Skip to main content

The Incorporation of 5-Fluorouracil Into RNA and its Molecular Consequences

  • Chapter
Progress in Molecular and Subcellular Biology

Part of the book series: Progress in Molecular and Subcellular Biology ((PMSB,volume 1))

Abstract

It was recognized about two decades ago that analogs of nucleic acid bases could be utilized as substrates for incorporation into polynucleotides, resulting in the formation of “fraudulent” nucleic acids containing an aberrant base. Among the compounds most extensively studied which are able to replace a base in nucleic acids are 8-azaguanine, 2-thiouracil, 5-bromouracil, 5-fluorouracil, 6-azathymine and 6-thioguanine. The total number of analogs which are incorporated into polynucleotides is quite limited. A general review on metabolite analog incorporation appeared in 1958 (Matthews, 1958) which described the functions associated with the presence of such an abnormal base in nucleic acids. Because most of the analogs had carcinostatic activity, the anabolism and catabolism of such compounds in relation to their biochemical and chemotherapeutic actions was the subject of another review (Mandel, 1959).

This review was supported in part by USPHS Grant CA 02978 from the National Cancer Institute, N.I.H., Bethesda, Maryland.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Andon, T., and E. Chargaff: Formation and fate of abnormal ribosomes of E. coli cells treated with 5-fluorouracil. Proc. nat. Acad. Sci. (Wash.) 54, 1181–1189 (1965).

    Google Scholar 

  • Aposhian, H. V., and A. Kornberg: Enzymatic synthesis of deoxyribonucleic acid. IX. The polymerase formed after T2 bacteriophage infection of Escherichia coli: A new enzyme. J. biol. Chem. 237, 519–525 (1962).

    PubMed  CAS  Google Scholar 

  • Aronson, A. I.: The inhibition of bacteriophage protein synthesis by 5-fluorouracil. Biochim. biophys. Acta (Amst.) 49, 89–97 (1961).

    CAS  Google Scholar 

  • Aronson, A. I.: The effect of 5-fluorouracil on bacterial protein and ribonucleic acid synthesis. Biochim. biophys. Acta (Amst.) 49, 98–107 (1961).

    CAS  Google Scholar 

  • Aronson, A. I., and M. R. Del Valle: Rna and protein synthesis required for bacterial spore formation. Biochim. biophys. Acta (Amst.) 87, 267–276 (1964).

    CAS  Google Scholar 

  • Barnett, W. E., and H. E. Brockman: Induced phenotypic reversion by 8-azaguanine and 5-fluorouracil. Biochem. biophys. Res. Commun. 7, 199–203 (1962).

    CAS  Google Scholar 

  • Beéarevié, A., B. Djordjevie, and D. Surfé: Effect of ultra-violet light on tobacco mosaic virus containing 5-fluorouracil. Nature (Lond.) 198, 612–613 (1963).

    Google Scholar 

  • Ben-Hamida, F., and D. Schlessinger: Stability of ß-galactosidase messenger ribonucleic acid in Escherichia coli. J. Bact. 90, 1611–1616 (1965).

    PubMed  CAS  Google Scholar 

  • Ben-Ishai, R., B. Z. Cavari, H. Goldin, and S. Kerpel: On the mechanism of 5-fluoro-uracil-induced resistance to ultraviolet irradiation in Escherichia coli. Biochim. biophys. Acta (Amst.) 95, 291–301 (1965).

    CAS  Google Scholar 

  • Bodmer, W. F., and S. Grether: Uptake and incorporation of thymine, thymidine, uracil, uridine, and 5-fluorouracil into the nucleic acids of Bacillus subtilis. J. Bact. 89, 1011–1014 (1965).

    PubMed  CAS  Google Scholar 

  • Bonner, J., and J. A. D. Zeevaart: Ribonucleic acid synthesis in the bud, an essential component of floral induction in Xanthium. Plant Physiol. 37, 43–49 (1962).

    PubMed  CAS  Google Scholar 

  • BoscH, L., E. Harmers, and C. Heidelberger: Studies on fluorinated pyrimidines. V. Effects on nucleic acid metabolism in vitro. Cancer Res. 18, 335–343 (1958).

    Google Scholar 

  • Brockman, R. W., and E. P. Anderson: Pyrimidine analogues. In: Metabolic inhibitors, I. pp. 239–285.

    Google Scholar 

  • Hochsrer, R. M., and J. H. Quastel, Eds. New York: Academic Press 1963.

    Google Scholar 

  • Hochsrer, R. M., J. M. Davis, and P. Srurrs: Metabolism of uracil and 5-fluorouracil by drug-sensitive and by drug-resistant bacteria. Biochim. biophys. Acta (Amst.) 40, 22–32 (1960).

