Skip to main content

Modellierung des Energie- und Stoffaustausches

  • Chapter
  • First Online:
Angewandte Meteorologie
  • 5921 Accesses

Zusammenfassung

Der Begriff der Modellierung ist gerade im angewandten Bereich wenig exakt bestimmt und reicht von der einfachen Regressionsbeziehung bis zu komplizierten numerischen Modellen. In der angewandten Meteorologie (Agrarmeteorologie, Hydrometeorologie) sind einfache analytische Modelle weit verbreitet, wobei der Bestimmung der Verdunstung eine besondere Rolle zukommt. Das vorliegende Kapitel soll verschiedene Arten der Modellierung beginnend von einfachen analytischen Verfahren bis zur Berücksichtigung des bodennahen Energie- und Stofftransportes in numerischen Modellen behandeln und dabei die spezifischen Probleme herausstellen. Ein wesentliches Augenmerk wird auf die Anwendung der Modelle im heterogenen Gelände gelegt, wobei der Problematik der Flächenmittelung ein eigenes Kapitel gewidmet ist.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 74.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Literatur

  • Albertson JD, Parlange MB (1999) Natural integration of scalar fluxes from complex terrain. Adv Water Res 23:239–252

    Article  Google Scholar 

  • Allen RG, Pereira LS, Raes D, Smith M (1998) Crop evaporation. FAO irrigation drainage paper 56:XXVI + 300 S

    Google Scholar 

  • Allen RG, Walter IA, Elliott R, Howell T, Itenfisu D, Jensen M (2005) The ASCE standardized reference evapotranspiration equation. Environmental and Water Resources Institute of the American Society of Civil Engineers, Reston

    Google Scholar 

  • Arya SP (2001) Introduction to micrometeorology. Academic Press, San Diego

    Google Scholar 

  • Avissar R, Pielke RA (1989) A parametrization of heterogeneous land surface for atmospheric numerical models and its impact on regional meteorology. Mon Weather Rev 117:2113–2136

    Article  Google Scholar 

  • Baldocchi D (1988) A multi-layer model for estimating sulfor dioxid deposition to a deciduous oke forest canopy. Atmos Environ 22:869–884

    Article  Google Scholar 

  • Baldocchi D, Hicks BB, Camara P (1987) A canopy stomatal resistance model for gaseous deposition to vegetated surfaces. Atmos Environ 21:91–101

    Article  Google Scholar 

  • Ball JT, Woodrow IE, Berry JA (1987) A model predicting stomatal conductance and its contribution to the control of photosynthesis under different environmental conditions. In: Biggens J (Hrsg) Progress in photosynthesis research, Bd IV. Martinus Nijhoff, Dordrecht, S IV.5.221–IV.5.224

    Google Scholar 

  • Batchvarova E, Gryning S-E (1991) Applied model for the growth of the daytime mixed layer. Bound-Lay Meteorol 56:261–274

    Article  Google Scholar 

  • Behrens J, Rakowsky N, Hiller W, Handorf D, Läuter M, Päpke J, Dethloff K (2005) Amatos: Parallel adaptive mesh generator for atmospheric and oceanic simulation. Ocean Model 10:171–183

    Article  Google Scholar 

  • Beljaars ACM (1995) The parametrization of surface fluxes in large scale models under free convection. Q J Roy Meteorol Soc 121:255–270

    Article  Google Scholar 

  • Beljaars ACM, Holtslag AAM (1991) Flux parametrization over land surfaces for atmospheric models. J Appl Meteorol 30:327–341

    Article  Google Scholar 

  • Beljaars ACM, Viterbo P (1998) Role of the boundary layer in a numerical weather prediction model. In: Holtslag AAM, Duynkerke PG (Hrsg) Clear and cloudy boundary layers, Bd VNE 48. Royal Netherlands Academy of Arts and Sciences, Amsterdam, S 287–304

    Google Scholar 

  • Best MJ, Beljaars A, Polcher J, Viterbo P (2004) A proposed structure for coupling tiled surfaces with the planetary boundary layer. J Hydrometeorol 5:1271–1278

