Advertisement

Modellierung des Energie- und Stoffaustausches

  • Thomas FokenEmail author
Chapter
  • 3.5k Downloads

Zusammenfassung

Der Begriff der Modellierung ist gerade im angewandten Bereich wenig exakt bestimmt und reicht von der einfachen Regressionsbeziehung bis zu komplizierten numerischen Modellen. In der angewandten Meteorologie (Agrarmeteorologie, Hydrometeorologie) sind einfache analytische Modelle weit verbreitet, wobei der Bestimmung der Verdunstung eine besondere Rolle zukommt. Das vorliegende Kapitel soll verschiedene Arten der Modellierung beginnend von einfachen analytischen Verfahren bis zur Berücksichtigung des bodennahen Energie- und Stofftransportes in numerischen Modellen behandeln und dabei die spezifischen Probleme herausstellen. Ein wesentliches Augenmerk wird auf die Anwendung der Modelle im heterogenen Gelände gelegt, wobei der Problematik der Flächenmittelung ein eigenes Kapitel gewidmet ist.

Schlüsselwörter

Priestley-Taylor-Verfahren Penman-Monteith-Verfahren Widerstandsansätze Flächenmittlung Numerische Modelle 

Literatur

  1. Albertson JD, Parlange MB (1999) Natural integration of scalar fluxes from complex terrain. Adv Water Res 23:239–252CrossRefGoogle Scholar
  2. Allen RG, Pereira LS, Raes D, Smith M (1998) Crop evaporation. FAO irrigation drainage paper 56:XXVI + 300 SGoogle Scholar
  3. Allen RG, Walter IA, Elliott R, Howell T, Itenfisu D, Jensen M (2005) The ASCE standardized reference evapotranspiration equation. Environmental and Water Resources Institute of the American Society of Civil Engineers, RestonGoogle Scholar
  4. Arya SP (2001) Introduction to micrometeorology. Academic Press, San DiegoGoogle Scholar
  5. Avissar R, Pielke RA (1989) A parametrization of heterogeneous land surface for atmospheric numerical models and its impact on regional meteorology. Mon Weather Rev 117:2113–2136CrossRefGoogle Scholar
  6. Baldocchi D (1988) A multi-layer model for estimating sulfor dioxid deposition to a deciduous oke forest canopy. Atmos Environ 22:869–884CrossRefGoogle Scholar
  7. Baldocchi D, Hicks BB, Camara P (1987) A canopy stomatal resistance model for gaseous deposition to vegetated surfaces. Atmos Environ 21:91–101CrossRefGoogle Scholar
  8. Ball JT, Woodrow IE, Berry JA (1987) A model predicting stomatal conductance and its contribution to the control of photosynthesis under different environmental conditions. In: Biggens J (Hrsg) Progress in photosynthesis research, Bd IV. Martinus Nijhoff, Dordrecht, S IV.5.221–IV.5.224Google Scholar
  9. Batchvarova E, Gryning S-E (1991) Applied model for the growth of the daytime mixed layer. Bound-Lay Meteorol 56:261–274CrossRefGoogle Scholar
  10. Behrens J, Rakowsky N, Hiller W, Handorf D, Läuter M, Päpke J, Dethloff K (2005) Amatos: Parallel adaptive mesh generator for atmospheric and oceanic simulation. Ocean Model 10:171–183CrossRefGoogle Scholar
  11. Beljaars ACM (1995) The parametrization of surface fluxes in large scale models under free convection. Q J Roy Meteorol Soc 121:255–270CrossRefGoogle Scholar
  12. Beljaars ACM, Holtslag AAM (1991) Flux parametrization over land surfaces for atmospheric models. J Appl Meteorol 30:327–341CrossRefGoogle Scholar
  13. Beljaars ACM, Viterbo P (1998) Role of the boundary layer in a numerical weather prediction model. In: Holtslag AAM, Duynkerke PG (Hrsg) Clear and cloudy boundary layers, Bd VNE 48. Royal Netherlands Academy of Arts and Sciences, Amsterdam, S 287–304Google Scholar
