Skip to main content
Log in

A SVAT scheme for NO, NO2, and O3 — Model description and test results

  • Published:
Meteorology and Atmospheric Physics Aims and scope Submit manuscript

Summary

A soil/vegetation/atmosphere transfer (SVAT) scheme for determining the dry deposition and/or emission fluxes of NO, NO2, and O3 in the atmospheric surface layer over horizontally uniform terrain covered with fibrous canopy elements is presented and discussed. This transfer scheme is based on the micrometeorological ideas of the transfer of momentum, heat and matter near the Earth's surface, where chemical reactions between these trace gases are included. The fluxes are parameterized by first-order closure principles. The uptake processes by vegetation and soil are described in accord with Deardorff (1978). The SVAT scheme requires only routine data of wind speed, dry- and wet-bulb temperatures, short wave and long wave radiation, and the concentrations of O3 and nitrogen species provided by stations of monitoring networks.

First model results indicate that the dry deposition fluxes of NO, NO2, and O3 are not only influenced by meteorological and plant-physiological parameters, but also by chemical reactions between these trace species and by NO emission from the soil. Furthermore, a small displacement in the concentrations of NO, NO2, and O3 within in the range of the detection limits of the chemical sensors can produce large discrepancies in the flux estimates, which are manifested here by the shift from height-invariant fluxes substantiated by the photostationary state to strongly height-dependent fluxes caused by the departure from that state. Especially in the case of these nitrogen species the widely used ‘big leaf’ multiple resistance approach, which is based on the constant flux approximation seems to be inappropriate for computing dry deposition fluxes and deposition velocities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Allen, L. H., Lemon, E. R., 1972: Net radiation frequency distribution in a corn crop.Bound.-Layer Meteor.,3, 246–254.

    Google Scholar 

  • Baldocchi, D. D., Hicks, B. B., Camara, P. 1987: A canopy stomatal resistance model for gaseous deposition to vegetated surfaces.Atmos. Environ.,21, 91–101.

    Google Scholar 

  • Baldocchi, D. D., 1988: A multi-layer model for estimating sulfur dioxide deposition to a deciduous oak forest canopy.Atmos. Environ.,22, 869–884.

    Google Scholar 

  • Baldocchi, D. D., Hicks, B. B., Meyers, T. P. 1988: Measuring biosphere-atmosphere exchanges of biologically related gases with micrometeorological methods.Ecology. 69, 1331–1340.

    Google Scholar 

  • Baulch, D. L., Cox, R. A., Hampson, Jr., R. F., Kerr, J. A., Troe, J., Watson, R. T., 1984: Evaluated kinetic and photochemical data for atmospheric chemistry: Supplement II.J. Phys. Chem. Ref. Data,13(4), 1259–1380.

    Google Scholar 

  • Beier, N., Schroers, H., Müller, D., Weber, M., 1995: Grenzschichtuntersuchungen zur trockenen Deposition inerter und reaktiver Spurenstoffe. BMFT-Verbundforschungsprojekt SANA, Jahresbericht 1994, IFU, Garmisch-Partenkirchen (in German).

    Google Scholar 

  • Beljaars, A. C. M., Holtslag, A. A., 1991: Flux parameterization over land surfaces for atmospheric models.J. Appl. Meteor.,30, 327–341.

    Google Scholar 

  • Brutsaert, H. W., 1975: The roughness length for water vapor, sensible heat, and other scalars.J. Atmos. Sci. 32, 2028–2031.

    Google Scholar 

  • Businger, J. A., 1986: Evaluation of the accuracy with which dry deposition can be measured with current micrometeorological techniques.J. Appl. Meteor.,25, 1100–1124.

    Google Scholar 

  • Chamberlain, A. C., 1968: Transport of gases to and from surfaces with bluff and wave-like roughness elements.Quart. J. Roy. Meteor. Soc.,94, 318–332.

    Google Scholar 

  • Chang, J. S., Brost, R. A., Isaksen, I. S. A., Madronich, S., Middleton, P., Stockwell, W. R., Walcek, C. J., 1987: A three-dimensional Eulerian acid deposition model: Physical concepts and formulation.J. Geophys. Res. 92, 14681–14700.

    Google Scholar 

  • Clapp, R., Hornberger, G., 1978: Empirical equations for some soil hydraulic properties.Water Resour. Res.,14, 601–604.

    Google Scholar 

  • Deacon, E. L., 1977: Gas transfer to and across an air-water interface.Teilus.,29, 363–374.

    Google Scholar 

  • Deardorff, J. W., 1978: Efficient prediction of ground surface temperature and moisture, with inclusion of a layer of vegetation.J. Geophys. Res. 83(C4), 1889–1903.

    Google Scholar 

  • Delany, A. C., Fitzjarrald, D. R., Lenschow, D. H., Pearson, Jr., R., Wendel, G. J., Woodruff, B., 1986: Direct measurements of nitrogen oxides and ozone fluxes over grassland.J. Atmos. Chem.,4, 429–444.

    Google Scholar 

  • De Vries, D. A., 1958: Simultaneous transfer of heat and moisture in porous media.Trans. Amer. Geophys. Union,39, 909–916.

    Google Scholar 

  • Droppo, Jr., J. G., 1985: Concurrent measurements of ozone dry deposition using eddy correlation and profile flux methods.J. Geophys. Res 90(DI), 2111–2118.

    Google Scholar 

  • Dyer, A. J., Hicks, B. B., 1970: Flux-gradient relationships in the constant flux layer.Quart. J. Roy. Meteor. Soc. 96, 715–721.

    Google Scholar 

  • Edlefsen, N. E., Anderson, A. B. C., 1943: The thermodynamics of soil moisture.Hilgardia 16, 31–299.

    Google Scholar 

  • Finlayson-Pitts, B. J., Pitts, Jr., J. N., 1986:Atmospheric Chemistry: Chichester, New York, Brisbane, Toronto, Singapore: J. Wiley, pp. 1098.

    Google Scholar 

  • Fitzjarrald, D. R., Lenschow, D. H., 1983: Mean concentration and flux profiles for chemically reactive species in the atmospheric surface layer.Atmos. Environ.,17, 2505–2512.

    Google Scholar 

  • Gao, W., Wesely, M. L., Lee, I. Y., 1991: A numerical study of the effects of air chemistry on fluxes of NO, NO2, and O3 near the surface.J. Geophys. Res.,96(D10), 18761–18769.

    Google Scholar 

  • Garratt, J. R., Hicks, B. B., 1973: Momentum, heat and water vapour transfer to and from natural and artificial surfaces.Quart. J. Roy. Meteor. Soc. 99, 680–687.

    Google Scholar 

  • Gear, C. W., 1971:Numerical Initial Value Problems in Ordinary Differential Equations. Englewood Cliffs, New Jersey: Prentice-Hall, pp. 253.

    Google Scholar 

  • Georgopoulos, P. G., Seinfeld, J. H., 1986: Mathematical modeling of turbulent reacting plumes-I. General theory and model formulation.Atmos. Environ.,20, 1791–1807.

    Google Scholar 

  • Hanson, P. J., Lindberg, S. E., 1991: Dry deposition of reactive nitrogen compounds: A review of leaf, canopy and non-foliar measurements.Atmos. Environ.,25A, 1615–1634.

    Google Scholar 

  • Hasse, L., 1971: The sea surface temperature deviation and the heat flow at the sea-air interface.Bound.-Layer Meteor.,1, 368–379.

    Google Scholar 

  • Herbert, F., 1987: Mechanismen der nassen und trockenen Deposition. In: Jaenicke, R. (ed.)Atmosphärische Spurenstoffe. Weilheim: VCH Verlagsgesellschaft, 241–269 (in German).

    Google Scholar 

  • Hicks, B. B., 1976: Some micrometeorological aspects of pollutant deposition rates near the surface. In: Engelmann, R. J., Sehmel, G. A. (eds.)Atmosphere-Surface Exchange of Particulate and Gaseous Pollutants (1974). Techn. Inf. Center, Office of Public Affairs, ERDA, Oak Ridge, TN., U.S.A., 434–449.

    Google Scholar 

  • Hicks, B. B., Baldocchi, D. D., Meyers, T. P., Hosker, Jr., R. P., Matt, D. R., 1987: A preliminary multiple resistance routine for deriving dry deposition velocities from measured quantities.Water, Air, and Soil Pollution,36, 311–330.

    Google Scholar 

  • Hicks, B. B., Matt, D. R., 1988: Combining biology, chemistry, and meteorology in modeling and measuring dry deposition.J. Atmos. Chem.,6, 117–131.

    Google Scholar 

  • Höfken, K. D., Meixner, F., Müller, K. P., Ehhalt, D. H., 1986: Untersuchungen zur trockenen Deposition und Emission von atmosphärischem NO, NO2 und HNO3 an natürlichen Oberflächen. Berichte der KFA Jülich, No.2054, Jülich, F.R.G. (in German).

  • Högström, U., 1967: Turbulent water vapour transfer at different stability conditions.Phys. of Fluid. 10 [Suppl.], 247–254.

    Google Scholar 

  • Jarvis, P. G., 1976: The interpretation of the variations in leaf water potential and stomatal conductance found in can-opies in the field.Phil. Trans. R. Soc., London, B.273, 593–610.

    Google Scholar 

  • Körner, Ch., Scheel, J. A., Bauer, H., 1979: Maximum leaf diffusive conductance in vascular plants.Photosynthetica,13, 45–82.

    Google Scholar 

  • Kramm, G., Herbert, F., 1984: Ein numerisches Modell zur Deposition von Schadstoffen in der bodennahen Luftschicht. In: Reuter, H. (ed.)Probleme der Umwelt-und Medizinmeteorologie im Gebirge. Zentralanstalt f. Meteorologie u. Geodynamik, Wien, Nr.288, 22–38, 1984 (in Germann).

  • Kramm, G., 1989: A numerical method for determining the dry deposition of atmospheric trace gases.Bound.-Layer Meteor.,48, 157–176.

    Google Scholar 

  • Kramm, G., 1991: Numerical investigation of the dry deposition of reactive trace gases. In: Borrell, P., Borrell, P. M., Seiler, W. (eds.)Transport and Transformation of Pollutants in the Troposphere. Proc. of EUROTRAC Symposium '90, Garmisch-Partenkirchen, April 2–5, 1990. SPB Academic Publ. bv., The Hague, The Netherlands, 155–157.

    Google Scholar 

  • Kramm, G., Müller, H., Fowler, D., Höfken, K. D., Meixner, F. X., Schaller, E. 1991: A modified profile method for determining the vertical fluxes of NO, NO2, ozone, and HNO3 in the atmospheric surface layer.J. Atmos. Chem.,13, 265–288.

    Google Scholar 

  • Kramm, G., Beheng, K.-D., Müller, H., 1992: Vertical transport of polydispersed aerosol particles in the atmospheric surface layer. In: Schwartz, S. E., Slinn, W. G. N. (eds.)Precipitation Scavenging and Atmosphere-Surface Exchange Processes, Vol. 2-The Semonin Vol. New York: Hemisphere, pp. 1125–1141.

    Google Scholar 

  • Kramm, G., Dlugi, R., 1994: Modelling of the vertical fluxes of nitric acid, ammonia, and ammonium nitrate in the atmospheric surface layer.J. Atmos. Chem.,18, 319–357.

    Google Scholar 

  • Kramm, G., 1995: Zum Austausch von Ozon und reaktiven Stickstoffverbindungen zwischen Atmosphäre und Biosphäre. Frankfurt/Main: Wissenschafts-Verlag Dr. W. Maraun, pp. 268 (in German).

    Google Scholar 

  • Kramm, G., Müller, H., Dlugi, R., 1995: On the relationship between the roughness length of a scalar quantity and the corresponding sublayer-Stanton number.Meteorol. Zeitschrift. NF,4, 209–212.

    Google Scholar 

  • Lenschow, D. H., 1982: Reactive trace species in the boundary layer from a micrometeorological perspective.J. Meteor. Soc. Japan. 60, 472–480.

    Google Scholar 

  • Lenschow, D. H., Delany, A. C., 1987: An analytic formulation for NO and NO2 flux profiles in the atmospheric surface layer.J. Atmos. Chem.,5, 301–309.

    Google Scholar 

  • Lenschow, D. H., Hicks, B. B., (eds.) 1989:Global Tropospheric Chemistry-Chemical Fluxes in the Global Atmosphere. Boulder, CO: National Center for Atmospheric Research, pp. 107.

    Google Scholar 

  • McCumber, M. C., Pielke, R. A., 1981: Simulation of the effects of surface fluxes of heat and moisture in a mesoscale numerical model-1. soil layer.J. Geophys. Res.,86(C10), 9929–9938.

    Google Scholar 

  • McRae, G. J., Goodin, W. R., Seinfeld, J. H., 1982: Mathematical modeling of photochemical air pollution.Environmental Quality Laboratory Report No. 18, California Institute of Technology, Pasadena, CA.

    Google Scholar 

  • Monteith, J. L., Szeicz, G., Waggoner, P. E., 1965: The measurement of stomatal resistance in the field.J. Appl. Ecol.,2, 345–355.

    Google Scholar 

  • Monteith, J. L., (ed.), 1975:Vegetation and the Atmosphere, Vol. 1. Principles, New York: Academic Press.

    Google Scholar 

  • Müller, H., Kramm, G., Meixner, F., Dollard, G. J., Fowler, D., Possanzini, M., 1993: Determination of HNO3 dry deposition by modified Bowen ratio and aerodynamic profile techniques.Tellus,45B, 346–367.

    Google Scholar 

  • O'Dell, R. A., Taheri, M., Kabel, R. L., 1977: A model for uptake of pollutants by vegetation.J. Air Poll. Control Assoc.,27, 1104–1109.

    Google Scholar 

  • Owen, P. R., Thomson, W. R., 1963: Heat transfer across rough surfaces.J. Fluid Mech. 15, 321–334.

    Google Scholar 

  • Paulson, C. A., 1970: The mathematical representation of wind speed and temperature profiles in the unstable atmospheric surface layer.J. Appl. Meteor. 9, 857–861.

    Google Scholar 

  • Philip, J. R., De Vries, D. A., 1957: Moisture movement in porous material under temperature gradients.Trans. Amer. Geophys. Union,38, 222–232.

    Google Scholar 

  • Phillipps, H., 1962: Zur Theorie des Tagesganges der Temperatur in der bodennahen Atmosphäre und in ihrer Unterlage.Z. f. Met.,16(5) (in German).

  • Reichardt, H., 1951: Vollständige Darstellung der turbulenten Geschwindigkeitsverteilung in glatten Rohren.Z. angew. Math. Mech.,31, 208–219 (in German).

    Google Scholar 

  • Sasamori, T., 1970: A numerical study of atmosphetic and soil boundary layers.J. Atmos. Sci.,27, 1122–1137.

    Google Scholar 

  • Schlichting, H., 1965:Grenzschicht-Theorie. Karlsruhe. Braun, 5. Aufl., pp. 736 (in German).

  • Sellers, P. J., 1987: Modeling effects of vegetation on climate. In: Dickinson, R. E., (ed.)The Geophysiology of Amazonia. New York, Chichester, Brisbane, Toronto, Singapore: J. Wiley, pp. 297–344.

    Google Scholar 

  • Sheppard, P. A. 1958: Transfer across the Earth's surface and through the air above.Quart. J. Roy. Meteor. Soc.,84, 205–224.

    Google Scholar 

  • Slemr, F., Seiler, W., 1984: Field measurements of NO and NO2 emissions from fertilized and unfertilized soils.J. Atmos. Chem. 2, 1–24.

    Google Scholar 

  • Stockwell, W. R., 1995: Effects of turbulence on gas-phase atmospheric chemistry: Calculation of the relationship between time scales for diffusion and chemical reactions.Meteorol. Atmos. Phys.,57, 159–171.

    Google Scholar 

  • Swinbank, W. C., Dyer, A. J., 1967: An experimental study in micro-meteorology.Quart. J. Roy. Meteor. Soc.,93, 494–500.

    Google Scholar 

  • Vilà-Guerau de Arellano, J., Duynkerke, P. G., 1993: Secondorder closure study of the covariance between chemical reactive species in the surface layer.J. Atmos. Chem.,16, 145–155.

    Google Scholar 

  • Ward, D. A., Bunce, J. A., 1986: Novel evidence for a lack of water vapour saturation within the intercellular airspace of turgid leaves of mesophytic species.J. Experimental Botany,37, 504–516.

    Google Scholar 

  • Wesely, M. L., Hicks, B. B., 1977: Some factors that affect the deposition rates of sulfur dioxide and similar gases on vegetation.J. Air Poll. Control Assoc.,27, 1110–1116.

    Google Scholar 

  • Wesely, M. L., 1989: Parameterization of surface resistances to gaseous dry deposition in regional-scale numerical models.Atmos. Environ.,23, 1293–1304.

    Google Scholar 

  • Zdunkowski, W. G., Panhans, W. G., Welch, R. M., Korb, G. J., 1982: A radiation scheme for circulation and climate models.Beitr. Phys. Atmos.,55, 215–237.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

With 9 Figures

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kramm, G., Beier, N., Foken, T. et al. A SVAT scheme for NO, NO2, and O3 — Model description and test results. Meteorl. Atmos. Phys. 61, 89–106 (1996). https://doi.org/10.1007/BF01029714

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01029714

Keywords

Navigation