    Article  Google Scholar 

  • Biermann T, Babel W, Ma W, Chen X, Thiem E, Ma Y, Foken T (2014) Turbulent flux observations and modelling over a shallow lake and a wet grassland in the Nam Co basin, Tibetan Plateau. Theor Appl Climatol 116:301–316

    Article  Google Scholar 

  • Bjutner EK (1974) Teoreticeskij rascet soprotivlenija morskoj poverchnosti (Theoretical calculation of the resistance at the surface of the ocean). In: Dubov AS (Hrsg) Processy perenosa vblizi poverchnosti razdela okean - atmosfera (Exchange processes near the ocean – atmosphere interface). Gidrometeoizdat, Leningrad, S 66–114

    Google Scholar 

  • Blackadar AK (1997) Turbulence and diffusion in the atmosphere. Springer, Berlin/Heidelberg

    Book  Google Scholar 

  • Blümel K (1998) Estimation of sensible heat flux from surface temperature wave and one-time-of-day air temperature observations. Bound-Lay Meteorol 86:193–232

    Article  Google Scholar 

  • Blyth EM (1995) Comments on ‘The influence of surface texture on the effective roughness length’ by Schmid HP, Bünzli D (1995, vol 121, pp 1–21). Q J Roy Meteorol Soc. 121:1169–1171

    Google Scholar 

  • Brötz B, Eigenmann R, Dörnbrack A, Foken T, Wirth V (2014) Early-morning flow transition in a valley in low-mountain terrain. Bound-Lay Meteorol 152:45–63

    Article  Google Scholar 

  • Brutsaert WH (1982) Evaporation into the atmosphere: theory, history and application. D. Reidel, Dordrecht

    Book  Google Scholar 

  • Burridge DM, Gadd AJ (1977) The Meteorological Office operational 10-level numerical weather prediction model (Dec 1975). Met Office Techn Notes. 34:39S

    Google Scholar 

  • Csanady GT (2001) Air-sea interaction, laws and mechanisms. Cambridge University Press, Cambridge/New York

    Book  Google Scholar 

  • Davidan IN, Lopatuhin LI, Rogkov VA (1985) Volny v okeane (Waves in the ocean). Gidrometeoizdat, Leningrad

    Google Scholar 

  • Deardorff JW (1972) Numerical investigation of neutral und unstable planetary boundary layer. J Atmos Sci 29:91–115

    Article  Google Scholar 

  • DeBruin HAR (1983) A model for the Priestley-Taylor parameter α. J Clim Appl Meteorol 22:572–578

    Article  Google Scholar 

  • DeBruin HAR, Holtslag AAM (1982) A simple parametrization of the surface fluxes of sensible and latent heat during daytime compared with the Penman-Monteith concept. J Clim Appl Meteorol 21:1610–1621

    Article  Google Scholar 

  • Dommermuth H, Trampf W (1990) Die Verdunstung in der Bundesrepublik Deutschland, Zeitraum 1951–1980, Teil 1. Deutscher Wetterdienst, Offenbach

    Google Scholar 

  • Doorenbos J, Pruitt WO (1977) Guidelines for predicting crop water requirements. FAO irrigation drainage paper 24, 2. Aufgabe, 145

    Google Scholar 

  • DVWK (1996) Ermittlung der Verdunstung von Land- und Wasserflächen. DVWK-Merkblätter zur Wasserwirtschaft. 238:134S

    Google Scholar 

  • Falge EM, Ryel RJ, Alsheimer M, Tenhunen JD (1997) Effects on stand structure and physiology on forest gas exchange: a simulation study for Norway spruce. Trees 11:436–448

    Article  Google Scholar 

  • Farquhar GD, von Caemmerer S, Berry JA (1980) A biochemical of photosynthetic CO2 assimilation in leaves of C3 species. Planta 149:78–90

    Article  Google Scholar 

  • Foken T (1978) The molecular temperature boundary layer of the atmosphere over various surfaces. Arch Meteorol Geophys Bioklimatol A 27:59–67