    Google Scholar 

  • Bujard, H., and C. Heidelberger: Fluorinated pyrimidines. XXVII. Attempts to determine transcription errors during the formation of fluorouracil-containing messenger ribonucleic acid. Biochemistry 5, 3339–3345 (1966).

    PubMed  CAS  Google Scholar 

  • Bull, M. J., and J. Lascelles: The association of protein synthesis with the formation of pigments in some photosynthetic bacteria. Biochem. J. 87, 15–28 (1963).

    PubMed  CAS  Google Scholar 

  • Bussard, A., S. Naono, F. Groset J. Monod: Effets d’un analogue de l’uracile sur les propriétés d’une protéine enzymatique synthétisée en sa présence. C. R. Acad. Sci. (Paris) 250, 4049–4051 (1960).

    CAS  Google Scholar 

  • Erna, J., J. Rychl1k, D. Grünberger, and F. Dorm: The effect of 5-fluorouracil-containing ribonucleic acid on protein synthesis by Escherichia coli in vivo. Coll. Czech. Chem. Commun. 28, 1215–1223 (1963).

    Google Scholar 

  • Champs, S. P. and S. Benzer: Reversal of mutant phenotypes by 5-fluorouracil: An approach to nucleotide sequences in messenger-RNA. Proc. nat. Acad. Sci. (Wash.) 48, 532–546 (1962).

    Google Scholar 

  • Chaudhuri, N. K., B. J. Montag, and C. Heidelberger: Studies On fluorinated pyrimidines. III. The metabolism of 5-fluorouracil-2-C14 and 5-fluoroorotic-2-C14 acid in vivo. Cancer Res. 18, 318–328 (1958).

    PubMed  CAS  Google Scholar 

  • Cherry, J. H., and R. Van Huystee: Effects of 5-fluorouracil on photoperiodic induction and nucleic acid metabolism of Xanthium. Plant Physiol. 40, 987–993 (1965).

    PubMed  CAS  Google Scholar 

  • Cohen, S. S., J. G. Flaks, H. D. Barner, M. R Loeb, and J. Lichtenstein: The mode of action of 5-fluorouracil and its derivatives. Proc. nat. Acad. Sci. (Wash.) 44, 1004–1012 (1958).

    CAS  Google Scholar 

  • Cooper, P. D.: The mutation of poliovirus by 5-fluorouracil. Virology 22, 186–192 (1964).

    PubMed  CAS  Google Scholar 

  • Cooper, S., and N. D. Zinder: The growth of an RNA bacteriophage: The role of DNA synthesis. Virology 18, 405–411 (1962).

    PubMed  CAS  Google Scholar 

  • Dagg, C. P., A. Doerr, and C. Offurr: Incorporation of 5-fluorouracil-2-C14 by mouse embryos. Biol. Neonat. (Basel) 10, 32–46 (1966).

    CAS  Google Scholar 

  • Davern, C. I.: The inhibition and mutagenesis of an RNA bacteriophage by 5-fluorouracil. Austral. J. biol. Sci 17, 726–737 (1964)

    CAS  Google Scholar 

  • Davern, C. I., and J. Bonner: The influence of 5-fluorouracil on tobacco-mosaic virus production in tobacco-leaf discs. Biochim. biophys. Acta (Amst.) 29, 205–206 (1958).

    CAS  Google Scholar 

  • De Kloft, S. R.: Effects of 5-fluorouracil and 6-azauracil on the synthesis of ribonucleic acid and protein in Saccharomyces carlsbergensis. Biochem. J. 106, 167–178 (1968).

    Google Scholar 

  • De Kloft, S. R., and P. J. Strijkert: Selective inhibition of ribosomal RNA synthesis in Saccharomyces carlsbergensis by 5-fluorouracil. Biochem. biophys. Res. Commun. 23, 49–55 (1966).

    Google Scholar 

  • Del Valle, M. R., and A. I. Aronson: Evidence for the synthesis of stable informational RNA required for bacterial spore formation. Biochem. biophys. Res. Commun. 9, 421–425 (1962).

    Google Scholar 

  • Duschinsky, R., E. Pleven, and C. Heidelberger: The synthesis of 5-fluoropyrimidines. J. Amer. chem. Soc. 79, 4559–4560 (1957).

    CAS  Google Scholar 

  • Ebel, J. P., J. H. Weil, B. Retheret J. Heinrich: Nature des sites responsables de l’acti-vité acceptrice du s-RNA. Bull. Soc. Chim. biol. (Paris) 47, 1599–1608 (1965).