  14. Best MJ, Beljaars A, Polcher J, Viterbo P (2004) A proposed structure for coupling tiled surfaces with the planetary boundary layer. J Hydrometeorol 5:1271–1278CrossRefGoogle Scholar
  15. Biermann T, Babel W, Ma W, Chen X, Thiem E, Ma Y, Foken T (2014) Turbulent flux observations and modelling over a shallow lake and a wet grassland in the Nam Co basin, Tibetan Plateau. Theor Appl Climatol 116:301–316CrossRefGoogle Scholar
  16. Bjutner EK (1974) Teoreticeskij rascet soprotivlenija morskoj poverchnosti (Theoretical calculation of the resistance at the surface of the ocean). In: Dubov AS (Hrsg) Processy perenosa vblizi poverchnosti razdela okean - atmosfera (Exchange processes near the ocean – atmosphere interface). Gidrometeoizdat, Leningrad, S 66–114Google Scholar
  17. Blackadar AK (1997) Turbulence and diffusion in the atmosphere. Springer, Berlin/HeidelbergCrossRefGoogle Scholar
  18. Blümel K (1998) Estimation of sensible heat flux from surface temperature wave and one-time-of-day air temperature observations. Bound-Lay Meteorol 86:193–232CrossRefGoogle Scholar
  19. Blyth EM (1995) Comments on ‘The influence of surface texture on the effective roughness length’ by Schmid HP, Bünzli D (1995, vol 121, pp 1–21). Q J Roy Meteorol Soc. 121:1169–1171Google Scholar
  20. Brötz B, Eigenmann R, Dörnbrack A, Foken T, Wirth V (2014) Early-morning flow transition in a valley in low-mountain terrain. Bound-Lay Meteorol 152:45–63CrossRefGoogle Scholar
  21. Brutsaert WH (1982) Evaporation into the atmosphere: theory, history and application. D. Reidel, DordrechtCrossRefGoogle Scholar
  22. Burridge DM, Gadd AJ (1977) The Meteorological Office operational 10-level numerical weather prediction model (Dec 1975). Met Office Techn Notes. 34:39SGoogle Scholar
  23. Csanady GT (2001) Air-sea interaction, laws and mechanisms. Cambridge University Press, Cambridge/New YorkCrossRefGoogle Scholar
  24. Davidan IN, Lopatuhin LI, Rogkov VA (1985) Volny v okeane (Waves in the ocean). Gidrometeoizdat, LeningradGoogle Scholar
  25. Deardorff JW (1972) Numerical investigation of neutral und unstable planetary boundary layer. J Atmos Sci 29:91–115CrossRefGoogle Scholar
  26. DeBruin HAR (1983) A model for the Priestley-Taylor parameter α. J Clim Appl Meteorol 22:572–578CrossRefGoogle Scholar
  27. DeBruin HAR, Holtslag AAM (1982) A simple parametrization of the surface fluxes of sensible and latent heat during daytime compared with the Penman-Monteith concept. J Clim Appl Meteorol 21:1610–1621CrossRefGoogle Scholar
  28. Dommermuth H, Trampf W (1990) Die Verdunstung in der Bundesrepublik Deutschland, Zeitraum 1951–1980, Teil 1. Deutscher Wetterdienst, OffenbachGoogle Scholar
  29. Doorenbos J, Pruitt WO (1977) Guidelines for predicting crop water requirements. FAO irrigation drainage paper 24, 2. Aufgabe, 145Google Scholar
  30. DVWK (1996) Ermittlung der Verdunstung von Land- und Wasserflächen. DVWK-Merkblätter zur Wasserwirtschaft. 238:134SGoogle Scholar
  31. Falge EM, Ryel RJ, Alsheimer M, Tenhunen JD (1997) Effects on stand structure and physiology on forest gas exchange: a simulation study for Norway spruce. Trees 11:436–448CrossRefGoogle Scholar
  32. Farquhar GD, von Caemmerer S, Berry JA (1980) A biochemical of photosynthetic CO2 assimilation in leaves of C3 species. Planta 149:78–90CrossRefGoogle Scholar
  33. Foken T (1978) The molecular temperature boundary layer of the atmosphere over various surfaces. Arch Meteorol Geophys Bioklimatol A 27:59–67CrossRefGoogle Scholar
  34. Foken T (1979) Vorschlag eines verbesserten Energieaustauschmodells mit Berücksichtigung der molekularen Grenzschicht der Atmosphäre. Z Meteorol 29:32–39Google Scholar
  35. Foken T (1984) The parametrisation of the energy exchange across the air-sea interface. Dyn Atmos Oceans 8:297–305CrossRefGoogle Scholar
  36. Foken T (1986) An operational model of the energy exchange across the air-sea interface. Z Meteorol 36:354–359Google Scholar
  37. Foken T (1996) Turbulenzexperiment zur Untersuchung stabiler Schichtungen. Ber Polarforschung 188:74–78Google Scholar
  38. Foken T (2002) Some aspects of the viscous sublayer. Meteorol Z 11:267–272CrossRefGoogle Scholar
  39. Foken T, Leclerc MY (2004) Methods and limitations in validation of footprint models. Agr Forest Meteorol 127:223–234CrossRefGoogle Scholar
  40. Foken T, Kitajgorodskij SA, Kuznecov OA (1978) On the dynamics of the molecular temperature boundary layer above the sea. Bound-Lay Meteorol 15:289–300CrossRefGoogle Scholar
  41. Foken T, Dlugi R, Kramm G (1995) On the determination of dry deposition and emission of gaseous compounds at the biosphere-atmosphere interface. Meteorol Z 4:91–118Google Scholar
  42. Friedrich K, Mölders N, Tetzlaff G (2000) On the influence of surface heterogeneity on the Bowen-ratio: a theoretical case study. Theor Appl Climat 65:181–196CrossRefGoogle Scholar
  43. Garratt JR (1992) The atmospheric boundary layer. Cambridge University Press, CambridgeGoogle Scholar
  44. Geernaert GL (Hrsg.) (1999) Air-sea exchange: physics, chemistry and dynamics. Kluwer, DordrechtGoogle Scholar
  45. Göckede M, Foken T (2001) Ein weiterentwickeltes Holtslag-van Ulden-Schema zur Stabilitätsparametrisierung in der Bodenschicht. Österreichische Beiträge zu Meteorologie und Geophysik. 27:(Extended Abstract and pdf-file on CD) 210Google Scholar
  46. Göckede M, Markkaken T, Mauder M, Arnold K, Leps JP, Foken T (2005) Validation of footprint models using natural tracer measurements from a field experiment. Agr Forest Meteorol 135:314–325CrossRefGoogle Scholar
  47. Grimmond CSB, King TS, Roth M, Oke TR (1998) Aerodynamic roughness of urban areas derived from wind observations. Bound-Lay Meteorol 89:1–24CrossRefGoogle Scholar
  48. Groß G (1993) Numerical simulation of canopy flows. Springer, Berlin/HeidelbergCrossRefGoogle Scholar
  49. Gryning S-E, Batchvarova E, Brümmer B, Jørgensen H, Larsen S (2007) On the extension of the wind profile over homogeneous terrain beyond the surface boundary layer. Bound-Lay Meteorol 124:251–268CrossRefGoogle Scholar
  50. Gusev EM, Nasonova ON (2010) Modelirovanie teplo- i vlagoobmena poverchnosti sushi s atmosferoj (Moelling of the heat and moisture exchange of land surfaces with the atmosphere). Nauka, MoskvaGoogle Scholar
  51. Handorf D, Foken T, Kottmeier C (1999) The stable atmospheric boundary layer over an Antarctic ice sheet. Bound-Lay Meteorol 91:165–186CrossRefGoogle Scholar
  52. Hasager CB, Jensen NO (1999) Surface-flux aggregation in heterogeneous terrain. Q J Roy Meteorol Soc 125:2075–2102CrossRefGoogle Scholar
  53. Hasager CB, Nielsen NW, Jensen NO, Boegh E, Christensen JH, Dellwik E, Soegaard H (2003) Effective roughness calculated from satellite-derived land cover maps and hedge-information used in a weather forecasting model. Bound-Lay Meteorol 109:227–254CrossRefGoogle Scholar
  54. Haude W (1955) Bestimmung der Verdunstung auf möglichst einfache Weise. Mitt Dt Wetterdienst. 11:24Google Scholar
  55. Herzog H-J, Vogel G, Schubert U (2002) LLM – a nonhydrostatic model applied to high-resolving simulation of turbulent fluxes over heterogeneous terrain. Theor Appl Climat 73:67–86CrossRefGoogle Scholar
  56. Hess GD (2004) The neutral, barotropic planetary layer capped by a low-level inversion. Bound-Lay Meteorol 110:319–355CrossRefGoogle Scholar
  57. Hicks BB, Baldocchi DD, Meyers TP, Jr Hosker RP, Matt DR (1987) A preliminary multiple resistance routine for deriving dry deposition velocities from measured quantities. Water Air Soil Pollut 36:311–330CrossRefGoogle Scholar
  58. Hillel D (1980) Applications of soil physics. Academic Press, New YorkGoogle Scholar
  59. Högström U (1988) Non-dimensional wind and temperature profiles in the atmospheric surface layer: a re-evaluation. Bound-Lay Meteorol 42:55–78CrossRefGoogle Scholar
  60. Holtslag AAM, van Ulden AP (1983) A simple scheme for daytime estimates of the surface fluxes from routine weather data. J Clim Appl Meteorol 22:517–529CrossRefGoogle Scholar
  61. Houghton JT (2015) Global warming, the complete briefing. Cambridge University Press, CambridgeGoogle Scholar
  62. Inclán MG, Forkel R, Dlugi R, Stull RB (1996) Application of transilient turbulent theory to study interactions between the atmospheric boundary layer and forest canopies. Bound-Lay Meteorol 79:315–344CrossRefGoogle Scholar
  63. Jacobs AFG, Heusinkveld BG, Nieveen JP (1998) Temperature behavior of a natural shallow water body during a summer periode. Theor Appl Climat 59:121–127CrossRefGoogle Scholar
  64. Jacobson MZ (2005) Fundamentals of atmospheric modelling. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  65. Jarvis PG (1976) The interpretation of the variations in leaf water potential and stomatal conductance found in canopies in the field. Phil Philos Trans Roy Soc Lond B 273:593–610CrossRefGoogle Scholar
  66. Kaimal JC, Finnigan JJ (1994) Atmospheric boundary layer flows: Their structure and measurement. Oxford University Press, New YorkGoogle Scholar
  67. Kanani-Sühring F, Raasch S (2015) Spatial variability of scalar concentrations and fluxes downstream of a clearing-to-forest transition: a large-eddy simulation study. Bound-Lay Meteorol 155:1–27CrossRefGoogle Scholar
  68. Kantha LH, Clayson CA (2000) Small scale processes in geophysical fluid flows. Academic Press, San DiegoGoogle Scholar
  69. Kitajgorodskij SA, Volkov JA (1965) O rascete turbulentnych potokov tepla i vlagi v privodnom sloe atmosfery (The calculation of the turbulent fluxes of temperature and humidity in the atmosphere near the water surface) Izv AN SSSR. Fiz Atm Okeana 1:1317–1336Google Scholar
  70. Klaassen W, van Breugel PB, Moors EJ, Nieveen JP (2002) Increased heat fluxes near a forest edge. Theor Appl Climatol 72:231–243CrossRefGoogle Scholar
  71. Kramm G, Foken T (1998) Uncertainty analysis on the evaporation at the sea surface. Second study conference on BALTEX, Juliusruh, 25–29 May 1998, BALTEX Secretariat, S 113–114Google Scholar
  72. Kramm G, Beier M, Foken T, Müller H, Schröder P, Seiler W (1996a) A SVAT-skime for NO, NO2, and O3 – model description and test results. Meteorol Atmos Phys 61:89–106CrossRefGoogle Scholar
  73. Kramm G, Foken T, Molders N, Muller H, Paw U KT (1996b) The sublayer-Stanton numbers of heat and matter for different types of natural surfaces. Contrib Atmosph Phys 69:417–430Google Scholar
  74. Kramm G, Dlugi R, Mölders N (2002) Sublayer-Stanton numbers of heat and matter for aerodynamically smooth surfaces: basic considerations and evaluations. Meteorol Atmos Phys 79:173–194CrossRefGoogle Scholar
  75. Landau LD, Lifschitz EM (1991) Lehrbuch der Theoretischen Physik, Bd VI, Hydrodynamik. Akademie-Verlag, BerlinGoogle Scholar
  76. Letzel MO, Krane M, Raasch S (2008) High resolution urban large-eddy simulation studies from street canyon to neighbourhood scale. Atmos Environ 42:8770–8784CrossRefGoogle Scholar
  77. Leuning R (1995) A critical appraisal of a combined stomatal-photosynthesis model for C3 plants. Plant Cell Environ 18:339–355CrossRefGoogle Scholar
  78. Lilly DK (1967) The representation of small-scale turbulence in numerical simulation experiments. In: Goldstein HH (Hrsg) IBM scientific computing symposium on environmental science, Yorktown Heights, 14–16 Nov 1966. IBM form no 320-1951, S 1195–1210Google Scholar
  79. Louis JF (1979) A parametric model of vertical fluxes in the atmosphere. Bound-Lay Meteorol 17:187–202CrossRefGoogle Scholar
  80. Louis JF, Tiedtke M, Geleyn JF (1982) A short history of the PBL parametrization at ECMWF. Workshop on boundary layer parametrization. ECMWF, Reading, S 59–79Google Scholar
  81. Lüers J, Bareiss J (2010) The effect of misleading surface temperature estimations on the sensible heat fluxes at a high Arctic site – the Arctic turbulence experiment 2006 on Svalbard (ARCTEX-2006). Atmos Chem Phys 10:157–168CrossRefGoogle Scholar
  82. Mahrt L (1996) The bulk aerodynamic formulation over heterogeneous surfaces. Bound-Lay Meteorol 78:87–119CrossRefGoogle Scholar
  83. Mallick K, Boegh E, Trebs I, Alfieri JG, Kustas WP, Prueger JH, Niyogi D, Das N, Drewry DT, Hoffmann L, Jarvis AJ (2015) Reintroducing radiometric surface temperature into the Penman-Monteith formulation. Water Resour Res 51:6214–6243Google Scholar
  84. Mangarella PA, Chambers AJ, Street RL, Hsu EY (1972) Laboratory and field interfacial energy and mass flux and prediction equations. J Geophys Res 77:5870–5875CrossRefGoogle Scholar
  85. Mangarella PA, Chambers AJ, Street RL, Hsu EY (1973) Laboratory studies of evaporation and energy transfer through a wavy air-water interface. J Phys Oceanogr 3:93–101CrossRefGoogle Scholar
  86. Mengelkamp H-T, Warrach K, Raschke E (1999) SEWAB a parameterization of the surface energy and water balance for atmospheric and hydrologic models. Adv Water Resour 23:165–175CrossRefGoogle Scholar
  87. Meyers TP, Paw U KT (1987) Modelling the plant canopy microenvironment with higher-order closure principles. Agr Forest Meteorol 41:143–163CrossRefGoogle Scholar
  88. Meyers TP, Paw U KT (1986) Testing a higher-order closure model for modelling airflow within and above plant canopies. Bound-Lay Meteorol 37:297–311CrossRefGoogle Scholar
  89. Mix W, Goldberg V, Bernhardt K-H (1994) Numerical experiments with different approaches for boundary layer modelling under large-area forest canopy conditions. Meteorol Z 3:187–192Google Scholar
  90. Moene AF, van Dam JC (2014) Transport in the atmosphere-vegetation-soil continuum. Cambridge University Press, CambridgeGoogle Scholar
  91. Moeng C-H (1998) Large eddy simulation of atmospheric boundary layers. In: Holtslag AAM, Duynkerke PG (Hrsg) Clear and cloudy boundary layers, vol VNE 48. Royal Netherlands Academy of Arts and Science, Amsterdam, S 67–83Google Scholar
  92. Moeng C-H, Wyngaard JC (1989) Evaluation of turbulent transport and dissipation closure in second-order modelling. J Atmos Sci 46:2311–2330CrossRefGoogle Scholar
  93. Moeng C-H, Sullivan PP, Stevens B (2004) Large-eddy simulation of cloud-topped mixed layers. In: Fedorovich E et al (Hrsg) Atmospheric turbulence and mesoscale meteorology. Cambridge University Press, Cambridge, S 95–114CrossRefGoogle Scholar
  94. Mölders N (2001) Concepts for coupling hydrological and meteorological models. Wiss. Mitt. aus dem Inst. für Meteorol. der Univ. Leipzig und dem Institut für Troposphärenforschung e. V. Leipzig. 22:1–15Google Scholar
  95. Mölders N (2012) Land-use and land-cover changes, impact on climate and air quality. Springer, Dordrecht/Heidelberg/London/New YorkCrossRefGoogle Scholar
  96. Mölders N, Kramm G (2014) Lectures in meteorology. Springer, Cham/Heidelberg/New York/Dordrecht/LondonCrossRefGoogle Scholar
  97. Mölders N, Raabe A, Tetzlaff G (1996) A comparison of two strategies on land surface heterogeneity used in a mesoscale ß meteorological model. Tellus 48A:733–749CrossRefGoogle Scholar
  98. Monson R, Baldocchi D (2014) Terrestrial biosphere-atmosphere fluxes. Cambridge University Press, New YorkCrossRefGoogle Scholar
  99. Monteith JL (1965) Evaporation and environment. Symp Soc Exp Biol 19:205–234Google Scholar
  100. Montgomery RB (1940) Observations of vertical humidity distribution above the ocean surface and their relation to evaporation. Pap Phys Oceanogr Meteorol 7:1–30Google Scholar
  101. Müller C (1999) Modelling soil-biosphere interaction. CABI Publishing, WallingfordGoogle Scholar
  102. Ohmura A, Steffen K, Blatter H, Greuell W, Rotach M, Stober M, Konzelmann T, Forrer J, Abe-Ouchi A, Steiger D, Neiderbäumer G (1992) Greenland expedition, progress report no 2, April 1991 to Oktober 1992, Swiss Federal Institute of Techology, ZürichGoogle Scholar
  103. Owen PR, Thomson WR (1963) Heat transfer across rough surfaces. J Fluid Mech 15:321–334CrossRefGoogle Scholar
  104. Panin GN (1985) Teplo- i massomen meszdu vodoemom i atmospheroj v estestvennych uslovijach (Heat- and mass exchange between the water and the atmosphere in the nature). Nauka, MoscowGoogle Scholar
  105. Panin GN, Nasonov AE, Souchintsev MG (1996) Measurements and estimation of energy and mass exchange over a shallow see. In: Donelan M (Hrsg) The air-sea interface. University of Miami, Miami, S 489–494Google Scholar
  106. Panin GN, Tetzlaff G, Raabe A (1998) Inhomogeneity of the land surface and problems in the parameterization of surface fluxes in natural conditions. Theor Appl Climatol 60:163–178CrossRefGoogle Scholar
  107. Panin GN, Nasonov AE, Foken T, Lohse H (2006) On the parameterization of evaporation and sensible heat exchange for shallow lakes. Theor Appl Climatol 85:123–129CrossRefGoogle Scholar
  108. Panofsky HA (1973) Tower micrometeorology. In: Haugen DA (Hrsg) Workshop on micrometeorology. American Meteorological Society, Boston, S 151–176Google Scholar
  109. Peña A, Gryning S-E, Hasager C (2010) Comparing mixing-length models of the diabatic wind profile over homogeneous terrain. Theor Appl Climatol 100:325–335CrossRefGoogle Scholar
  110. Penman HL (1948) Natural evaporation from open water, bare soil and grass. Proc R Soc Lond A193:120–195CrossRefGoogle Scholar
  111. Priestley CHB, Taylor JR (1972) On the assessment of surface heat flux and evaporation using large-scale parameters. Mon Weather Rev 100:81–92CrossRefGoogle Scholar
  112. Pyles RD, Weare BC, Paw U KT (2000) The UCD Advanced Canopy-Atmosphere-Soil Algorithm: Comparisons with observations from different climate and vegetation regimes. Q J Roy Meteorol Soc 126:2951–2980CrossRefGoogle Scholar
  113. Raasch S, Schröter M (2001) PALM – a large-eddy simulation model performing on massively parallel computers. Meteorol Z 10:363–372CrossRefGoogle Scholar
  114. Reichardt H (1951) Vollständige Darstellung der turbulenten Geschwindigkeitsverteilung in glatten Röhren. Z Angew Math Mech 31:208–219CrossRefGoogle Scholar
  115. Richter D (1977) Zur einheitlichen Berechnung der Wassertemperatur und der Verdunstung von freien Wasserflächen auf statistischer Grundlage. Abh Meteorol Dienstes DDR 119:35Google Scholar
  116. Rigby JR, Yin J, Albertson J, Porporato A (2015) Approximate analytical solution to diurnal atmospheric boundary-layer growth under well-watered conditions. Bound-Lay Meteorol 156:73–89CrossRefGoogle Scholar
  117. Roll HU (1948) Wassernahes Windprofil und Wellen auf dem Wattenmeer. Ann Meteorol 1:139–151Google Scholar
  118. Schädler G, Kalthoff N, Fiedler F (1990) Validation of a model for heat, mass and momentum exchange over vegetated surfaces using LOTREX-10E/HIBE88 data. Contrib Atmos Phys 63:85–100Google Scholar
  119. Schlegel F, Stiller J, Bienert A, Maas H-G, Queck R, Bernhofer C (2015) Large-eddy simulation study of the effects on flow of a heterogeneous forest at sub-tree resolution. Bound-Lay Meteorol 154:27–56CrossRefGoogle Scholar
  120. Schlichting H, Gersten K (2006) Grenzschicht-Theorie. Springer, Berlin/HeidelbergGoogle Scholar
  121. Schmid HP, Bünzli D (1995a) The influence of the surface texture on the effective roughness length. Q J Roy Meteorol Soc 121:1–21CrossRefGoogle Scholar
  122. Schmid HP, Bünzli D (1995b) Reply to comments by E M Blyth on ‘The influence of surface texture on the effective roughness length’. Q J Roy Meteorol Soc 121:1173–1176Google Scholar
  123. Schmidt H, Schumann U (1989) Coherent structures of the convective boundary layer derived from large eddy simulations. J Fluid Mech 200:511–562CrossRefGoogle Scholar
  124. Schrödter H (1985) Verdunstung, Anwendungsorientierte Meßverfahren und Bestimmungsmethoden. Springer, Berlin/HeidelbergGoogle Scholar
  125. Schumann U (1989) Large-eddy simulation of turbulent diffusion with chemical reactions in the convective boundary layer. Atmos Environ 23:1713–1727CrossRefGoogle Scholar
  126. Seibert P, Beyrich F, Gryning S-E, Joffre S, Rasmussen A, Tercier P (2000) Review and intercomparison of operational methods for the determination of the mixing height. Atmos Environ 34:1001–1027CrossRefGoogle Scholar
  127. Sellers PJ, Dorman JL (1987) Testing the simple biospere model (SiB) for use in general circulation models. J Clim Appl Meteorol 26:622–651CrossRefGoogle Scholar
  128. Shukauskas A, Schlantschiauskas A (1973) Teploodatscha v turbulentnom potoke shidkosti (Heat exchange in the turbulent fluid). Izd. Mintis, Vil’njusGoogle Scholar
  129. Smagorinsky J (1963) General circulation experiments with the primitive equations: I. The basic experiment. Mon Weather Rev 91:99–164CrossRefGoogle Scholar
  130. Smith SD, Fairall CW, Geernaert GL, Hasse L (1996) Air-sea fluxes: 25 years of progress. Bound-Lay Meteorol 78:247–290CrossRefGoogle Scholar
  131. Sodemann H, Foken T (2004) Empirical evaluation of an extended similarity theory for the stably stratified atmospheric surface layer. Q J Roy Meteorol Soc 130:2665–2671CrossRefGoogle Scholar
  132. Sponagel H (1980) Zur Bestimmung der realen Evapotranspiration landwirtschaftlicher Kulturpflanzen. Geologisches Jahrbuch F9:87Google Scholar
  133. Staudt K, Serafimovich A, Siebicke L, Pyles RD, Falge E (2011) Vertical structure of evapotranspiration at a forest site (a case study). Agr Forest Meteorol 151:709–729CrossRefGoogle Scholar
  134. Stull RB (1988) An introduction to boundary layer meteorology. Kluwer, Dordrecht/Boston/LondonCrossRefGoogle Scholar
  135. Stull R, Santoso E (2000) Convective transport theory and counter-difference fluxes. In: 14th symposium on boundary layer and turbulence, Aspen, 7–11 Aug 2000, American Meteorological Society, Boston, S 112–113Google Scholar
  136. Sverdrup HU (1937/1938) On the evaporation from the ocean. J Marine Res 1:3–14Google Scholar
  137. Taylor PA (1987) Comments and further analysis on the effective roughness length for use in numerical three-dimensional models: A research note. Bound-Lay Meteorol 39:403–418CrossRefGoogle Scholar
  138. Tennekes H (1973) A model for the dynamics of the inversion above a convective boundary layer. J Atmos Sci 30:558–567CrossRefGoogle Scholar
  139. Troen I, Lundtang Petersen E (1990) Europðischer Windatlas. Risø National Laboratory, RoskildeGoogle Scholar
  140. Turc L (1961) Évaluation des besoins en eau d’irrigation évapotranspiration potentielle. Ann Agron 12:13–49Google Scholar
  141. van Bavel CHM (1986) Potential evapotranspiration: The combination concept and its experimental verification. Water Resour Res 2:455–467CrossRefGoogle Scholar
  142. VDI (2006) Umweltmeteorologie – Meteorologische Messungen – Messstation, VDI 3786, Blatt 13. Beuth Verlag, BerlinGoogle Scholar
  143. Vilà-Guerau de Arellano J, Van Heerwaarden CC, van Stratum BJH, van den Dries K (2015) Atmospheric boundary layer. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  144. Vollmer L, van Dooren M, Trabucchi D, Schneemann J, Steinfeld G, Witha B, Trujillo J, Kühn M (2015) First comparison of LES of an offshore wind turbine wake with dual-Doppler lidar measurements in a German offshore wind farm. J Phys Conf Ser 625:012001CrossRefGoogle Scholar
  145. von Kármán T (1934) Turbulence and skin friction. J Aeronaut Sci 1:1–20CrossRefGoogle Scholar
  146. Wendling U, Schellin H-G, Thomä M (1991) Bereitstellung von täglichen Informationen zum Wasserhaushalt des Bodens für die Zwecke der agrarmeteorologischen Beratung. Z Meteorol 41:468–475Google Scholar
  147. Yokoyama O, Gamo M, Yamamoto S (1979) The vertical profiles of the turbulent quantities in the atmospheric boundary layer. J Meteor Soc Jpn 57:264–272Google Scholar
  148. Zilitinkevich SS, Calanca P (2000) An extended similarity theory for the stably stratified atmopheric surface layer. Q J Roy Meteorol Soc 126:1913–1923CrossRefGoogle Scholar
  149. Zilitinkevich SS, Esau IN (2005) Resistance and heat transfer laws for stable and neutral planetary layers: Old theory advanced and re-evaluated. Q J Roy Meteorol Soc 131:1863–1892CrossRefGoogle Scholar
  150. Zilitinkevich SS, Mironov DV (1996) A multi-limit formulation for the equilibrium depth of a stable stratified atmospheric surface layer. Bound-Lay Meteorol 81:325–351CrossRefGoogle Scholar
  151. Zilitinkevich SS, Perov VL, King JC (2002) Near-surface turbulent fluxes in stable stratification: Calculation techniques for use in general circulation models. Q J Roy Meteorol Soc 128:1571–1587CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  1. 1.BayreuthDeutschland

Personalised recommendations