    Article  Google Scholar 

  • Foken T (1979) Vorschlag eines verbesserten Energieaustauschmodells mit Berücksichtigung der molekularen Grenzschicht der Atmosphäre. Z Meteorol 29:32–39

    Google Scholar 

  • Foken T (1984) The parametrisation of the energy exchange across the air-sea interface. Dyn Atmos Oceans 8:297–305

    Article  Google Scholar 

  • Foken T (1986) An operational model of the energy exchange across the air-sea interface. Z Meteorol 36:354–359

    Google Scholar 

  • Foken T (1996) Turbulenzexperiment zur Untersuchung stabiler Schichtungen. Ber Polarforschung 188:74–78

    Google Scholar 

  • Foken T (2002) Some aspects of the viscous sublayer. Meteorol Z 11:267–272

    Article  Google Scholar 

  • Foken T, Leclerc MY (2004) Methods and limitations in validation of footprint models. Agr Forest Meteorol 127:223–234

    Article  Google Scholar 

  • Foken T, Kitajgorodskij SA, Kuznecov OA (1978) On the dynamics of the molecular temperature boundary layer above the sea. Bound-Lay Meteorol 15:289–300

    Article  Google Scholar 

  • Foken T, Dlugi R, Kramm G (1995) On the determination of dry deposition and emission of gaseous compounds at the biosphere-atmosphere interface. Meteorol Z 4:91–118

    Google Scholar 

  • Friedrich K, Mölders N, Tetzlaff G (2000) On the influence of surface heterogeneity on the Bowen-ratio: a theoretical case study. Theor Appl Climat 65:181–196

    Article  Google Scholar 

  • Garratt JR (1992) The atmospheric boundary layer. Cambridge University Press, Cambridge

    Google Scholar 

  • Geernaert GL (Hrsg.) (1999) Air-sea exchange: physics, chemistry and dynamics. Kluwer, Dordrecht

    Google Scholar 

  • Göckede M, Foken T (2001) Ein weiterentwickeltes Holtslag-van Ulden-Schema zur Stabilitätsparametrisierung in der Bodenschicht. Österreichische Beiträge zu Meteorologie und Geophysik. 27:(Extended Abstract and pdf-file on CD) 210

    Google Scholar 

  • Göckede M, Markkaken T, Mauder M, Arnold K, Leps JP, Foken T (2005) Validation of footprint models using natural tracer measurements from a field experiment. Agr Forest Meteorol 135:314–325

    Article  Google Scholar 

  • Grimmond CSB, King TS, Roth M, Oke TR (1998) Aerodynamic roughness of urban areas derived from wind observations. Bound-Lay Meteorol 89:1–24

    Article  Google Scholar 

  • Groß G (1993) Numerical simulation of canopy flows. Springer, Berlin/Heidelberg

    Book  Google Scholar 

  • Gryning S-E, Batchvarova E, Brümmer B, Jørgensen H, Larsen S (2007) On the extension of the wind profile over homogeneous terrain beyond the surface boundary layer. Bound-Lay Meteorol 124:251–268

    Article  Google Scholar 

  • Gusev EM, Nasonova ON (2010) Modelirovanie teplo- i vlagoobmena poverchnosti sushi s atmosferoj (Moelling of the heat and moisture exchange of land surfaces with the atmosphere). Nauka, Moskva

    Google Scholar 

  • Handorf D, Foken T, Kottmeier C (1999) The stable atmospheric boundary layer over an Antarctic ice sheet. Bound-Lay Meteorol 91:165–186

    Article  Google Scholar 

  • Hasager CB, Jensen NO (1999) Surface-flux aggregation in heterogeneous terrain. Q J Roy Meteorol Soc 125:2075–2102

    Article  Google Scholar 

  • Hasager CB, Nielsen NW, Jensen NO, Boegh E, Christensen JH, Dellwik E, Soegaard H (2003) Effective roughness calculated from satellite-derived land cover maps and hedge-information used in a weather forecasting model. Bound-Lay Meteorol 109:227–254

    Article  Google Scholar 

  • Haude W (1955) Bestimmung der Verdunstung auf möglichst einfache Weise. Mitt Dt Wetterdienst. 11:24

    Google Scholar 

  • Herzog H-J, Vogel G, Schubert U (2002) LLM – a nonhydrostatic model applied to high-resolving simulation of turbulent fluxes over heterogeneous terrain. Theor Appl Climat 73:67–86

    Article  Google Scholar 

  • Hess GD (2004) The neutral, barotropic planetary layer capped by a low-level inversion. Bound-Lay Meteorol 110:319–355

    Article  Google Scholar 

  • Hicks BB, Baldocchi DD, Meyers TP, Jr Hosker RP, Matt DR (1987) A preliminary multiple resistance routine for deriving dry deposition velocities from measured quantities. Water Air Soil Pollut 36:311–330

    Article  Google Scholar 

  • Hillel D (1980) Applications of soil physics. Academic Press, New York

    Google Scholar 

  • Högström U (1988) Non-dimensional wind and temperature profiles in the atmospheric surface layer: a re-evaluation. Bound-Lay Meteorol 42:55–78

    Article  Google Scholar 

  • Holtslag AAM, van Ulden AP (1983) A simple scheme for daytime estimates of the surface fluxes from routine weather data. J Clim Appl Meteorol 22:517–529

    Article  Google Scholar 

  • Houghton JT (2015) Global warming, the complete briefing. Cambridge University Press, Cambridge

    Google Scholar 

  • Inclán MG, Forkel R, Dlugi R, Stull RB (1996) Application of transilient turbulent theory to study interactions between the atmospheric boundary layer and forest canopies. Bound-Lay Meteorol 79:315–344

    Article  Google Scholar 

  • Jacobs AFG, Heusinkveld BG, Nieveen JP (1998) Temperature behavior of a natural shallow water body during a summer periode. Theor Appl Climat 59:121–127

    Article  Google Scholar 

  • Jacobson MZ (2005) Fundamentals of atmospheric modelling. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Jarvis PG (1976) The interpretation of the variations in leaf water potential and stomatal conductance found in canopies in the field. Phil Philos Trans Roy Soc Lond B 273:593–610

    Article  Google Scholar 

  • Kaimal JC, Finnigan JJ (1994) Atmospheric boundary layer flows: Their structure and measurement. Oxford University Press, New York

    Google Scholar 

  • Kanani-Sühring F, Raasch S (2015) Spatial variability of scalar concentrations and fluxes downstream of a clearing-to-forest transition: a large-eddy simulation study. Bound-Lay Meteorol 155:1–27

    Article  Google Scholar 

  • Kantha LH, Clayson CA (2000) Small scale processes in geophysical fluid flows. Academic Press, San Diego

    Google Scholar 

  • Kitajgorodskij SA, Volkov JA (1965) O rascete turbulentnych potokov tepla i vlagi v privodnom sloe atmosfery (The calculation of the turbulent fluxes of temperature and humidity in the atmosphere near the water surface) Izv AN SSSR. Fiz Atm Okeana 1:1317–1336

    Google Scholar 

  • Klaassen W, van Breugel PB, Moors EJ, Nieveen JP (2002) Increased heat fluxes near a forest edge. Theor Appl Climatol 72:231–243

    Article  Google Scholar 

  • Kramm G, Foken T (1998) Uncertainty analysis on the evaporation at the sea surface. Second study conference on BALTEX, Juliusruh, 25–29 May 1998, BALTEX Secretariat, S 113–114

    Google Scholar 

  • Kramm G, Beier M, Foken T, Müller H, Schröder P, Seiler W (1996a) A SVAT-skime for NO, NO2, and O3 – model description and test results. Meteorol Atmos Phys 61:89–106

    Article  Google Scholar 

  • Kramm G, Foken T, Molders N, Muller H, Paw U KT (1996b) The sublayer-Stanton numbers of heat and matter for different types of natural surfaces. Contrib Atmosph Phys 69:417–430

    Google Scholar 

  • Kramm G, Dlugi R, Mölders N (2002) Sublayer-Stanton numbers of heat and matter for aerodynamically smooth surfaces: basic considerations and evaluations. Meteorol Atmos Phys 79:173–194

    Article  Google Scholar 

  • Landau LD, Lifschitz EM (1991) Lehrbuch der Theoretischen Physik, Bd VI, Hydrodynamik. Akademie-Verlag, Berlin

    Google Scholar 

  • Letzel MO, Krane M, Raasch S (2008) High resolution urban large-eddy simulation studies from street canyon to neighbourhood scale. Atmos Environ 42:8770–8784

    Article  Google Scholar 

  • Leuning R (1995) A critical appraisal of a combined stomatal-photosynthesis model for C3 plants. Plant Cell Environ 18:339–355

    Article  Google Scholar 

  • Lilly DK (1967) The representation of small-scale turbulence in numerical simulation experiments. In: Goldstein HH (Hrsg) IBM scientific computing symposium on environmental science, Yorktown Heights, 14–16 Nov 1966. IBM form no 320-1951, S 1195–1210

    Google Scholar 

  • Louis JF (1979) A parametric model of vertical fluxes in the atmosphere. Bound-Lay Meteorol 17:187–202

    Article  Google Scholar 

  • Louis JF, Tiedtke M, Geleyn JF (1982) A short history of the PBL parametrization at ECMWF. Workshop on boundary layer parametrization. ECMWF, Reading, S 59–79

    Google Scholar 

  • Lüers J, Bareiss J (2010) The effect of misleading surface temperature estimations on the sensible heat fluxes at a high Arctic site – the Arctic turbulence experiment 2006 on Svalbard (ARCTEX-2006). Atmos Chem Phys 10:157–168

    Article  Google Scholar 

  • Mahrt L (1996) The bulk aerodynamic formulation over heterogeneous surfaces. Bound-Lay Meteorol 78:87–119

    Article  Google Scholar 

  • Mallick K, Boegh E, Trebs I, Alfieri JG, Kustas WP, Prueger JH, Niyogi D, Das N, Drewry DT, Hoffmann L, Jarvis AJ (2015) Reintroducing radiometric surface temperature into the Penman-Monteith formulation. Water Resour Res 51:6214–6243

    Google Scholar 

  • Mangarella PA, Chambers AJ, Street RL, Hsu EY (1972) Laboratory and field interfacial energy and mass flux and prediction equations. J Geophys Res 77:5870–5875

    Article  Google Scholar 

  • Mangarella PA, Chambers AJ, Street RL, Hsu EY (1973) Laboratory studies of evaporation and energy transfer through a wavy air-water interface. J Phys Oceanogr 3:93–101

    Article  Google Scholar 

  • Mengelkamp H-T, Warrach K, Raschke E (1999) SEWAB a parameterization of the surface energy and water balance for atmospheric and hydrologic models. Adv Water Resour 23:165–175

    Article  Google Scholar 

  • Meyers TP, Paw U KT (1987) Modelling the plant canopy microenvironment with higher-order closure principles. Agr Forest Meteorol 41:143–163

    Article  Google Scholar 

  • Meyers TP, Paw U KT (1986) Testing a higher-order closure model for modelling airflow within and above plant canopies. Bound-Lay Meteorol 37:297–311

    Article  Google Scholar 

  • Mix W, Goldberg V, Bernhardt K-H (1994) Numerical experiments with different approaches for boundary layer modelling under large-area forest canopy conditions. Meteorol Z 3:187–192

    Google Scholar 

  • Moene AF, van Dam JC (2014) Transport in the atmosphere-vegetation-soil continuum. Cambridge University Press, Cambridge

    Google Scholar 

  • Moeng C-H (1998) Large eddy simulation of atmospheric boundary layers. In: Holtslag AAM, Duynkerke PG (Hrsg) Clear and cloudy boundary layers, vol VNE 48. Royal Netherlands Academy of Arts and Science, Amsterdam, S 67–83

    Google Scholar 

  • Moeng C-H, Wyngaard JC (1989) Evaluation of turbulent transport and dissipation closure in second-order modelling. J Atmos Sci 46:2311–2330

    Article  Google Scholar 

  • Moeng C-H, Sullivan PP, Stevens B (2004) Large-eddy simulation of cloud-topped mixed layers. In: Fedorovich E et al (Hrsg) Atmospheric turbulence and mesoscale meteorology. Cambridge University Press, Cambridge, S 95–114

    Chapter  Google Scholar 

  • Mölders N (2001) Concepts for coupling hydrological and meteorological models. Wiss. Mitt. aus dem Inst. für Meteorol. der Univ. Leipzig und dem Institut für Troposphärenforschung e. V. Leipzig. 22:1–15

    Google Scholar 

  • Mölders N (2012) Land-use and land-cover changes, impact on climate and air quality. Springer, Dordrecht/Heidelberg/London/New York

    Book  Google Scholar 

  • Mölders N, Kramm G (2014) Lectures in meteorology. Springer, Cham/Heidelberg/New York/Dordrecht/London

    Book  Google Scholar 

  • Mölders N, Raabe A, Tetzlaff G (1996) A comparison of two strategies on land surface heterogeneity used in a mesoscale ß meteorological model. Tellus 48A:733–749

    Article  Google Scholar 

  • Monson R, Baldocchi D (2014) Terrestrial biosphere-atmosphere fluxes. Cambridge University Press, New York

    Book  Google Scholar 

  • Monteith JL (1965) Evaporation and environment. Symp Soc Exp Biol 19:205–234

    Google Scholar 

  • Montgomery RB (1940) Observations of vertical humidity distribution above the ocean surface and their relation to evaporation. Pap Phys Oceanogr Meteorol 7:1–30

    Google Scholar 

  • Müller C (1999) Modelling soil-biosphere interaction. CABI Publishing, Wallingford

    Google Scholar 

  • Ohmura A, Steffen K, Blatter H, Greuell W, Rotach M, Stober M, Konzelmann T, Forrer J, Abe-Ouchi A, Steiger D, Neiderbäumer G (1992) Greenland expedition, progress report no 2, April 1991 to Oktober 1992, Swiss Federal Institute of Techology, Zürich

    Google Scholar 

  • Owen PR, Thomson WR (1963) Heat transfer across rough surfaces. J Fluid Mech 15:321–334

    Article  Google Scholar 

  • Panin GN (1985) Teplo- i massomen meszdu vodoemom i atmospheroj v estestvennych uslovijach (Heat- and mass exchange between the water and the atmosphere in the nature). Nauka, Moscow

    Google Scholar 

  • Panin GN, Nasonov AE, Souchintsev MG (1996) Measurements and estimation of energy and mass exchange over a shallow see. In: Donelan M (Hrsg) The air-sea interface. University of Miami, Miami, S 489–494

    Google Scholar 

  • Panin GN, Tetzlaff G, Raabe A (1998) Inhomogeneity of the land surface and problems in the parameterization of surface fluxes in natural conditions. Theor Appl Climatol 60:163–178

    Article  Google Scholar 

  • Panin GN, Nasonov AE, Foken T, Lohse H (2006) On the parameterization of evaporation and sensible heat exchange for shallow lakes. Theor Appl Climatol 85:123–129

    Article  Google Scholar 

  • Panofsky HA (1973) Tower micrometeorology. In: Haugen DA (Hrsg) Workshop on micrometeorology. American Meteorological Society, Boston, S 151–176

    Google Scholar 

  • Peña A, Gryning S-E, Hasager C (2010) Comparing mixing-length models of the diabatic wind profile over homogeneous terrain. Theor Appl Climatol 100:325–335

    Article  Google Scholar 

  • Penman HL (1948) Natural evaporation from open water, bare soil and grass. Proc R Soc Lond A193:120–195

    Article  Google Scholar 

  • Priestley CHB, Taylor JR (1972) On the assessment of surface heat flux and evaporation using large-scale parameters. Mon Weather Rev 100:81–92

    Article  Google Scholar 

  • Pyles RD, Weare BC, Paw U KT (2000) The UCD Advanced Canopy-Atmosphere-Soil Algorithm: Comparisons with observations from different climate and vegetation regimes. Q J Roy Meteorol Soc 126:2951–2980

    Article  Google Scholar 

  • Raasch S, Schröter M (2001) PALM – a large-eddy simulation model performing on massively parallel computers. Meteorol Z 10:363–372

    Article  Google Scholar 

  • Reichardt H (1951) Vollständige Darstellung der turbulenten Geschwindigkeitsverteilung in glatten Röhren. Z Angew Math Mech 31:208–219

    Article  Google Scholar 

  • Richter D (1977) Zur einheitlichen Berechnung der Wassertemperatur und der Verdunstung von freien Wasserflächen auf statistischer Grundlage. Abh Meteorol Dienstes DDR 119:35

    Google Scholar 

  • Rigby JR, Yin J, Albertson J, Porporato A (2015) Approximate analytical solution to diurnal atmospheric boundary-layer growth under well-watered conditions. Bound-Lay Meteorol 156:73–89

    Article  Google Scholar 

  • Roll HU (1948) Wassernahes Windprofil und Wellen auf dem Wattenmeer. Ann Meteorol 1:139–151

    Google Scholar 

  • Schädler G, Kalthoff N, Fiedler F (1990) Validation of a model for heat, mass and momentum exchange over vegetated surfaces using LOTREX-10E/HIBE88 data. Contrib Atmos Phys 63:85–100

    Google Scholar 

  • Schlegel F, Stiller J, Bienert A, Maas H-G, Queck R, Bernhofer C (2015) Large-eddy simulation study of the effects on flow of a heterogeneous forest at sub-tree resolution. Bound-Lay Meteorol 154:27–56

    Article  Google Scholar 

  • Schlichting H, Gersten K (2006) Grenzschicht-Theorie. Springer, Berlin/Heidelberg

    Google Scholar 

  • Schmid HP, Bünzli D (1995a) The influence of the surface texture on the effective roughness length. Q J Roy Meteorol Soc 121:1–21

    Article  Google Scholar 

  • Schmid HP, Bünzli D (1995b) Reply to comments by E M Blyth on ‘The influence of surface texture on the effective roughness length’. Q J Roy Meteorol Soc 121:1173–1176

    Google Scholar 

  • Schmidt H, Schumann U (1989) Coherent structures of the convective boundary layer derived from large eddy simulations. J Fluid Mech 200:511–562

    Article  Google Scholar 

  • Schrödter H (1985) Verdunstung, Anwendungsorientierte Meßverfahren und Bestimmungsmethoden. Springer, Berlin/Heidelberg

    Google Scholar 

  • Schumann U (1989) Large-eddy simulation of turbulent diffusion with chemical reactions in the convective boundary layer. Atmos Environ 23:1713–1727

    Article  Google Scholar 

  • Seibert P, Beyrich F, Gryning S-E, Joffre S, Rasmussen A, Tercier P (2000) Review and intercomparison of operational methods for the determination of the mixing height. Atmos Environ 34:1001–1027

    Article  Google Scholar 

  • Sellers PJ, Dorman JL (1987) Testing the simple biospere model (SiB) for use in general circulation models. J Clim Appl Meteorol 26:622–651

    Article  Google Scholar 

  • Shukauskas A, Schlantschiauskas A (1973) Teploodatscha v turbulentnom potoke shidkosti (Heat exchange in the turbulent fluid). Izd. Mintis, Vil’njus

    Google Scholar 

  • Smagorinsky J (1963) General circulation experiments with the primitive equations: I. The basic experiment. Mon Weather Rev 91:99–164

    Article  Google Scholar 

  • Smith SD, Fairall CW, Geernaert GL, Hasse L (1996) Air-sea fluxes: 25 years of progress. Bound-Lay Meteorol 78:247–290

    Article  Google Scholar 

  • Sodemann H, Foken T (2004) Empirical evaluation of an extended similarity theory for the stably stratified atmospheric surface layer. Q J Roy Meteorol Soc 130:2665–2671

    Article  Google Scholar 

  • Sponagel H (1980) Zur Bestimmung der realen Evapotranspiration landwirtschaftlicher Kulturpflanzen. Geologisches Jahrbuch F9:87

    Google Scholar 

  • Staudt K, Serafimovich A, Siebicke L, Pyles RD, Falge E (2011) Vertical structure of evapotranspiration at a forest site (a case study). Agr Forest Meteorol 151:709–729

    Article  Google Scholar 

  • Stull RB (1988) An introduction to boundary layer meteorology. Kluwer, Dordrecht/Boston/London

    Book  Google Scholar 

  • Stull R, Santoso E (2000) Convective transport theory and counter-difference fluxes. In: 14th symposium on boundary layer and turbulence, Aspen, 7–11 Aug 2000, American Meteorological Society, Boston, S 112–113

    Google Scholar 

  • Sverdrup HU (1937/1938) On the evaporation from the ocean. J Marine Res 1:3–14

    Google Scholar 

  • Taylor PA (1987) Comments and further analysis on the effective roughness length for use in numerical three-dimensional models: A research note. Bound-Lay Meteorol 39:403–418

    Article  Google Scholar 

  • Tennekes H (1973) A model for the dynamics of the inversion above a convective boundary layer. J Atmos Sci 30:558–567

    Article  Google Scholar 

  • Troen I, Lundtang Petersen E (1990) Europðischer Windatlas. Risø National Laboratory, Roskilde

    Google Scholar 

  • Turc L (1961) Évaluation des besoins en eau d’irrigation évapotranspiration potentielle. Ann Agron 12:13–49

    Google Scholar 

  • van Bavel CHM (1986) Potential evapotranspiration: The combination concept and its experimental verification. Water Resour Res 2:455–467

    Article  Google Scholar 

  • VDI (2006) Umweltmeteorologie – Meteorologische Messungen – Messstation, VDI 3786, Blatt 13. Beuth Verlag, Berlin

    Google Scholar 

  • Vilà-Guerau de Arellano J, Van Heerwaarden CC, van Stratum BJH, van den Dries K (2015) Atmospheric boundary layer. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Vollmer L, van Dooren M, Trabucchi D, Schneemann J, Steinfeld G, Witha B, Trujillo J, Kühn M (2015) First comparison of LES of an offshore wind turbine wake with dual-Doppler lidar measurements in a German offshore wind farm. J Phys Conf Ser 625:012001

    Article  Google Scholar 

  • von Kármán T (1934) Turbulence and skin friction. J Aeronaut Sci 1:1–20

    Article  Google Scholar 

  • Wendling U, Schellin H-G, Thomä M (1991) Bereitstellung von täglichen Informationen zum Wasserhaushalt des Bodens für die Zwecke der agrarmeteorologischen Beratung. Z Meteorol 41:468–475

    Google Scholar 

  • Yokoyama O, Gamo M, Yamamoto S (1979) The vertical profiles of the turbulent quantities in the atmospheric boundary layer. J Meteor Soc Jpn 57:264–272

    Google Scholar 

  • Zilitinkevich SS, Calanca P (2000) An extended similarity theory for the stably stratified atmopheric surface layer. Q J Roy Meteorol Soc 126:1913–1923

    Article  Google Scholar 

  • Zilitinkevich SS, Esau IN (2005) Resistance and heat transfer laws for stable and neutral planetary layers: Old theory advanced and re-evaluated. Q J Roy Meteorol Soc 131:1863–1892

    Article  Google Scholar 

  • Zilitinkevich SS, Mironov DV (1996) A multi-limit formulation for the equilibrium depth of a stable stratified atmospheric surface layer. Bound-Lay Meteorol 81:325–351

    Article  Google Scholar 

  • Zilitinkevich SS, Perov VL, King JC (2002) Near-surface turbulent fluxes in stable stratification: Calculation techniques for use in general circulation models. Q J Roy Meteorol Soc 128:1571–1587

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas Foken .

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Foken, T. (2016). Modellierung des Energie- und Stoffaustausches. In: Angewandte Meteorologie. Springer Spektrum, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-25525-0_5

Download citation

Publish with us

Policies and ethics