    CAS  Google Scholar 

  • Elion, G. B., and G. H. Hitchings: Metabolic basis for the actions of analogs of purines and pyrimidines. In: Advanc. Chemotherapy 2, 91–177 (1965).

    Google Scholar 

  • Fikus, M., K. L. Wierzchowski, and D. Shugar: Reversible photochemical transformation of 5-fluorouracil analogues and poly-5-fluorouridylic acid. Biochem. biophys. Res. Commun. 16, 478–483 (1964).

    CAS  Google Scholar 

  • Gaetani, S., and M. A. Spadoni: Effect of 5-fluorouracil on hepatic induced increase of tryptophan-pyrrolase. Nature (Lond.) 191, 1296–1297 (1961).

    CAS  Google Scholar 

  • Galun, E., and J. Gressel: Morphogenesis in trichoderma: Suppression of photoinduction by 5-fluorouracil. Science 151, 696–698 (1966).

    PubMed  CAS  Google Scholar 

  • Garen, A., and O. Stnniqi: Suppression of mutations in the alkaline phosphatase structural cistron of E. coli. Proc. nat. Acad. Sci. (Wash.) 48, 1121–1127 (1962).

    CAS  Google Scholar 

  • Garren, L. D., R. R. Howell, G. M. Tomkins, and R. M. Crocco: A paradoxical effect of actinomycin D: The mechanism of regulation of enzyme synthesis by hydrocortisone. Proc. nat. Acad. Sci. (Wash.) 52, 1121–1129 (1964).

    CAS  Google Scholar 

  • Goldberg, A. R., J. H. Machledt, JR., and A. B. Pardee: On the action of fluorouracil on leukemia cells. Cancer Res. 26, 1611–1615 (1966).

    PubMed  CAS  Google Scholar 

  • Goodman, F.: Nucleic acid metabolism and bacteriophage multiplication: Effects of 5-fluorouracil on coliphage synthesis. Virology 21, 249–257 (1963).

    PubMed  CAS  Google Scholar 

  • Goodman, F.: Partial satisfaction of a uracil requirement by 5-fluorouracil. J. Bact. 89, 1156–1157 (1965).

    PubMed  CAS  Google Scholar 

  • Gordon, M. P., and M. Staehelin: The incorporation of 5-fluorouracil into the nucleic acid of tobacco mosaic virus. J.A mer. chem. Soc. 80, 2340–2341 (1958).

    CAS  Google Scholar 

  • Gordon, M. P., and M. Staehelin: Studies on the incorporation of 5-fluorouracil into a virus nucleic acid. Biochim. biophys. Acta (Amst.) 36, 351–361 (1959).

    CAS  Google Scholar 

  • Graham, A. F., and C. Kirk: Effect of 5-fluorouracil on the growth of bacteriophage R17. J. Bact. 90, 928–935 (1965).

    PubMed  CAS  Google Scholar 

  • Gray, P. N., and M. Rachmeler: The effects of 5-fluorouracil and 6-thioguanine incorporation on the amino acid acceptor activity of Escherichia coli tRNA. Biochim. biophys. Acta (Amst.) 138, 432–435 (1967).

    CAS  Google Scholar 

  • Gressel, J., and E. Galun: Effect of 5-fluorouracil on the soluble RNA of Trichoderma. Biochem. biophys. Res. Commun. 24, 162–168 (1966).

    CAS  Google Scholar 

  • Gros, F., W. Gilbert, H. H. Hiatt, G. Attardi, P. F. Spahr, and J. D. Watson: Mole-cular and biological characterization of messenger RNA. Cold Spr. Harb. Symp. quant. Biol. 26, 111–126 (1961).

    CAS  Google Scholar 

  • Gros, F., W. Gilbert, H. H. Hiatt, G. Attardi, P. F. Spahr, and S. Naono: Bacteria] synthesis of “modified” enzymes in the presence of a pyrimidine analogue. In: Protein biosynthesis, pp. 195–205. Harris, R. J. C., Ed. London: Academic Press 1961.

    Google Scholar 

  • Gros, F., W. Gilbert, H. H. Hiatt, G. Attardi, P. F. Spahr, D. Hayes, F. Hayeset J. D. Watson: Etude du role de l’ARN dans le transfert de l’information génétique. Colloq. Intern. Centre Nat. Rech. Sci (Paris) 106, 437–459 (1962).

    Google Scholar 

  • Grunberg-Manago, M., and A. M. Michelson: Polynucleotide analogues IV. Polyfluorouridylic acid and copolymers containing fluorouridylic acid. Biochim. biophys. Acta (Amst.) 87, 593–600 (1964).

    CAS  Google Scholar 

  • Grünberger, D., and H. G. Mandel: Enhanced messenger activity of RNA from 8-azaguanine-treated Bacillus cereus. Molec. Pharmacol. 1, 157–162 (1965).

    Google Scholar 

  • Grünberger, D., and H. G. Mandel: Effect of 5-fluorouraci] on ribosomal synthesis in Bacillus cereus. Fed. Proc. 26, 729 (1967).

    Google Scholar 

  • Barbers, E., N. K. Chaudhuri, and C. Heidelberger: Studies on fluorinated pyrimidines. VIII. Further biochemical and metabolic investigations. J. biol. Chem. 234, 1255–1262 (1959).

    Google Scholar 

  • Heidelberger, C.: Fluorinated pyrimidines. In: Progr. Nucl. Acid Res. and Molec. Biol. 4, 1–50 (1965).

    Google Scholar 

  • Heidelberger, C., N. K. Chaudhuri, P. Danneberg, D. Mooren, L. Griesbach, R. Duschinsky, R. J. Schnitzer, E. Pleven, and J. Scheiner: Fluorinated pyrimidines, a new class of tumor-inhibitory compounds. Nature (Lond.) 179, 663–666 (1957).

    CAS  Google Scholar 

  • Heidelberger, C., A. Giiobar, R. K. Baker, and K. L. Mukherjee: (1) Studies on fluorinated pyrimidines. X. In vivo studies on tumor resistance. Cancer Res. 20, 897–902 (1960).

    PubMed  CAS  Google Scholar 

  • Heidelberger, C., G. Kaldor, K. L. Mukherjee, and P. B. Danneberg: Studies on fluorinated pyrimidines. XI. In vitro studies on tumor resistance. Cancer Res. 20, 903–909 (1960).

    PubMed  CAS  Google Scholar 

  • Hignett, R. C.: The incorporation of 5-fluorouracil by Staphylococcus aureus (strain Duncan). II. Biochim. biophys. Acta (Amst.) 91, 584–591 (1964).

    CAS  Google Scholar 

  • Hignett, R. C.: The incorporation of 5-fluorouracil by Staphylococcus aurea: (strain Duncan). III. Biochim. biophys. Acta (Amst.) 95, 538–543 (1965).

    CAS  Google Scholar 

  • Hignett, R. C.: Interference of 5-fluorouracil in the biosynthesis of ribosomes in Staphylococcus aureus (strain Duncan). Biochim. biophys. Acta (Amst.) 114, 559–564 (1966).

    CAS  Google Scholar 

  • Hills, D. C., and J. Horowitz: Ribosome synthesis in Escherichia coli treated with 5-fluorouracil. Biochemistry 5, 1625–1632 (1966).

    PubMed  CAS  Google Scholar 

  • Holoubek, V.: The composition of tobacco mosaic virus protein after the incorporation of 5-fluorouracil into the virus. J. molec. Biol. 6, 164–166 (1963).

    PubMed  CAS  Google Scholar 

  • Horowitz, J., and E. Chargaff: Massive incorporation of 5-fluorouracil into a bacterial ribonucleic acid. Nature (Lond.) 184, 1213–1215 (1959).

    CAS  Google Scholar 

  • Horowitz, J., and E. Chargaff, and V. Kohlmeier: Formation of active ß-galactosidase by Escherichia coli treated with 5-fluorouracil. Biochim. biophys. Acta (Amst.) 142, 208–218 (1967).

    CAS  Google Scholar 

  • Horowitz, J., J. J. Saukkonen, and E. Chargaff: Effect of 5-fluorouracil on a uracil-requiring mutant of Escherichia coli. Biochim. biophys. Acta (Amst.) 29, 222–223 (1958).

    CAS  Google Scholar 

  • Horowitz, J.: Effects of fluoropyrimidines on the synthesis of bacterial proteins and nucleic acids. J. biol. Chem. 235, 3266–3272 (1960).

    PubMed  CAS  Google Scholar 

  • Iwabuchi, M., E. Otaka, M. Kono, and S. Osawa: The effect of 5-fluorouracil on the ribosome formation in Escherichia coli. Biochim. biophys. Acta (Amst.) 114, 83–94 (1966).

    CAS  Google Scholar 

  • Jacob, F., and J. Monod: Genetic regulatory mechanism in the synthesis of proteins. J. molec. Biol. 3, 318–356 (1961).

    PubMed  CAS  Google Scholar 

  • Kadowaki, K., J. Hosoda, and B. Maruo: Effects of actinomycin D and 5-fluorouracil on the formation of enzymes in Bacillus subtilis. Biochim. biophys. Acta (Amst.) 103, 311 —318 (1965).

    Google Scholar 

  • Kahan, F. M., and J. Huawltz: The role of deoxyribonucleic acid in ribonucleic acid synthesis. IV. The incorporation of pyrimidine and purine analogues into ribonucleic acid. J. biol. Chem. 237, 3778–3785 (1962).

    CAS  Google Scholar 

  • Kaplan, H. S., K. C. Smith, and P. A. Tomlin: Effect of halogenated pyrimidines on radio-sensitivity of E. coli. Radiat. Res. 16, 98–113 (1962).

    PubMed  CAS  Google Scholar 

  • Kempner, E. S.: The selection and utilization of metabolic analogs for nucleic acid synthesis. Biochim. biophys. Acta (Amst.) 53, 111–122 (1961).

    CAS  Google Scholar 

  • Kempner, E. S., and J. H. Miller: Alteration of carbon metabolism by a base analog. Biophys. J. 2, 327–337 (1962).

    PubMed  CAS  Google Scholar 

  • Kempner, E. S.: The mechanism of action of purine and pyrimidine analogs in microorganisms. Biochim. biophys. Acta (Amst.) 76, 341–346 (1963).

    CAS  Google Scholar 

  • Kessel, D., T. C. Hall, and I. Wodinsky: Nucleotide formation as a determinant of 5-fluorouracil response in mouse leukemias. Science 154, 911–913 (1966).

    PubMed  CAS  Google Scholar 

  • Key, J. L.: Effect of purine and pyridimine analogues on growth and RNA metabolism in the soybean hypocotyl: The selective action of 5-fluorouracil. Plant Physiol. 41, 12571264 (1966).

    Google Scholar 

  • Key, J. L., and J. Ingle: Requirement for the synthesis of DNA-like RNA for growth of excised plant tissue. Proc. nat. Acad. Sci. (Wash.) 52 1382 —1388(1964).

    Google Scholar 

  • Kilgore, W. W., and R. R. Painter: The effect of 5-fluorouracil on the viability of house fly eggs. J. Econ. Entomology 55, 710–712 (1962).

    CAS  Google Scholar 

  • Kilgore, W. W., and R. R. Painter,: nsect chemosterilants: Incorporation of 5-fluorouracil into house fly eggs. J. Econ. Entomology 59, 746–747 (1966).

    CAS  Google Scholar 

  • Klubes, P., and K. L. Hartmann: The differential effects of 8-azaguanine, 5-fluorouracil, 6-mercaptopurine, and 6-thioguanine on the activities of some Krebs cycle enzymes in cell-free extracts from Bacillus cereus. Biochem. Pharmacol., in press (1969).

    Google Scholar 

  • Koechlin, B. A., F. Rubio, S. Palmer, T. Gabriel, and R. Duschinsky: The metabolism of 5-fluorocytosine-2–14C and of cytosine-14C in the rat and the disposition of 5-fluorocytosine-2–14C in man. Biochem. Pharmacol. 15, 435–446 (1966).

    PubMed  CAS  Google Scholar 

  • Kono, M., and S. Osawa: Intermediary steps of ribosome formation in Escherichia coli. Biochim. biophys. Acta (Amst.) 87, 326–334 (1964).

    CAS  Google Scholar 

  • Kono, M., E. Otaka, and S. Osawa: Changes in sedimentation properties of ribosomal ribonucleic acids during the course of ribosome formation in Escherichia coli. Biochim. biophys. Acta (Amst.) 91, 612–618 (1964).

    CAS  Google Scholar 

  • Kramer, G., H. G. Wirrmann und H. Schuster: Die Erzeugung von Mutanten des Tabakmosaikvirus durch den Einbau von Fluoruracil in die Virusnucleinsäure. Z. Naturforsch. 19b, 46–51 (1964).

    CAS  Google Scholar 

  • Kröger, H., und B. Greuer• Einfluß von Antagonisten des Nucleinsäurestoffwechsels und von Röntgenstrahlen auf die Induktion von Enzymen. Biochem. Z. 341, 190–198 (1965).

    Google Scholar 

  • Lampkin-Hibbard, J. M., K. L. Mukherjee, and C. Heidelberger: Effects of steroids and fluoropyrimidines on lymphomas. II. In vivo studies on tumor resistance and collateral sensitivity. Cancer Res. 23, 468–476 (1963).

    PubMed  CAS  Google Scholar 

  • Lengyel, P., J. F. Speyer, and S. Ochoa: Synthetic polynucleotides and the amino acid code. Proc. nat Acad. Sci. (Wash.) 47, 1936–1942 (1961).

    CAS  Google Scholar 

  • Lodish, H. F., S. Cooper, and N. D. Zinder: Host-dependent mutants of the bacteriophage f2. IV. On the biosynthesis of a viral RNA polymerase. Virology 24, 60–70 (1964).

    PubMed  CAS  Google Scholar 

  • Lodish, H. F., K. Horiuchi, and N. D. Zinder: Mutants of the bacteriophage f2 V. On the production of noninfectious phage particles. Virology 27, 139–155 (1965).

    PubMed  CAS  Google Scholar 

  • Lowrie, R. J., and P. L. Bergquist: Transfer ribonucleic acids from Escherichia coli treated with 5-fluorouracil. Biochemistry 7, 1761–1770 (1968).

    PubMed  CAS  Google Scholar 

  • Lozeron, H. A., and M. P. Gordon: Ultraviolet sensitization and photoreactivation of tobacco mosaic virus ribonucleic acid containing 5-fluorouraci1. Biochemistry 3, 507–510 (1964).

    PubMed  CAS  Google Scholar 

  • Lozeron, H. A., and M. P. Gordon, T. Gabriel, W. Tutz, and R. Duschinsky: The photochemistry of 5-fluorouracil. Biochemistry 3, 1844–1850 (1964).

    CAS  Google Scholar 

  • Madison, J. T., G. A. Evererr, and H. Kung: Nucleotide sequence of a yeast tyrosine transfer RNA. Science 153 531–534 (1966).

    Google Scholar 

  • Mandel, H. G.: The physiological disposition of some anticancer agents. Pharmacol. Rev. 11, 743–838 (1959).

    PubMed  CAS  Google Scholar 

  • Mandel, H. G., R. Markham, and R. E. F. Marchews: The distribution of thiouiacil in nucleic acid of tobacco mosaic virus. Biochim. biophys. Acta (Amst.) 24, 205–206 (1957).

    CAS  Google Scholar 

  • Marver, H. S., A. Collins, D. P. Tschudy, and M. Reghcigl, JR.: 6-Am1n0le VU11II1C acid synthetase. II. Induction in rat liver. J. biol. Chem. 241, 4323–4329 (1966).

    PubMed  CAS  Google Scholar 

  • Massoulié, J., A. M. Michelson, and F. Pochon: Polynucleotide analogues VI. Physical studies on 5-substituted pyrimidine polynucleotides. Biochim. biophys. Acta (Amst.) 114, 16–26 (1966).

    Google Scholar 

  • Marrxews, R. E. F.: Biosynthetic incorporation of metabolic analogues. Pharmacol. Rev. 10, 359–406 (1958).

    Google Scholar 

  • Mukherjee, K. L., A. R. Curaeri, M. Javid, and C. Heidelberger: Studies on fluorinated pyrimidines. XVII. Tissue distribution of 5-fluorouracil-2-C14 and 5-fluoro-2’-deoxyuridine in cancer patients. Cancer Res. 23, 67–77 (1963).

    Google Scholar 

  • Munyon, W., and N. P. Salzman: The incorporation of 5-fluorouracil into poliovirus. Virology 18, 95–101 (1962).

    PubMed  CAS  Google Scholar 

  • Nakada, D.: Formation of ribosomes by a “relaxed” mutant of Escherichia coli. J. molec. Biol. 12, 695–725 (1965).

    CAS  Google Scholar 

  • Nakada, D., and B. Magasanik: The roles of inducer and catabolite repressor in the synthesis of ß-galactosidase by Escherichia coli. J. molec. Biol. 8, 105–127 (1964).

    PubMed  CAS  Google Scholar 

  • Naono, S., et F. Gros: Effets d’un analogue de base nucléique sur la biosynthèse de protéines bactériennes. C.angements de la composition globale des protéines. C. R. Acad. Sci. (Paris) 250, 3527–3529 (1960).

    CAS  Google Scholar 

  • Naono, S., et F. Gros,: Synthèse par E. coli d’une phosphatase modifiée en présence d’un analogue pyrimidique. C. R. Acad. Sci. (Paris) 250, 3889–3891 (1960).

    CAS  Google Scholar 

  • Nemeth, A. M.: The effect of 5-fluorouracil on the developmental and adaptive formation of tryptophan pyrrolase. J. biol. Chem. 237, 3703–3706 (1962).

    PubMed  CAS  Google Scholar 

  • Otaka, E., S. Osawa, and A. Sibatani: Stimulation of 14C-leucine incorporation into protein in vitro by ribosomal RNA of Escherichia coli. Biochem. biophys. Res. Commun. 15, 568–574 (1964).

    CAS  Google Scholar 

  • Pardee, A. B., and L. S. Prestidge: The initial kinetics of enzyme induction. Biochim biophys. Acta (Amst.) 49, 77–78 (1961).

    CAS  Google Scholar 

  • Pitot, H. C., and C. Peraino: Studies on the induction and repression of enzymes in rat liver. I. Induction of threonine dehydrase and ornithine-S-transaminase by oral intubation of casein hydrolysate. J. biol. Chem. 239, 1783–1788 (1964).

    CAS  Google Scholar 

  • Reich, M., and H. G. Mandel: Uracil: Failure to restore DNA synthesis while relieving 5-fluorouracil-induced inhibition. Science 145, 276–277 (1964).

    PubMed  CAS  Google Scholar 

  • Reich, M., and H. G. Mandel: Dissociation of cellular functions in Bacillus cereus by 5-fluorouracil. J. Bact. 91, 517–523 (1966).

    PubMed  CAS  Google Scholar 

  • Rich, M. A., J. L. Bolaffi, J. E. Knoll, L. Cheong, and M. L. Eidinoff: Growth inhibition of a human tumor cell strain by 5-fluorouracil, 5-fluorouridine, and 5-fluoro-2’deoxyuridine — Reversal studies. Cancer Res. 18, 730–735 (1958).

    PubMed  CAS  Google Scholar 

  • Rogers, H. J., and H. R. Perkins: 5-Fluorouracil and mucopeptide biosynthesis by Staphylococcus aureus. Biochem. J. 77, 448–459 (1960).

    PubMed  CAS  Google Scholar 

  • Rosen, B.: Characteristics of 5-fluorouracil-induced synthesis of alkaline phosphatase. J. molec. Biol. 11, 845–850 (1965).

    PubMed  CAS  Google Scholar 

  • Rutman, R. J., A. Cantarow, and K. E. Paschkis: Studies in 2-acetylaminofluorene carcinogenesis. III. The utilization of uracil-2-C14 by preneoplastic rat liver and rat hepatoma. Cancer Res. 14, 119–123 (1954).

    PubMed  CAS  Google Scholar 

  • Saunders, P. P., G. A. Schultz, R. E. Bass, and G. F. Saunders: Effects of 5-fluorouracil on a uracil and thymine requiring strain of Bacillus subtilis. Bact. Proc. 1968, 131.

    Google Scholar 

  • Sells, B. H., and K. Crudup: Ribosome production during recovery from puromycin treatment: Influence of 5-fluorouracil. Biochim. biophys. Acta (Amst.) 123, 253–264 (1966).

    CAS  Google Scholar 

  • Shimura, Y., and D. Nathans: The preparation of coliphage MS2 containing 5-fluorouracil. Biochem. biophys. Res. Commun. 16, 116–120 (1964).

    CAS  Google Scholar 

  • Shimura, Y., R. E. Moses, and D. Nathans: Coliphage MS2 containing 5-fluorouracil. I. Preparation and physical properties. J. molec. Biol. 12, 266–279 (1965).

    CAS  Google Scholar 

  • Shimura, Y., R. E. Moses, and D. Nathans: Coliphage MS2 containing 5-fluorouracil. II. RNA-deficient particles formed in the presence of 5-fluorouracil. J. molec. Biol. 28, 95–102 (1967).

    PubMed  CAS  Google Scholar 

  • Singer, M. F., and P. Leder: Messenger RNA: An evaluation. Ann. Rev. Biochem. 35, 195–230 (1966).

    PubMed  CAS  Google Scholar 

  • Skoda, J., and R. E. Handschumacher: The influence of certain antimetabolites on the incorporation of orotic acid into pseudouridine in animals. Biochim. biophys. Acta (Amst.) 68, 481–483 (1963).

    CAS  Google Scholar 

  • Slapikoff, S., and P. Berg: Mechanism of ribonucleic acid polymerase action. Effect of nearest neighbors on competition between uridine triphosphate and uridine triphosphate analogs for incorporation into ribonucleic acid. Biochemistry 6, 3654–3658 (1967).

    PubMed  CAS  Google Scholar 

  • Soffer, R. L.: Studies on the biological activity of ribonucleic acid isolated from Escherichia coli after exposure to 5-fluorouracil. Biochim. biophys. Acta (Amst.) 87, 416–422 (1964).

    CAS  Google Scholar 

  • Staehelin, M.: Chemical modifications of virus infectivity: Reactions of tobacco mosaic virus and its nucleic acid. Experientia (Basel) 16, 473–483 (1960).

    CAS  Google Scholar 

  • Staehelin, M., and M. P. Gordon: Effects of halogenated pyrimidines on the growth of tobacco mosaic virus. Biochim. biophys. Acta (Amst.) 38, 307–315 (1960).

    CAS  Google Scholar 

  • Sueoka, N., and T. Yamane: Fractionation of aminoacyl-acceptor RNA and the coding problem. In: Informational Macromolecules, pp. 205–227.

    Google Scholar 

  • Vogel, H. J., V. Bryson, and J. O. Lampen, Eds. New York: Academic Press 1963.

    Google Scholar 

  • Sundaram, T. K.: Phenotypic reversal by 5-fluorouracil of the auxotrophy of am mutants of Stine, crassa. Biochim. biophys. Acta (Amst.) 138, 611–613 (1967).

    CAS  Google Scholar 

  • Jutic, D., and B. Djordjevre: Effect of 5-fluorouracil on antigenic properties of tobacco mosaic virus. Nature (Lond.) 203, 434–435 (1964).

    Google Scholar 

  • Seer, W., and D. Shugar: Preparation of poly-5-fluorouridylic acid and the properties of halogenated poly-uridylic acids and their complexes with poly-adenylic acid. Acta biochim pol. 10, 219–231 (1963).

    Google Scholar 

  • Tershak, D. R.: Effect of 5-fluorouracil on poliovirus growth. Virology 24, 262–269 (1964).

    PubMed  CAS  Google Scholar 

  • Tershak, D. R.: Effect of 5-fluorouracil on poliovirus-induced RNA polymerase. J. molec. Biol. 21, 43–50 (1966).

    PubMed  CAS  Google Scholar 

  • Tomasz, A., and E. Borek: The mechanism of an osmotic instability induced in E. coli K-12 by 5-fluorouracil. Biochemistry 1, 543–552 (1962).

    PubMed  CAS  Google Scholar 

  • Tooze, J., and K. Weber: Isolation and characterization of amber mutants of bacteriophage R17. J. molec. Biol. 28, 311–330 (1967).

    PubMed  CAS  Google Scholar 

  • Wachsman, J. T., S. Kemp, and L. Hogg: Comparative effects of 5-fluorouracil on strains of Bacillus megaterium. J. Bact. 87, 1011–1018 (1964).

    PubMed  CAS  Google Scholar 

  • Wagner, N. J., and C. Heidelberger: Some effects of 5-fluoroorotic acid and 5-fluorouracil on the soluble ribonucleic acid of rat liver. Biochim. biophys. Acta (Amst.) 61, 373–379 (1962).

    CAS  Google Scholar 

  • Wahba, A. J., R. S. Gardner, C. Basilio, R. S. Miller, J. F. Speyer, and P. Lengyel: Synthetic polynucleotides and the amino acid code. VIII. Proc. nat. Acad. Sci. (Wash.) 49, 116–122 (1963).

    CAS  Google Scholar 

  • White, P. J., and C. A. Nichol: Effects of uracil and thymidine on the development of resistance to 5-fluorouracil in Pediococcus cerevisiae. J. Bact. 85, 97–105 (1963).

    PubMed  Google Scholar 

  • Willén R., and U. Stenram: RNA synthesis in the liver of rats treated with 5-fluorouracil. Arch. Biochem. Biophys. 119, 501–503 (1967).

    PubMed  Google Scholar 

  • Wittmann, H. G.: Proteinanalysen von chemisch induzierten Mutanten des Tabakmosaik-virus. Z. Vererbungsl. 95, 333–344 (1964).

    PubMed  CAS  Google Scholar 

  • Wittmann-Liebold, B., and H. G. Wirrmann: Lokalisierung von Aminosäureaustauschen bei Spontanmutanten and nach Fluoruracileinbau isolierten Mutanten des Tabakmosaikvirus. Z. Vererbungsl. 97, 218–225 (1965).

    PubMed  CAS  Google Scholar 

  • Wittmann-Liebold, B., and H. G. Wirrmann: Lokalisierung von Aminosäureaustauschen bei Nitritmutanten des Tabakmosaik-virus. Z. Vererbungsl. 97, 305–326 (1965).

    PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1969 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Mandel, H.G. (1969). The Incorporation of 5-Fluorouracil Into RNA and its Molecular Consequences. In: Hahn, F.E. (eds) Progress in Molecular and Subcellular Biology. Progress in Molecular and Subcellular Biology, vol 1. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-46200-9_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-46200-9_4

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-46202-3

  • Online ISBN: 978-3-642-46200-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics