyltransferase activity following exposure to O6-benzylguanine with or without streptozocin enhances 1, 3-bis (2-chloroethyl)-l-nitrosourea sensitivity in vitro. Cancer Res 53:4281–4286

    PubMed  CAS  Google Scholar 

  98. Wilson JKV, Haag JR, Trey JE et al (1995) Modulation of O6-alkylguanine alkyltransferase-directed DNA repair in metastatic colon cancers. J Clin Oncol 13:2301–2308

    Google Scholar 

  99. Schein P, Kahn R, Gorden P et al (1973) Streptozocin for malignant insulinomas and carcinoid tumor. Arch Intern Med 132:555–561

    Article  PubMed  CAS  Google Scholar 

  100. Adolphe AB, Glasofer ED, Troetel WM et al (1977) Preliminary pharmacokinetics of streptozocin, an antineoplastic ancers. J Clin Oncol 13:2301–2308

    Google Scholar 

  101. Masters JRW, McDermott BJ, Harland S et al (1996) ThioTEPA pharmacokinetics during intravesical chemotherapy: the influence of dose and volume of instillate on systemic uptake and dose rate to the tumor. Cancer Chemother Pharmacol 38:59–64

    Article  PubMed  CAS  Google Scholar 

  102. Bilgrami SA, Tutschka PJ, Tuck D et al (1997) Busulfan, thiotepa, and carboplatin followed by autologous stem cell rescue in metastatic carcinoma of the breast. Proc Am Soc Clin Oncol 16:99

    Google Scholar 

  103. Smith A, Rosenfeld S, Dropcho W et al (1997) High-dose thiotepa with hematopoietic reconstitution for recurrent aggressive oligodendroglioma. Proc Am Soc Clin Oncol 16:409

    Google Scholar 

  104. Hawkins D, Sanders J, Bensinger W et al (1997) Busulfan, melphalan, and thiotepa (MuBelTt) (total marrow irradiation (TM) with hematopoietic stem cells (HSC) for Ewing’s sarcoma family tumors (ES). Proc Am Soc Clin Oncol 16:522

    Google Scholar 

  105. Cairncross G, Swinnen L, Stiff P et al (1997) High-dose thiotepa with hematopoietic reconstitution (deferring radiation) for newly diagnosed aggressive oligodendroglioma. Proc Am Soc Clin Oncol 16:388

    Google Scholar 

  106. Goto S, Takeshita A, Sactome T et al (1997) Total body irradiation (TBI), VP-16, and thiotepa as a preparative regimen for autologous peripheral stem cell transplantation (PBSCT) in adult poor prognosis non-Hodgkin’s lymphoma (NHL): a preliminary report. Proc Am Soc Clin Oncol 16:388

    Google Scholar 

  107. Fischer PG, Kadan-Lottick, Korones DN (1997) Treatment of pediatric leptomeningeal metastases with intrathecal thiotepa: a retrospective clinical study. Proc Am Soc Clin Oncol 16:523

    Google Scholar 

  108. Cohen BE, Egorin MJ, Kohlhepp EA et al (1986) Humanplasma pharmacokinetics and urinary-excretion of thiotepa and its metabolites. Cancer Treat Rep 70:859–864

    PubMed  CAS  Google Scholar 

  109. Ackland SP, Choi KE, Ratain MJ et al (1988) Humanplasma pharmacokinetics of thiotepa following administration of high-dose thiotepa and cyclophosphamide. J Clin Oncol 6:1192–1196

    PubMed  CAS  Google Scholar 

  110. Manetta A, Tewari K, Podczaski ES (1997) Hexamethylamine as a single second-line agent in ovarian cancer: follow-up report and review of the literature. Gynecol Oncol 66:20–26

    Article  PubMed  CAS  Google Scholar 

  111. D’lncalci M, Bolis G, Mangoni C et al (1978) Variable oral absorption of hexamethylmelamine in man. Cancer Treat Rep 62:2117–2119

    Google Scholar 

  112. Wingard JR, Plotnick LP, Freemer CS (1992) Growth in children after bone marrow transplantation; busulfan plus cyclophosphamide versus cyclophosphamide plus total body irradiation. Blood 79:1068–1073

    PubMed  CAS  Google Scholar 

  113. Vassal G, Koscielny S, Challine D et al (1996) Busulfan disposition and hepatic veno-occlusive disease in children undergoing bone marrow transplantation. Cancer Chemother Pharmacol 37:247–253

    Article  PubMed  CAS  Google Scholar 

  114. Jones RJ, Grochow LB (1995) Pharmacology of bone marrow transplantation conditioning regimens. Ann N Y Acad Sci 770:237–241

    Article  PubMed  CAS  Google Scholar 

  115. Meresse V, Hartman O, Vassal G et al (1992) Risk factors for hepatic veno-occlusive disease after high-dose busulfancontaining regimens followed by autologous bone marrow transplantation: a study in 136 children. Bone Marrow Transplant 10:135–141

    PubMed  CAS  Google Scholar 

  116. Grochow LB, Jones RJ, Brundrett RB et al (1989) Pharmacokinetics of busulfan: correlation with veno-occlusive disease in patients undergoing bone marrow transplantation. Cancer Chemother Pharmacol 25:55–61

    Article  PubMed  CAS  Google Scholar 

  117. Stevens MFG, Hickman JA, Langdon SP et al (1987) Antitumor activity and pharmacokinetics in mice of 8-car bomyl-3-methyl-imidazo [5, l-d]-l, 2, 3, 5 terazin-4 (3H)-one (CCRG 81045; M&B 39831), a novel drug with potential as an alternative to dacarbazine. Cancer Res 47: 5846–5852

    PubMed  CAS  Google Scholar 

  118. Newlands ES, Stevens MFG, Wedge SR et al (1997) Temozolomide: a review of its discovery, chemical properties, pre-clinical development and clinical trials. Cancer Treat Rev 23:35–61

    Article  PubMed  CAS  Google Scholar 

  119. Newlands ES, O’Reilly SM, Glaser MG et al (1996) The Charing Cross Hospital experience with temozolomide in patients with gliomas. Eur J Cancer 32A:2236–2241

    Article  PubMed  CAS  Google Scholar 

  120. Bleehen NM, Newlands ES, Lee SM et al (1995) Cancer Research Campaign Phase II trial of temozolomide in metastatic melanoma. J Clin Oncol 13:910–913

    PubMed  CAS  Google Scholar 

  121. Baer JC, Freeman AA, Newlands ES et al (1993) Depletion of O6-alkylguanine-DNA alkyltransferase correlates with potentiation of temozolomide and CCNU toxicity in human tumor cells. Br J Cancer 67:1299–1302

    Article  PubMed  CAS  Google Scholar 

  122. Tentori L, Orlando L, Lacal PM et al (1997) Inhibition of O6-alkylguanine DNA-alkyltransferase or poly (ADP-ribose) polymerase increases susceptibility of leukemic cells to apoptosis induced by temozolomide. Mol Pharmacol 52:249–258

    PubMed  CAS  Google Scholar 

  123. Newlands ES, Blackledge GRP, Slack JA et al (1992) Phase I trial of temozolomide (CCRG 81045: M&B 39831: NSC 362856). Br J Cancer 65:287–291

    Article  PubMed  CAS  Google Scholar 

  124. Punt CJA, van Herpen CML, Jansen RHL et al (1997) Chemoimmunotherapy with bleomycin, vincristine, lomustine, dacarbazine (BOLD) plus interferon (for metastatic melanoma: a multicentre phase II study. Br J Cancer 76:266–269

    Article  PubMed  CAS  Google Scholar 

  125. Didolkar MS, Jackson A, Lesko L et al (1996) Pharmacokinetics of dacarbazine in the regional perfusion of extremities with melanoma. J Surg Oncol 63:148–158

    Article  PubMed  CAS  Google Scholar 

  126. Breithaupt H, Dammann A, Aigner K (1982) Pharmacokinetics of dacarbazine (dtic) and its metabolite 5-aminoimidazole-4-carboxamide (aic) following different dose schedules. Cancer Chemother Pharmacol 9:103–109

    Article  PubMed  CAS  Google Scholar 

  127. Souliatis VL, Kaila S, Boussiotis VA et al (1990) Accumulation of O6-methylguanine in human blood leukocyte DNA during exposure to procarbazine and its relationships with dose and repair. Cancer Res 50:2759–2764

    Google Scholar 

  128. Brandes A, Scelzi E, Ermani M et al (1997) Procarbazine plus high-dose tamoxifen in recurrent high-grade gliomas: a phase II trial. Proc Am Soc Clin Oncol 16:394

    Google Scholar 

  129. Lehman DF, Hurteau TE, Newman N et al (1997) Anticonvulsant usage is associated with an increased risk of procarbazine hypersensitivity reactions in patients with brain tumors. Clin Pharmacol Ther 62:225–229

    Article  Google Scholar 

  130. Gately DP, Howell SB (1993) Cellular accumulation of the anticancer agent cisplatin: a review. Br J Cancer 67: 1171–1176

    Article  PubMed  CAS  Google Scholar 

  131. Loy SY, Mistry P, Kelland LR et al (1992) Reduced drug accumulation as a major mechanism of acquired resistance to cisplatin in human ovarian carcinoma cell line: circumvention studies using novel platinum (II) and (IV) ammine/amine complexes. Br J Cancer 66:1109–1115

    Article  Google Scholar 

  132. Scanlon KJ, Kashani-Sabet M, Tone T et al (1991) Cisplatin resistance in human cancers. Pharmacol Ther 52: 385–406

    Article  PubMed  CAS  Google Scholar 

  133. Mistry P, Kelland LR, Abel G et al (1991) The relationships between glutathione, glutathione-S-transferase and cytotoxicity of platinum drugs and melphalan in eight human ovarian carcinoma cell lines. Br J Cancer 64:215–220

    Article  PubMed  CAS  Google Scholar 

  134. Himmelstein KJ, Patton TF, Belt RJ et al (1981) Clinical kinetics of intact cisplatin and some related species. Clin Pharmacol Ther 29:658–664

    Article  PubMed  CAS  Google Scholar 

  135. Newell DR, Pearson ADJ, Balmano K et al (1993) Carboplatin pharmacokinetics in children: the development of a pediatric dosing formula. The United Kingdom Children’s Cancer Study Group. J Clin Oncol 11:2314–2323

    PubMed  CAS  Google Scholar 

  136. Bén ézet S, Guimbaud R, Chatelut E et al (1997) How to predict carboplatin clearance from standard morphological and biological characteristics in obese patients. Ann Oncol 8:607–609

    Article  Google Scholar 

  137. Ando Yuichi, Minami H, Saka H et al (1997) Pharmacokinetic study of carboplatin given on a 5-day intravenous schedule. Jpn J Cancer Res 88:517–521

    Article  PubMed  CAS  Google Scholar 

  138. Van Warmerdam LJC, Huizing MT, Giaccone G et al (1997) Clinical pharmacology of carboplatin administered in combination with paclitaxel. Semin Oncol 24[Suppl 2]:S2–97–S2–104

    PubMed  Google Scholar 

  139. Verweij J, den Hartigh J, Pinedo HM (1990) Antitumor antibiotics. In: Chabner BA, Longo DL (eds) Cancer chemotherapy: principles and practice. Lippincott, Philadelphia, pp 382–396

    Google Scholar 

  140. Cummings J, Spanswick VJ, Smyth JF (1995) Re-evaluation of the molecular pharmacology of mitomycin C. Eur J Cancer 31A:1928–1933

    Article  PubMed  CAS  Google Scholar 

  141. Dorr RT (1988) New findings in the pharmacokinetic, metabolic, and drug-resistance aspects of mitomycin C. Semin Oncol 15[Suppl 4]:32–41

    PubMed  CAS  Google Scholar 

  142. Wu DC, Liu JM, Chen YM et al (1997) Mitomycin-C induced hemolytic uremic syndrome: a case report and literature review. Jpn J Clin Oncol 27:115–118

    Article  PubMed  CAS  Google Scholar 

  143. Sommer A, Santi DV (1974) Purification and amino acid analysis of an active site peptide from thymidylate synthetase containing covalently bound 5’-fiuoro-2’-de-oxyuridylate and methylene tetrachloride. Biochem Biophys Res Commun 57:689–696

    Article  PubMed  CAS  Google Scholar 

  144. Mandel G (1969) The incorporation of 5-fiuorouracil into RNA and its molecular consequences. In: Hahn FE (ed) Progress in molecular and subcellular biology. Springer, Berlin Heidelberg New York, pp 82–135

    Chapter  Google Scholar 

  145. Ghoshal K, Jacob ST (1997) An alternative molecular mechanism of action of 5-fiuorouracil, a potent anticancer drug. Biochem Pharmacol 53:1569–1575

    Article  PubMed  CAS  Google Scholar 

  146. Gutheil J, Kearns C (1996) Antimetabolites. In: Perry MC (ed) The chemotherapy source book. Williams and Wilkins, Baltimore, pp 317–343

    Google Scholar 

  147. Kinsella AR, Smith D, Pickard M (1997) Resistance to chemotherapeutic antimetabolites: a function of salvage pathway involvement and cellular response to DNA damage. Br J Cancer 75:935–945

    Article  PubMed  CAS  Google Scholar 

  148. Weber G (1993) Biochemical strategy of cancer cells and the design of chemotherapy: GHA Clowes Memorial Lecture. Cancer Res 43:3466–3492

    Google Scholar 

  149. Pickard M, Dive C, Kinsella AR (1996) Differences in resistance to 5-FU as a function of cell cycle delay and not age. Br J Cancer 72:1389–1396

    Article  Google Scholar 

  150. Fischel JL, Formento P, Etienne MC et al (1997) Dual modulation of 5-fiuorouracil cytotoxicity using folinic acid with a dihydropyrimidine dehydrogenase inhibitor. Biochem Pharmacol 53:1703–1709

    Article  PubMed  CAS  Google Scholar 

  151. Christophidis N, Vadja FJE, Lucas I et al (1978) Fluorouracil therapy in patients with carcinoma of the large bowel: a pharmacokinetic comparison of various rates and routes of administration. Clin Pharmacokinet 3:330–336

    Article  Google Scholar 

  152. Eatock MM, Carlin W, Dunlop DJ et al (1996) Bioavailability of subcutaneous 5-fiuorouracil: a case report. Cancer Chemother Pharmacol 38:110–112

    Article  PubMed  CAS  Google Scholar 

  153. Heggie GD, Sommadossi J-P, Cross DS et al (1987) Clinical pharmacokinetics of 5-fiuorouracil and its metabolites in plasma, urine and bile. Cancer Res 47:2203–2206

    PubMed  CAS  Google Scholar 

  154. Kissel J, Brix G, Belleman ME (1997) Pharmacokinetic analysis of 5-[18F]fiuorouracil tissue concentrations measured with positron emission tomography in patients with liver metastases from colorectal adenocarcinoma. Cancer Res 57:3415–3423

    PubMed  CAS  Google Scholar 

  155. Ensminger WD, Rosowsky A, Raso V et al (1978) A clinicalpharmacological evaluation of hepatic arterial infusions of 5-fluoro-2’-deoxyuridine and 5-fiuorouracil. Cancer Res 38:3784–3792

    PubMed  CAS  Google Scholar 

  156. Trevisani F, Simoncini M, Alampi G et al (1997) Colitis associated to chemotherapy with 5-fiuorouracil. Hepatogastroenterology 44:710–712

    PubMed  CAS  Google Scholar 

  157. Feliu J, González-Bari M, Zamora P et al (1997) Experience of Oncopaz Cooperative Group with oral fluoropyrimidines in tumors of the stomach, lung, head and neck, and breast. Oncology 54:30–37

    Article  PubMed  CAS  Google Scholar 

  158. Di Bartolomeo M, Bajetta E, Somma L et al (1996) Doxifluridine as palliative treatment in advanced gastric and pancreatic cancer patients. Oncology 53:54–57

    Article  PubMed  Google Scholar 

  159. Takechi T, Nakano K, Uchida J et al (1997) Antitumor activity and low intestinal toxicity of S-1, a new formulation of oral tegafur, in experimental tumor models in rats. Cancer Chemother Pharmacol 39:205–211

    Article  PubMed  CAS  Google Scholar 

  160. Abad A, Navarro M, Sastre J et al (1997) A preliminary report of a phase II trial. UFT plus oral folinic acid as therapy for metastatic colorectal cancer in older patients. Spanish Group for the Treatment of Gastrointestinal Tumors (TTd Group). Oncology (Huntingt) 11[9 Suppl 10]:53–57

    CAS  Google Scholar 

  161. González Baron M, Feliu J, Garcia Giron C et al (1997) UFT modulated with leucovorin in advanced colorectal cancer: oncopaz experience. Oncology 54:24–29

    Article  PubMed  Google Scholar 

  162. Camps C, Godes M, Soler JJ (1990) Possible cardiotoxicity induced by orally administered fluoropyrimidines. Ann Med Interna 7:525–527

    CAS  Google Scholar 

  163. Tsukioka Y, Matsumura Y, Hamaguchi T et al (2001) Complete response achieved following administration of S1 in a patient with adrenal gland metastasis of 5-FU-re-sistant gastric cancer: a case report. Jpn J Clin Oncol 31: 450–453

    Article  PubMed  CAS  Google Scholar 

  164. Bajetta E, Carnaghi C, Somma L et al (1996) A pilot safety study of capecitabine, a new oral fluoropyrimidine, in patients with advanced neoplastic disease. Tumori 82:450–452

    PubMed  CAS  Google Scholar 

  165. Keizer HJ, De Bruijin EA, Tjaden UR et al (1994) Inhibition of fluorouracil catabolism in cancer patients by the antiviral agent (E)-5-(2-bromovinyl)-2’-deoxyuridine. J Cancer Res Clin Oncol 120:545–549

    Article  PubMed  CAS  Google Scholar 

  166. Daher GC, Harris BE, Diaso RB (1990) Metabolism of pyrimidine analogues and their nucleosides. Pharmacol Ther 48:189–222

    Article  PubMed  CAS  Google Scholar 

  167. Baker SD, Khor SP, Adjei AA et al (1996) Pharmacokinetic, oral bioavailability, and safety study of fluorouracil in patients treated with 776C85, an inactivator of dihydropyrimidine dehydrogenase. J Clin Oncol 14:3085–3096

    PubMed  CAS  Google Scholar 

  168. Khor SP, Amyx H, Davis ST et al (1997) Dihydropyrimidine dehydrogenase inactivation and 5-fluorouracil pharmacokinetics: allometric scaling of animal data, pharmacokinetics and toxicodynamics of 5-fluorouracil in humans. Cancer Chemother Pharmacol 39:233–238

    Article  PubMed  CAS  Google Scholar 

  169. Cao S, Baccanari DP, Joyner SS et al (1995) 5-Ethynluracil (776C85): effects on the antitumor activity and pharmacokinetics of tegafur, a prodrug of 5-fluorouracil. Cancer Res 55:6227–6230

    PubMed  CAS  Google Scholar 

  170. Huang P, Plunkett W (1995) Fludarabine and gemcita bine-induced apoptosis: incorporation of analogs into DNA is a critical event. Cancer Chemother Pharmacol 36: 181–188

    Article  PubMed  CAS  Google Scholar 

  171. Ruiz van Haperen VWT, Veerman G, Vermorken JB et al (1993) 2’, 2’-Difluoro-deoxycytidine (gemcitabine) incorporation into RNA and DNA of tumor cell lines. Biochem Pharmacol 46:762–766

    Article  Google Scholar 

  172. Manegold C, Drings P, von Pawel J et al (1997) A randomized study of gemcitabine monotherapy versus etoposide/cisplatin in the treatment of locally advanced or metastatic non-small cell lung cancer. Semin Oncol 24 [Suppl 8]:S8–13–S8–17

    CAS  Google Scholar 

  173. Anderson H, Lund B, Bach F et al (1994) Single-agent activity of weekly gemcitabine in advanced non-small cell lung cancer: a phase II study. J Clin Oncol 12:1821–1826

    PubMed  CAS  Google Scholar 

  174. Noble S, Goa KL (1997) Gemcitabine. A review of its pharmacology and clinical potential in non-small cell lung cancer and pancreatic cancer. Drugs 54:447–472

    Article  PubMed  CAS  Google Scholar 

  175. Catimel G, Vermorken JB, Clavel M et al (1994) A phase II study of gemcitabine (LY 188011) in patients with advanced squamous cell carcinoma of the head and neck. Ann Oncol 5:543–547

    PubMed  CAS  Google Scholar 

  176. Lund B, Hansen OP, Theilade K et al (1994) Phase II study of gemcitabine (2’,2’-difluoro-deoxycytidine) in previously treated ovarian cancer patients. J Natl Cancer Inst 86:1530–1533

    Article  PubMed  CAS  Google Scholar 

  177. Carmichael J, Walling J (1997) Advanced breast cancer: investigating role of gemcitabine. Eur J Cancer 33[Suppl 1]: S27–S30

    Article  PubMed  CAS  Google Scholar 

  178. Stadler WM, Kuzel T, Roth B et al (1997) Phase II study of single-agent gemcitabine in previously untreated patients with metastatic urothelial cancer. J Clin Oncol 11:3394–3398

    Google Scholar 

  179. Santoro A, Devizzi L, Bonfante V et al (1997) Phase II study with gemcitabine in pretreated patients with Hodgkin’s (HD) and non-Hodgkin’s lymphomas (NHL): results of a multicenter study. Proc Am Soc Clin Oncol 16:21

    Google Scholar 

  180. Abbruzzese JL, Grunewald R, Weeks EA et al (1991) A phase I clinical, plasma and cellular pharmacology study of gemcitabine. J Clin Oncol 9:491–498

    PubMed  CAS  Google Scholar 

  181. Grunewald R, Abbruzzese JL, Tarassoff P et al (1991) Saturation of 2’, 2’-difluorodeoxcytidine 5’-triphosphate accumulation by mononuclear cells during a phase I trial of gemcitabine. Cancer Chemother Pharmacol 27:258–262

    Article  PubMed  CAS  Google Scholar 

  182. Malayeri R, Krajnik G, Ohler L et al (1997) Delayed anemia and thrombocytopenia after treatment with gemcitabine. J Nati Cancer Inst 89:1164

    CAS  Google Scholar 

  183. Cozzarelli NR (1977) The mechanism of action of inhibitors of DNA synthesis. Annu Rev Biochem 46:641–668

    Article  PubMed  CAS  Google Scholar 

  184. Estey E, Keating MJ, McCredie KB et al (1990) Cellular ara CTP pharmacokinetics, response and karyotype in newlydiagnosed acute myelogenous leukemia. Leukemia 4:95–99

    PubMed  CAS  Google Scholar 

  185. Plunkett W, Gandhi V (1994) Evolution of the arabinosides and the pharmacology of fludarabine. Drugs 47 [Suppl 6]:30–38

    Article  PubMed  CAS  Google Scholar 

  186. Lennard L, Lilleyman JS (1996) Individualizing therapy with 6-mercaptopurine and 6-thioguanine related to the thiopurine methyltransferase genetic polymorphism. Ther Drug Monit 18:328–334

    Article  PubMed  CAS  Google Scholar 

  187. Bostrom B, Erdmann (1993) Cellular pharmacology of 6-mercaptopurine in acute lymphoblastic leukemia. Pediatr Hematol Oncol 15:80–86

    Article  CAS  Google Scholar 

  188. Nelson JA, Carpenter JW, Rose LM et al (1975) Mechanisms of action of 6-thioguanine, 6-mercaptopurine, and 8-azaguanine. Cancer Res 35:2872–2878

    PubMed  CAS  Google Scholar 

  189. Koren G, Ferrazini G, Sulh H et al (1990) Systemic exposure to mercaptopurine as a prognostic factor in acute lymphocytic leukemia in children. N Engl J Med 323:17–21

    Article  PubMed  CAS  Google Scholar 

  190. Schmiegelow K, Bruunshuus I (1990) 6-Thioguanine nucleotide accumulation in red blood cells during maintenance chemotherapy for childhood acute lymphoblastic leukemia, and its relation to leukopenia. Cancer Chemother Pharmacol 26:288–292

    Article  PubMed  CAS  Google Scholar 

  191. Aarbakke J, Janka-Schaub G, Elion GB (1997) Thiopurine biology and pharmacology. Trends Pharmacol Sci 18:3–7

    Article  PubMed  CAS  Google Scholar 

  192. Lennard L (1992) The clinical pharmacology of 6-mercaptopurine. Eur J Clin Pharmacol 43:329–339

    Article  PubMed  CAS  Google Scholar 

  193. Pinkel D (1993) Intravenous mercaptopurine: life begins at 40. J Clin Oncol 11:1826–1831

    PubMed  CAS  Google Scholar 

  194. Berkovitch M, Matsui D, Zipursky A et al (1996) Hepatotoxicity of 6-mercaptopurine in childhood acute lymphocytic leukemia: pharmacokinetic characteristics. Med Pediatr Oncol 26:85–89

    Article  PubMed  CAS  Google Scholar 

  195. Ingle JN, Twito D, Suman VJ et al (1997) Evaluation of intravenous 6-thioguanine as first-line chemotherapy in women with metastatic breast cancer. Am J Clin Oncol 20:69–72

    Article  PubMed  CAS  Google Scholar 

  196. Aubrecht J, Goad MEP, Schiestl RH (1997) Tissue-specific toxicities of the anticancer drug 6-thioguanine is dependent on the Hprt status in transgenic mice. J Pharmacol Exp Ther 282:1102–1108

    PubMed  CAS  Google Scholar 

  197. Lu K, Benvenuto JA, Bodey GP et al (1982) Pharmacokinetics and metabolism of beta-2’-deoxythioguanosine and 6-thioguanine in man. Cancer Chemother Pharmacol 8:119–123

    Article  PubMed  CAS  Google Scholar 

  198. Adkins JC, Peters DH, Markham A (1997) Fludarabine. An update of its pharmacology and use in the treatment of hematological malignancies. Drugs 53:1005–1037

    PubMed  CAS  Google Scholar 

  199. Decaudin D, Bosq J, Tertian G et al (1998) Phase II trial of fludarabine monophosphate in patients with mantle-cell lymphomas. J Clin Oncol 16:579–583

    PubMed  CAS  Google Scholar 

  200. Brockman RW, Cheng YC, Schabel FM Jr et al (1980) Metabolism and chemotherapeutic activity of 9-beta-D-arabinofuranosyl-2-fluoroadenine against murine leukemia L1210 and evidence for its phosphorylation by deoxycytidine kinase. Cancer Res 40:3610–3615

    PubMed  CAS  Google Scholar 

  201. Cohen JD, Strock DJ, Braun TJ (1997) Deoxycytidine in human plasma: protection of leukemic cells during chemotherapy. Proc Am Soc Clin Oncol 16:4

    Google Scholar 

  202. O’Rourke TJ, Burris HA, Rodriguez GI et al (1997) Phase I pharmacokinetic and bioavailability study of five daily intravenous and oral doses of fludarabine phosphate in patients with advanced cancer. Proc Am Soc Clin Oncol 16: 210

    Google Scholar 

  203. Griffig J, Koob R, Blakey RL (1989) Mechanisms of inhibition of DNA synthesis by 2-chlorodeoxyadenosine in human lymphoblastic cells. Cancer Res 49:6923–6928

    PubMed  CAS  Google Scholar 

  204. Kong LR, Samuelson E, Rosen ST et al (1997) 2-Chlorodeoxyadenosine in cutaneous T-cell lymphoproliferative disorders. Leuk Lymphoma 26:89–97

    Article  PubMed  CAS  Google Scholar 

  205. Larson RA, Mick R, Spielberger RT et al (1996) Dose-escalation trial of cladribine using five daily intravenous infusions in patients with advanced hematologic malignancies. J Clin Oncol 14:188–195

    PubMed  CAS  Google Scholar 

  206. Liliemark J (1997) The clinical pharmacokinetics of cladribine. Clin Pharmacokinet 32:120–137

    Article  PubMed  CAS  Google Scholar 

  207. Liliemark J, Juliusson G (1991) On the pharmacokinetics of 2-chloro-2’-deoxyadenosine in humans. Cancer Res 51: 5570–5572

    PubMed  CAS  Google Scholar 

  208. Kearns CM, Blakley RL, Santana VM et al (1994) Pharmacokinetics of cladribine (2-chlorodeoxyadenisine) in children with acute leukemia. Cancer Res 54:1235–1239

    PubMed  CAS  Google Scholar 

  209. Di Costanzo F, El-Taani H, Parriani D et al (1996) Hydroxyurea may increase the activity of fluorouracil plus folinic acid in advanced gastrointestinal cancer: phase II study. Cancer Invest 14:234–238

    Article  PubMed  CAS  Google Scholar 

  210. Stehman FB, Bundy BN, Kucera PR et al (1997) Hydroxyurea, 5-fluorouracil infusion, and cisplatin adjunct to radiation therapy in cervical carcinoma: a phase I—II trial of the Gynecologic Oncology Group. Gynecol Oncol 66:262–267

    Article  PubMed  CAS  Google Scholar 

  211. Brockstein B, Haraf DJ, Stenson K et al (1998) Phase I study of concomitant chemoradiotherapy with paclitaxel, fluorouracil, and hydroxyurea with granulocyte colony-stimulating factor support for patients with poorprognosis cancer of the head and neck. J Clin Oncol 16: 735–744

    PubMed  CAS  Google Scholar 

  212. Yarbro JW (1992) Mechanism of action of hydroxyurea. Semin Oncol 19[3 Suppl 9]:l–10

    Google Scholar 

  213. Newman EM, Carroll M, Akman SA et al (1997) Pharmacokinetics and toxicity of 120-hour continuous-infusion hydroxyurea in patients with advanced solid tumors. Cancer Chemother Pharmacol 39:254–258

    Article  PubMed  CAS  Google Scholar 

  214. Tracewell WG, Trump DL, Vaughan WP et al (1995) Population pharmacokinetics of hydroxyurea in cancer patients. Cancer Chemother Pharmacol 35:417–422

    Article  PubMed  CAS  Google Scholar 

  215. Navarra P, Grohmann U, Nocentini G et al (1997) Hydroxyurea induces the gene expression and synthesis of proinflammatory cytokines in vivo. J Pharmacol Exp Ther 280:477–482

    PubMed  CAS  Google Scholar 

  216. Allegra CJ (1990) Antifolates. In: Chabner BA, Collins JA (eds) Cancer chemotherapy. Principles and practice. Lippincott, Philadelphia, pp 110–153

    Google Scholar 

  217. Delpine N, Delepine G, Bacci G et al (1996) Influence of methotrexate dose intensity on outcome of patients with high-grade osteogenic sarcoma. Analysis of the literature. Cancer 78:2127–2135

    Article  Google Scholar 

  218. Egan LJ, Sandborn WJ (1996) Methotrexate for inflammatory bowel disease: pharmacology and preliminary results. Mayo Clin Proc 71:69–80

    Article  PubMed  CAS  Google Scholar 

  219. Lonn U, Lonn S, Nilsson B et al (1996) Higher frequency of gene amplification in breast cancer patients who received adjuvant chemotherapy. Cancer 77:107–112

    Article  PubMed  CAS  Google Scholar 

  220. Huennekens FM (1994) The methotrexate story: a paradigm for development of cancer chemotherapeutic agents. Adv Enzyme Regul 34:397–419

    Article  PubMed  CAS  Google Scholar 

  221. DeAngelis LM, Tong WP, Lin S et al (1996) Carboxypeptidase G2 rescue after high-dose methotrexate. J Clin Oncol 14:2145–2149

    PubMed  CAS  Google Scholar 

  222. Hum MC, Kamen BA (1996) Folate, antifolates, and folate analogs in pediatric oncology. Invest New Drugs 14:101–111

    Article  PubMed  CAS  Google Scholar 

  223. Rogers P, Allegra CJ, Murphy RF et al (1988) Bioavailability of oral trimetrexate in patients with acquired immunodeficiency syndrome. Antimicrob Agents Chemother 32:3 24–326

    Article  Google Scholar 

  224. Judson IR (1997) Tomudex (raltitrexed) development: preclinical, phase I and II studies. Anticancer Drugs 8 [Suppl 2]:S5–S9

    Article  PubMed  CAS  Google Scholar 

  225. Cunningham D, Zalcberg J, Smith I et al (1996) ’Tomudex’ (ZD 1694): a novel thymidylate synthase inhibitor with clinical antitumor activity in a range of solid tumors.’ Tomudex’ International Study Group. Ann Oncol 7:179–182

    Article  PubMed  CAS  Google Scholar 

  226. Stevenson JP, Redlinger M, Kluijtmans LA et al (2001) Phase I clinical and pharmacogenetic trial of irinotecan and raltitrexed administered every 21 days to patients with cancer. J Clin Oncol 19:4081–4087

    PubMed  CAS  Google Scholar 

  227. Gianni L (1997) Anthracycline resistance: the problem and its current definition. Semin Oncol 24[4 Suppl 10]:S10–11–S10–17

    PubMed  CAS  Google Scholar 

  228. Fogleson PD, Reckford C, Swink S (1992) Doxorubicin inhibits human DNA topoisomerase I. Cancer Chemother Pharmacol 30:123–125

    Article  Google Scholar 

  229. Linn SC, Pinedo HM, Van Ark-Otte J et al (1997) Expression of drug resistance proteins in breast cancer, in relation to chemotherapy. Int J Cancer 71:787–795

    Article  PubMed  CAS  Google Scholar 

  230. Bachur NR, Gordon SL, Gee MW (1977) Anthracycline antibiotic augmentation of microsomal electron transport and free radical formation. Mol Pharmacol 13:901–910

    PubMed  CAS  Google Scholar 

  231. Sweatman TW, Israel M (1997) Anthracyclines. In: Teicher B (ed) Cancer therapeutics: experimental and clinical agents. Humana Press, Totowa, pp 113–136

    Google Scholar 

  232. Doroshow JH (1983) Effect of anthracycline antibiotics on oxygen radical formation in rat heart. Cancer Res 43:460–472

    PubMed  CAS  Google Scholar 

  233. Myers CE, McGuire WP, Liss RH et al (1977) Adriamycin: the role of lipid peroxidation in cardiac toxicity and tumor response. Science 197:165–167

    Article  PubMed  CAS  Google Scholar 

  234. Bottone AE, de Beer EL, Voest EE (1997) Anthracyclines enhance tension development in cardiac muscle by direct interaction with the contractile system. J Mol Cell Cardiol 29:1001–1008

    Article  PubMed  CAS  Google Scholar 

  235. Robert J, Gianni L (1993) Pharmacokinetics and metabolism of anthracyclines. Cancer Surv 17:219–252

    PubMed  CAS  Google Scholar 

  236. Von Hoff DD, Rozencweig M, Leyard M et al (1977) Daunomycin-induced cardiotoxicity in children and adults. A review of 110 cases. Am J Med 62:200–208

    Article  Google Scholar 

  237. Riggs CE Jr (1996) Antitumor antibiotics and related compounds. In: Perry MC (ed) The chemotherapy source book. Williams and Wilkins, Baltimore, pp 345–385

    Google Scholar 

  238. Antoine E, Chollet P, Montardini S et al (1997) Sequential administration of docetaxel (D) followed by doxorubicin (A) in combination with cyclophosphamide (C) as firstline chemotherapy for metastatic breast cancer (MBC): preliminary results. Proc Am Soc Clin Oncol 16:159

    Google Scholar 

  239. Speyer J, Green MD, Kramer E et al (1988) Protective effect of the bispiperazinedione ICRF-187 against doxorubicininduced cardiac toxicity in women with advanced breast cancer. N Engl J Med 319:745–752

    Article  PubMed  CAS  Google Scholar 

  240. Rahman A, Goodman A, Foo W et al (1984) Clinical pharmacology of daunorubicin in phase I patients with solid tumors: development of an analytical methodology for daunorubicin and its metabolites. Semin Oncol 11[Suppl 3]:36–44

    PubMed  CAS  Google Scholar 

  241. Riggs CE (1984) Clinical pharmacology of daunorubicin in patients with acute leukemia. Semin Oncol 11[Suppl 3]: 2–11

    PubMed  Google Scholar 

  242. Capranico G, De Isabella P, Penco S et al (1989) Role of DNA breakage in cytotoxicity of doxorubicin, 9-deoxydoxorubicin, and 4-demethyl-6-deoxydoxorubicin in murine leukemia P388 cells. Cancer Res 49:2022–2027

    PubMed  CAS  Google Scholar 

  243. Woods KE, Ellis AL, Randolph JK et al (1989) Enhanced sensitivity of the rat hepatoma cell to the daunorubicin analogue 4-demethoxydaunorubicin associated with the induction of DNA damage. Cancer Res 49:4846–4851

    PubMed  CAS  Google Scholar 

  244. Camaggi CM, Strocchi E, Carisi P et al (1992) Idarubicin metabolism and pharmacokinetics after intravenous and oral administration in cancer patients: a crossover study. Cancer Chemother Pharmacol 30:307–316

    Article  PubMed  CAS  Google Scholar 

  245. Coukell AJ, Faulds D (1997) Epirubicin. An updated review of its pharmacodynamic and pharmacokinetic properties and therapeutic efficacy in the management of breast cancer. Drugs 53:453–482

    Article  PubMed  CAS  Google Scholar 

  246. Sengör F, Beysel M, Erdogan K et al (1996) Intravesical epirubicin in the prophylaxis of superficial bladder cancer. Int Urol Nephrol 28:201–206

    Article  PubMed  Google Scholar 

  247. Budman DR, Lichtman SM (1996) Investigational drugs. In: Perry MC (ed) The chemotherapy source book. Williams and Wilkins, Baltimore, pp 479–555

    Google Scholar 

  248. Galvez C, Bonicatto S, Cavarra G et al (1997) High-dose epirubicin in advanced breast cancer patients. Proc Am Soc Clin Oncol 16:169

    Google Scholar 

  249. Innocenti F, Iyer L, Ramirez J et al (2001) Epirubicin glucuronidation is catalyzed by human UDP-glucuronosyltransferase 2B7. Drug Metab Dispos 29:686–692

    PubMed  CAS  Google Scholar 

  250. Ballestrero A, Ferrando F, Garuti A et al (1997) High-dose mitoxantrone with peripheral blood progenitor cell rescue: toxicity, pharmacokinetics and implications of dosage and schedule. Br J Cancer 76:797–804

    Article  PubMed  CAS  Google Scholar 

  251. Sobell HM (1973) The stereochemistry of actinomycin binding to DNA and its implications in molecular biology. Prog Nucleic Acid Res Mol Biol 13:153–190

    Article  PubMed  CAS  Google Scholar 

  252. Waksman Conference on Actinomycins (1974) Their potential for cancer chemotherapy. Cancer Chemother Rep 58:1–123

    Google Scholar 

  253. Frei E (1974) The clinical use of actinomycin. Cancer Chemother Rep 58:49–54

    PubMed  Google Scholar 

  254. Mehta MP, Bastin KT, Wiersma SR (1991) Treatment of Wilms tumor. Current recommendations. Drugs 42:766–780

    Article  PubMed  CAS  Google Scholar 

  255. Manfredi JJ, Horwitz SB (1984) Taxol: an antimitotic agent with a new mechanism of action. Pharm Ther 25:83–125

    Article  CAS  Google Scholar 

  256. Hyams JS, Lloyd CW (1993) In: Harford JB (ed) Microtubules (Modern cell biology series, vol 13). Wiley Liss, New York, p 460

    Google Scholar 

  257. Wadsworth P (1993) Mitosis: spindle assembly and chromosome motion. Curr Opin Cell Biol 5:123–128

    Article  PubMed  CAS  Google Scholar 

  258. Rowinsky EK, Wright M, Monsarrat B et al (1993) Taxol: pharmacology, metabolism and clinical implications. Cancer Surv 17:283–304

    PubMed  CAS  Google Scholar 

  259. Roth BJ, Finch DE, Birhle R et al (1997) A phase II trial of ifosfamide + paclitaxel (IT) in advanced transitional cell carcinoma of the urothelium. Proc Am Soc Clin Oncol 16:324

    Google Scholar 

  260. Schnack B, Grbovic M, Brodowicz T et al (1997) High effectivity of a combination of Taxol with carboplatin in the treatment of metastatic urothelial cancer. Proc Am Soc Clin Oncol 16:325

    Google Scholar 

  261. Rose PG, Blessing JA, Gershenson DM (1997) Paclitaxel and cisplatin as first-line therapy in recurrent or advanced squamous cell carcinoma of the cervix: a Gynecologic Oncology Group (GOG) study. Proc Am Soc Clin Oncol 16:363

    Google Scholar 

  262. Ajani JA, Fairweather J, Dumas P et al (1997) A phase II study of Taxol in patients with advanced untreated gastric carcinoma. Proc Am Soc Clin Oncol 16:263

    Google Scholar 

  263. Younes A, Preti A, Romaguera J et al (1997) Activity of Taxol and high-dose Cytoxan with granulocyte colonystimulating factor (G-CSF) in 54 patients with relapsed/refractory non-Hodgkin’s lymphoma (NHL). Proc Am Soc Clin Oncol 16:21

    Google Scholar 

  264. Colomer R, Montere S, Lluch A et al (1997) Circulating HER-2/neu predicts resistance to Taxol/Adriamycin in metastatic breast carcinoma: preliminary results of a multicentric prospective study. Proc Am Soc Clin Oncol 16:140

    Google Scholar 

  265. Rowinsky E, Smith L, Chaturvedi P et al (1997) Pharmacokinetic (PK) and toxicologie interactions between the multidrug resistance reversal agent VX-710 and paclitaxel (P) in cancer patients. Proc Am Soc Clin Oncol 16:218

    Google Scholar 

  266. Kuhn J, Rizzo J, Chang S et al (1997) Effects of anticonvulsants (Acs) on the pharmacokinetics (PK) and metabolic profile of paclitaxel. Proc Am Soc Clin Oncol 16:224

    Google Scholar 

  267. Markman M, Rowinsky E, Hakes T et al (1992) Phase I trial of Taxol administered by the intraperitoneal route: a Gynecologic Oncology Group study. J Clin Oncol 10: 1485–1491

    PubMed  CAS  Google Scholar 

  268. Huizing MT, Misser VHS, Pieters RC et al (1995) Taxanes: a new class of antitumor agents. Cancer Inv 13:381–404

    Article  CAS  Google Scholar 

  269. Gianni L, Kearns C, Gianni A et al (1995) Nonlinear pharmacokinetics and metabolism of paclitaxel and its pharmacokinetic/pharmacodynamic relationships in humans. J Clin Oncol 13:180–190

    PubMed  CAS  Google Scholar 

  270. Venook AP, Egorin MJ, Rosner GL et al (1998) A phase I and pharmacokinetic trial of paclitaxel in patients with hepatic dysfunction: CALGB 9264. J Clin Oncol 16: 1811–1819

    PubMed  CAS  Google Scholar 

  271. Cagnoni PJ, Nieto Y, Shpall EJ et al (1997) Pulmonary toxicity secondary to paclitaxel (PAC)-containing high-dose chemotherapy (HDC). Proc Am Soc Clin Oncol 16:232

    Google Scholar 

  272. Hurwitz A, Relling M, Ragab A et al (1993) Phase I trial of Taxol in children with refractory solid tumors: a Pediatrie Oncology Group study. Proc Am Soc Clin Oncol 12:1410

    Google Scholar 

  273. Ringel I, Horwitz SB (1991) Studies with RP 56976 (taxotere): a semisynthetic analogue of Taxol. J Nati Cancer Inst 83:288–291

    Article  CAS  Google Scholar 

  274. Horwitz SB (1992) Mechanism of action of Taxol. Trends Pharmacol Sci 13:134–136

    Article  PubMed  CAS  Google Scholar 

  275. Hennequin N, Giocanti N, Favaudon V (1995) S-phase specificity of cell killing by docetaxel (taxotere) in synchronized HeLa cells. Br J Cancer 71:1194–1198

    Article  PubMed  CAS  Google Scholar 

  276. Seibel NL, Blaney SM, O’B rien M et al (1997) Pediatrie phase I trial of docetaxel (D) with G-CSF: a collaborative pediatrie branch, NCI and Children’s Cancer Group trial. Proc Am Soc Clin Oncol 16:220

    Google Scholar 

  277. Bruno R, Sanderink GJ (1993) Pharmacokinetics and Metabolism of TaxotereTM (Docetaxel). Cancer Surv 17:305–313

    PubMed  CAS  Google Scholar 

  278. De Valeriola D, Brassinne C, Cpillard C (1993) Study of excretion balance, metabolism and protein binding of C14 radiolabelled taxotere (RP 56976, NSC 628503) in cancer patients. Proc Am Assoc For Cancer Res 34:373

    Google Scholar 

  279. Gelmon K (1994) The taxoids: paclitaxel and docetaxel. Lancet 344:1267–1272

    Article  PubMed  CAS  Google Scholar 

  280. Cabrai FR, Barlow SB (1991) Resistance to the antimitotic agents as genetic probes of microtubule structure and function. Pharmacol Ther 52:159–171

    Article  Google Scholar 

  281. Endicott JA, Ling V (1989) The biochemistry of P-glycoprotein-mediated multidrug resistance. Annu Rev Biochem 58:137–171

    Article  PubMed  CAS  Google Scholar 

  282. Kuss BJ, Deeley RG, Cole SPC et al (1994) Deletion of gene for multidrug resistance in acute myeloid leukemia with inversion in chromosome 16: prognostic implications. Lancet 343:1531–1534

    Article  PubMed  CAS  Google Scholar 

  283. Rahmani R, Zhou X-J (1993) Pharmacokinetics and metabolism of vinca alkaloids. Cancer Surv 17:269–281

    PubMed  CAS  Google Scholar 

  284. Rowinsky EK, Donehower RC (1991) The clinical pharmacology and use of antimicrotubule agents in cancer chemotherapeutics. Pharmacol Ther 52:35–84

    Article  PubMed  CAS  Google Scholar 

  285. Bender RA, Castle MC, Margileth DA et al (1977) The pharmacokinetics of [3H]-vincristine in man. Clin Pharmacol Ther 22:430–438

    PubMed  CAS  Google Scholar 

  286. Wehbe T, Akerley W, Stein B et al (1997) Strontium-89, estramustine and vinblastine (SEV) in hormone refractory prostate carcinoma (HRPC): concurrent chemoradiotherapy. Proc Am Soc Clin Oncol 16:312

    Google Scholar 

  287. Hudes G, Roth B, Loehrer P et al (1997) Phase II trial of vinblastine versus vinblastine plus estramustine phosphate for metastatic hormone refractory prostate cancer (HRPC). Proc Am Soc Clin Oncol 16:316

    Google Scholar 

  288. Bonfante V, Santoro A, Viviani S et al (1997) Ifosfamide (IFX) and vinorelbine (VNR), an active regimen potentially effective in detecting sensitive relapses in Hodgkin’s disease (HD). Proc Am Soc Clin Oncol 16:9

    Google Scholar 

  289. Errante D, Spina M, Tavio M et al (1997) Evidence of activity of vinorelbine (VNR) in patients (pts) with previously treated epidemic Kaposi’s sarcoma (KS). Proc Am Soc Clin Oncol 16:42

    Google Scholar 

  290. Oliveira J, Geoffrois L, Rolland F et al (1997) Activity of Navelbine on lesions within previously irradiated fields in patients with metastatic and/or local recurrent squamous cell carcinoma of the head and neck (SCHNC): an EORTC-ECSG study. Proc Am Soc Clin Oncol 16:406

    Google Scholar 

  291. Canfield VA, Saxman SB, Kolodzei MA et al (1997) Phase II trial of vinorelbine in advanced or recurrent squamous cell carcinoma (SCCa) of the head and neck. Proc Am Soc Clin Oncol 16:387

    Google Scholar 

  292. Chen AY, Liu LF (1994) DNA topoisomerases: essential enzymes and lethal targets. Annu Rev Pharmacol Toxicol 34:191–218

    Article  PubMed  CAS  Google Scholar 

  293. Beck WT, Kim R, Chein M (1994) Novel actions of inhibitors of DNA topoisomerase II in drug-resistant tumor cells. Cancer Chemother Pharmacol 34 [Suppl]}:S14–S18

    Article  PubMed  CAS  Google Scholar 

  294. Yves P (1996) Eukaryotic DNA topoisomerase I: genome gatekeeper and its intruders, camptothecins. Semin Oncol 23[Suppl3]:3–10

    Google Scholar 

  295. Ewesuedo R, Ratain MJ (1997) Topoisomerase I inhibitors. Oncologist 2:359–364

    PubMed  CAS  Google Scholar 

  296. Shimada Y, Rothenberg M, Hilsenbeck SG et al (1994) Activity of CPT-11 (irinotecan hydrochloride), a topoisomerase I inhibitor, against human tumor colony-forming units. Anticancer Drugs 5:202–206

    Article  PubMed  CAS  Google Scholar 

  297. Wagener DJ, Verdonk HE, Dirix et al (1995) Phase II trial of CPT-11 in patients with advanced pancreatic cancer, an EORTC early clinical trials group study. Ann Oncol 6:129–132

    PubMed  CAS  Google Scholar 

  298. Saltz LB (1997) Clinical use of irinotecan: current status and future considerations. Oncologist 2:402–409

    PubMed  CAS  Google Scholar 

  299. Lavelle F, Bissery MC, Andre S et al (1996) Preclinical evaluation of CPT-11 and its active metabolite SN-38. Semin Oncol 23[Suppl3]:ll–20

    Google Scholar 

  300. Takaoka K, Ohtsuka K, Jin M et al (1997) Conversion of CPT-11 to its active form, SN-38, by carboxylesterase of non-small cell lung cancer. Proc Am Soc Clin Oncol 16:252A

    Google Scholar 

  301. Chabot GG, Abigerges D, Catimel G et al (1995) Population pharmacokinetics and pharmacodynamics of irinotecan (CPT-11) and active metabolite SN-38 during phase I trials. Ann Oncol 6:141–151

    PubMed  CAS  Google Scholar 

  302. Gupta E, Lestingi TM, Mick R et al (1994) Metabolic fate of irinotecan in humans: correlation of glucuronidation with diarrhea. Cancer Res 54:3723–3725

    PubMed  CAS  Google Scholar 

  303. Gupta E, Wang X, Ramirez J etal (1997) Modulation of glucuronidation of SN-38, the active metabolite of irinotecan, by valproic acid and phenobarbital. Cancer Chemother Pharmacol 39:440–444

    Article  PubMed  CAS  Google Scholar 

  304. Pappo AS, Lyden E, Breneman J et al (2001) Up-front window trial of topotecan in previously untreated children and adolescents with metastatic rhabdomyosarcoma: an intergroup rhabdomyosarcoma study. J Clin Oncol 19: 213–219

    PubMed  CAS  Google Scholar 

  305. Schellens JH, Creemers AJ, Beijnen JH et al (1996) Bioavailability and pharmacokinetics of oral topotecan: a new topoisomerase I inhibitor. Br J Cancer 73:1268–1271

    Article  PubMed  CAS  Google Scholar 

  306. Herben VM, ten Bokkel Huinink WW, Beijnen JH (1996) Clinical pharmacokinetics of topotecan. Clin Pharmacokinet 31:85–102

    Article  PubMed  CAS  Google Scholar 

  307. Pui CH, Behm FG, Raimondi SC et al (1989) Secondary acute myeloid leukemia in children treated for acute lymphoid leukemia. N Engl J Med 321:136–142

    Article  PubMed  CAS  Google Scholar 

  308. Ratain, MJ, Kaminer LS, Bitran JD et al (1987) Acute nonlymphocytic leukemia following etoposide and cisplatin combination chemotherapy for advanced non-small cell carcinoma of the lung. Blood 70:1412–1417

    PubMed  CAS  Google Scholar 

  309. Joel S (1996) The clinical pharmacology of etoposide: an Update. Cancer Treat Rev 22:179–221

    Article  PubMed  CAS  Google Scholar 

  310. Ratain MJ, Mick R, Schilsky RL et al (1991) Pharmacologically based dosing of etoposide: a means of safely increasing dose intensity. J Clin Oncol 9:1480–1486

    PubMed  CAS  Google Scholar 

  311. Stewart CF (1994) Use of etoposide in patients with organ dysfunction: pharmacokinetic and pharmacodynamic considerations. Cancer Chemother Pharmacol 34[Suppl]: S76–S83

    Article  PubMed  Google Scholar 

  312. Arbuck SG, Douglas HO, Crom WR et al (1986) Etoposide pharmacokinetics in patients with normal and abnormal organ functions. J Clin Oncol 4:1690–1695

    PubMed  CAS  Google Scholar 

  313. Macbeth FR (1982) VM 26: phase I and II studies. Cancer Chemother Pharmacol 7:87–91

    Article  PubMed  CAS  Google Scholar 

  314. Henter JI, Elinder G, Finkel Y et al (1986) Successful induction with chemotherapy including teniposide in familial erythrophagocytic lymphohistiocytosis. Lancet 2: 1402

    Article  PubMed  CAS  Google Scholar 

  315. Hong WK, Lippman SM, Itri LM et al (1990) Prevention of secondary primary tumors with isotretinoin in squamouscell carcinoma of the head and neck. N Engl J Med 323:795–801

    Article  PubMed  CAS  Google Scholar 

  316. Atiba J, Jamil S, Meyskens FJ et al (1994) Transretinoic acid (tRA) in the treatment of malignant gliomas (MG): a phase II study. Proc Am Soc Clin Oncol 13:178

    Google Scholar 

  317. Weiss GR, Liu PY, Alberts DS et al (1997) A randomized phase II trial of 13-cis-retinoic acid (CRA) or all-transretinoic acid (ATRA) plus interferon alpha 2a (IFN) for metastatic or recurrent squamous/adenosquamous carcinoma of the uterine cervix: a Southwest Oncology Group study. Proc Am Soc Clin Oncol 13:178

    Google Scholar 

  318. Sutton LM, Warmuth MA, Petros WP et al (1997) Pharmacokinetics and clinical impact of all-trans retinoic acid in metastatic breast cancer: a phase II trial. Cancer Chemother Pharmacol 40:335–341

    Article  PubMed  CAS  Google Scholar 

  319. Khuri FR, Winn RJ, Lee JJ et al (1997) Run in phase: an effective screening tool for a randomized chemoprevention trial. Proc Am Soc Clin Oncol 16:539

    Google Scholar 

  320. DiPola RS, Weiss R, Goodin S et al (1997) The clinical and biological effects of 13 cis-retinoic acid (CRA) and alpha interferon (IFN-A) in patients with prostate-specific antigen (PSA) progression after initial local therapy for prostate cancer. Proc Am Soc Clin Oncol 16:332

    Google Scholar 

  321. Chatterjee M, Banerjee MR (1982) Influence of hormones on N-(4-hydroxyphenyl) retinamide inhibition of 7,12-dimethyl-benz (a)-anthracene transformation of mammary cells in organ culture. Cancer Lett 16:239–245

    Article  PubMed  CAS  Google Scholar 

  322. Moon RC, Mehta RG (1989) Chemoprevention of experimental carcinogenesis. Prev Med 18:576–591

    Article  PubMed  CAS  Google Scholar 

  323. Pienta KJ, Nguyen NM, Lehr JE (1993) Treatment of prostate cancer in the rat with a synthetic retinoid fenretinide. Cancer Res 53:224–226

    PubMed  CAS  Google Scholar 

  324. Dorr RT (1993) Interferon-a in malignant and viral diseases: a review. Drugs 45:177–211

    Article  PubMed  CAS  Google Scholar 

  325. Wills RJ, Dennis S, Spiegel HE et al (1984) Interferon kinetics and adverse reactions after intravenous, intramuscular, and subcutaneous injection. Clin Pharmacol Ther 3:224–226

    Google Scholar 

  326. Gallo MA, Kaufman D (1997) Antagonistic and agonistic effects of tamoxifen: significance in human cancer. Semin Oncol 24[1 Suppl 1]:S1–71–S1–80

    PubMed  CAS  Google Scholar 

  327. Wosikowski K, Kung W, Hasmonn M et al (1993) Inhibition of growth factor activated proliferation by anti-estrogens and effects on early gene expression by MCF-7 cells. Int J Cancer 53:290–297

    Article  PubMed  CAS  Google Scholar 

  328. Jordan VC (1982) Metabolites of tamoxifen in animals and man: identification, pharmacology, and significance. Breast Cancer Res Treat 2:123–138

    Article  PubMed  CAS  Google Scholar 

  329. Wogan GN (1997) Review of the toxicology of tamoxifen. Semin Oncol 24[1 Suppl l]:Sl–87–Sl–97

    Google Scholar 

  330. Gradishar WJ, Jordan VC (1997) Clinical potential of new antiestrogens. J Clin Oncol 15:840–852

    PubMed  CAS  Google Scholar 

  331. Galili U (1983) Glucocorticoids induced cytolysis of human normal and malignant lymphocytes. J Steroid Biochem 19:483–490

    Article  PubMed  CAS  Google Scholar 

  332. Yang-Yen HF, Chambard JC, Sun Y-L et al (1990) Transcriptional interference between C-jun and the glucocorticoid receptor: mutual inhibition of DNA binding due to direct protein-protein interaction. Cell 62:1205–1221

    Article  PubMed  CAS  Google Scholar 

  333. Strum SB, McDermed JE, Scholz MC et al (1997) Anemia associated with androgen deprivation (AAAD) in prostate cancer (PC) patients (pts) receiving combination hormone blockade (CHB). Proc Am Soc Clin Oncol 16:345

    Google Scholar 

  334. Blackledge G (1993) Casodex-mechanisms of action and opportunities for usage. Cancer Suppl 72:3830–3833

    CAS  Google Scholar 

  335. Buzdar A, Jonat W, Howell A et al (1997) Significant improved survival with Arimidex (anastrozole) versus megestrol acetate in postmenopausal advanced breast cancer: updated results of two randomized trials. Proc Am Soc Clin Oncol 16:157

    Google Scholar 

  336. Greven KM, Corn BW (1997) Endometrial cancer. Curr Probl Cancer 21:65–127

    Article  PubMed  CAS  Google Scholar 

  337. Gadducci A, Fanucchi A, Cosio S et al (1997) Hormone Replacement therapy and gynecological cancer. Anticancer Res 17:3793–3798

    PubMed  CAS  Google Scholar 

  338. Cersosimo RJ, Carr D (1996) Prostate cancer: current and evolving strategies. Am J Health Syst Pharm 53:381–396

    PubMed  CAS  Google Scholar 

  339. Vogel CL (1996) Hormonal approaches to breast cancer treatment and prevention: an overview. Semin Oncol 23 [Suppl 9]:2–9

    PubMed  CAS  Google Scholar 

  340. Lucerno MA, McCloskey WW (1997) Alternatives to estrogen for the treatment of hot flushes. Ann Pharmacother 31:915–917

    Google Scholar 

  341. Asselin BL, Whitin JC, Coppola DJ et al (1993) Comparative pharmacokinetic studies of three asparaginase preparations. J Clin Oncol 11:1780–1786

    PubMed  CAS  Google Scholar 

  342. Lyss AP (1996) Hormones and enzymes. In: Perry MC (ed) The chemotherapy source book. Williams and Wilkins, Baltimore, pp 459–478

    Google Scholar 

  343. Lazo JS, Sebti SM (1994) Bleomycin. Cancer Chemother Biol Response Modif 15:44–50

    PubMed  CAS  Google Scholar 

  344. Dalgleish AG, Woods RL, Levi JA (1984) Bleomycin pulmonary toxicity: its relationship to renal dysfunction. Med Pediatr Oncol 12:313–317

    Article  PubMed  CAS  Google Scholar 

  345. Dorr VJ, Morris D, Lorber M (1996) Chemotherapy programs. In: Perry MC (ed) The chemotherapy source book. Williams and Wilkins, Baltimore, pp 845–887

    Google Scholar 

  346. Baselga J, Pfister D, Cooper M et al (2000) Phase I studies of anti-epidermal growth factor receptor chimeric antibody C225 alone and in combination with cisplatin. J Clin Oncol 18:904–914

    PubMed  CAS  Google Scholar 

  347. Norton L, Slamon D, Leyland-Jones B et al (1999) Overall survival (OS) advantage to simultaneous chemotherapy (CRx) plus the humanized anti-HER2 monoclonal antibody Herceptin (H) in HER2-overexpressing (HER2+) metastatic breast cancer (MBC). Proc Am Soc Clin Oncol 18:127A

    Google Scholar 

  348. Baselga J, Tripathy D, Mendelsohn J et al (1996) Phase II study of weekly intravenous recombinant humanized anti-HER2 monoclonal anti-braintumors. Cl in CancerRes 3:24 HER2/neu overexpressing metastatic breast cancer. J Clin Oncol 14:737-744

    Google Scholar 

  349. Woodburn JR, Barker AJ, Gibson KH et al (1997) ZD 1839, an epidermal growth factor tyrosine kinase inhibitor selected for clinical development. Proc Am Assoc Cancer Res 38:633

    Google Scholar 

  350. Kris MG, Herbst R, Rischin D et al (2000) Objective regression in non-small cell lung cancer patients treated in phase I trials of oral ZD 1839 (iressa), a selective tyrosine kinase inhibitor that block epidermal growth factor receptor (EGRF). Lung Cancer 29[Suppl 1]:72

    Article  Google Scholar 

  351. Kusaba H, Tamura T, Nakagawa K et al (2000) A phase I intermittent dose-escalation trial of ZD 1839 (iressa) in Japanese patients with solid malignant tumors. Clin Cancer Res 6:4543S

    Google Scholar 

  352. Druker BJ, Lydon NB (2000) Lessons learned from development of an abl tyrosine kinase inhibitor for chronic myelogenous leukemia. J Clin Invest 105:3–7

    Article  PubMed  CAS  Google Scholar 

  353. Druker BJ, Talpaz M, Resta DJ et al (2001) Efficacy and safety of a specific inhibitor of the bcr-abl tyrosine kinase in chronic myeloid leukemia. N Engl J Med 344:1031–1037

    Article  PubMed  CAS  Google Scholar 

  354. Arceci R (2001) Novel therapeutic approaches in pediatric cancers. 2001 annual meeting summaries. American Soci-ety of Clinical Oncology, 12-15 May, San Francisco, California, USA

    Google Scholar 

  355. Druker BJ, Sawyers CL, Kantarjian H et al (2001) Activity of a specific inhibitor of the bcr-abl tyrosine kinase in the blast crisis of chronic myeloid leukemia and acute lymphoblastic leukemia with the Philadelphia chromosome. N Engl J Med 344:1038–1042

    Article  PubMed  CAS  Google Scholar 

  356. Yarchoan R, Little RF, Wyvill K et al (1998) A phase II study of oral thalidomide in patients with AIDS-related Kaposi’s sarcoma (KS). 12th World AIDS Conference, Geneva, Switzerland, 28 June-3 July

    Google Scholar 

  357. Hidalgo M, de Graffenried L (2001) Mammalian Target of Rapamycin (mTOR) interacting agents in cancer therapy. In: Perry MC (ed) American Society of Clinical Oncology Educational Book. Lippincott Williams and Wilkins, Baltimore, pp 426–434

    Google Scholar 

  358. Spiro TP, Wilson JKV, Haaga J et al (1996) O6-Benzylguanine and BCNU: establishing the biochemical modulatory dose in tumor tissue for O6-alkylguanine DNA alkyltransferase-directed DNA repair. Proc Am Assoc Clin Oncol 15:177

    Google Scholar 

  359. Hongeng S, Brent TP, Sanford RA et al (1997) O6-methylguanine-DNA methyltransferase protein levels in pediatrie brain tumors. Clin Cancer Res 3:2459–2463

    PubMed  CAS  Google Scholar 

  360. Ewesuedo RB, Dolan ME (2001) O6-Alkylguanine-DNA alkyltransferase activity in pediatrie solid tumors. J Pediatr Hematol Oncol 23:A22

    Google Scholar 

  361. Jaeckle KA, Eyre HR, Townsend JJ et al (1998) Correlation of tumor guanine-DNA methyltransferase levels with survival of malignant astrocytoma patients treated with bischloroethylnitrosourea: a Southwest Oncology group Study. J Clin Oncol 16:3310–3315

    PubMed  CAS  Google Scholar 

  362. Friedman H, Kokkinakis DM, Pluda J et al (1998) Phase I trial of O6-benzylguanine for patients undergoing surgery for malignant glioma. J Clin Oncol 16:3570–3575

    PubMed  CAS  Google Scholar 

  363. Spiro TP, Gerson SL, Hoppel CL et al (1998) O6-Benzylguanine totally depletes alkylguanine DNA alkyltransferase in tumor tissue: a phase I pharmacokinetic/pharmacodynamic study. Proc Am Assoc Clin Oncol 17:213

    Google Scholar 

  364. Dolan ME, Roy SK, Fasanmade AA et al (1998) O6-benzylguanine in humans: metabolic, pharmacokinetic, and pharmacodynamic findings. J Clin Oncol 16:1803–1810

    PubMed  CAS  Google Scholar 

  365. Schilsky RL, Dolan ME, Bertucci D et al (2000) Phase I clinical and pharmacological study of O6-benzylguanine followed by carmustine in patients with advanced cancer. Clin Cancer Res 6:3025–3031

    PubMed  CAS  Google Scholar 

  366. Carlson BA, Dubay MM, Sausville EA et al (1996) Flavopiridol induces Gl arrest with inhibition of cyclin-dependent kinase (CDK) 2 and CDK4 in human breast carcinoma cells. Cancer Res 56:2973–2978

    PubMed  CAS  Google Scholar 

  367. Parker BW, Kaur G, Nieves-Niera W et al (1998) Early induction of apoptosis in hematopoietic cell lines after exposure to flavopiridol. Blood 15:458–465

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Ewesuedo, R.B., Ratain, M.J. (2003). Principles of Cancer Chemotherapy. In: Vokes, E.E., Golomb, H.M. (eds) Oncologic Therapies. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-55780-4_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-55780-4_3

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-62818-4

  • Online ISBN: 978-3-642-55780-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics