Skip to main content

Perfusion Tracers: Biological Bases and Clinical Implications

  • Chapter
Nuclear Medicine in Psychiatry

Abstract

Several radiopharmaceuticals are used in the clinical setting for brain imaging by the nuclear medicine modalities PET and SPECT. Among them, HMPAO and ECD are the most widely used, and it is usually assumed that they both reflect regional cerebral perfusion. Study of the biological basis of their cellular mechanisms at the basis of their brain retention highlighted that besides reflecting local flow, regional metabolic patterns may lead to the uncoupling perfusion signal with local retention of the tracer. Furthermore, it appears that very interesting similarities are emerging between astrocytes-neurons deoxyglucose/energy exchange and HMPAO/oxido-reduction equilibrium in normal state as well as in pathophysiological conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Andersen AR (1989) 99mTc-D,L-Hexamethylene-propyleneamine oxime (99mTc-HMPAO): basic kinetic studies of a tracer of cerebral blood flow. Cereb Brain Metab Rev 1:288–318

    CAS  Google Scholar 

  • Andersen AR, Friberg H, Friberg H, Lassen NA, Kristensen K, Neirinckx RD (1988) Assessment of the arterial input curve for [99mTc]-d, I-HM-PAO by rapid octanol extraction. J Cereb Blood Flow Metab 8[Suppl 1]:S23–S30

    Article  PubMed  CAS  Google Scholar 

  • Babich JW, Keeling F et al (1988) Initial experience with Tc99m-HMPAO in the study of brain tumors. Eur J Nucl Med 14:39–44

    Article  PubMed  CAS  Google Scholar 

  • Barres BA (1991) New roles for glia. J Neuroscience 11:3685–3694

    CAS  Google Scholar 

  • Corey-Bloom J, Thai LJ et al (1995) Diagnosis and evaluation of dementia. Neurology 45:211–218

    Article  PubMed  CAS  Google Scholar 

  • Coyle JT, Puttfarcken P (1993) Oxidative stress, glutamate, and neurodegenerative disorders. Science 262:689–695

    Article  PubMed  CAS  Google Scholar 

  • Davis PC, Gearing M et al (1995) The CERAD experience, part VIII: neuroimaging-neuropathology correlates of temporal lobe changes in Alzheimer’s disease. Neurology 45:178–179

    Article  PubMed  CAS  Google Scholar 

  • Devous MD, Payne JK et al (1993) Comparison of technetium-99m-ECD to Xenon-133 SPECT in normal controls and in patients with mild to moderate regional cerebral blood flow abnormalities. J Nucl Med 34:754–761

    PubMed  Google Scholar 

  • Frackowiak RSJ, Pozzilli C, Legg NJ, Du Boulay GH, Marshall J, Lenzi GL, Jones T (1981) Regional cerebral oxygen supply and utilization in dementia. A clinical and physiological study with oxygen-15 and positron tomography. Brain 104:753–778

    Article  PubMed  CAS  Google Scholar 

  • Franceschi M, Alberoni M et al (1995) Correlations between cognitive impairment, middle cerebral artery velocity and cortical glucose metabolism in the early phase of Alzheimer’s disease. Dementia 6:32–38

    PubMed  CAS  Google Scholar 

  • Gemmell HG, Evans NTS et al (1990) Regional cerebral blood flow imaging: a quantitative comparison of technetium-99m-HMPAO SPECT with C15O2 PET. J Nucl Med 31:1595–1600

    PubMed  CAS  Google Scholar 

  • Greenberg JH, Araki N et al (1994) Correlation between Tc99m-bicisate and regional CBF measured with iodo-[C-14] antipyrine in a primate focal ischemia model. J Cereb Blood Flow Metab 14[Suppl 1]:S36–S43

    PubMed  CAS  Google Scholar 

  • Haxby JV, Grady CL et al (1986) Neocortical metabolic abnormalities precede nonmemory cognitive defects in early Alzheimer-type dementia. Arch Neurol 43:882–885

    Article  PubMed  CAS  Google Scholar 

  • Haxby JV, Grady CL et al (1990) Longitudinal study of cerebral metabolic asymmetries and associated neuropsychological patterns in early dementia of the Alzheimer type. Arch Neurol 47:753–760

    Article  PubMed  CAS  Google Scholar 

  • Herholz K (1995) FDG PET and differential diagnosis of dementia. Alzheimer Dis Assoc Disord 9:6–16

    Article  PubMed  CAS  Google Scholar 

  • Herholz K, Schopphoff H et al (2002) Direct comparison of spatially normalized PET and SPECT scans in Alzheimer’s disease. J Nucl Med 43:21–26

    PubMed  Google Scholar 

  • Jacquier-Sarlin M, Slosman DO et al (1996a) The cellular basis of ECD brain retention. J Nucl Med 37:1694–1697

    PubMed  CAS  Google Scholar 

  • Jacquier-Sarlin MR, Polla BS et al (1996b) Oxido-reductive state: the major determinant for cellular retention of technetium-99m-HMPAO. J Nucl Med 37:1413–1416

    PubMed  CAS  Google Scholar 

  • Junod AF (1985) 5-Hydroxytryptamine and other amines in the lungs. The respiratory system. Handbook of physiology, vol 1. AP Society/Williams and Wilkins, Bethesda, pp 337–349

    Google Scholar 

  • Kennedy AM, Frackowiack RSJ et al (1995) Deficits in cerebral glucose metabolism demonstrated by positron emission tomography in individuals at risk of familial Alzheimer’s disease. Neurosci Lett 186:17–20

    Article  PubMed  CAS  Google Scholar 

  • Lassen NA, Sperling B (1994) 99mTc-bicisate reliably images CBF in chronic brain diseases but fails to show reflow hyperemia in subacute stroke: report of a multicenter trial of 105 cases comparing 133-Xe and 99mTc-bicisate (ECD, Neurolite) measured by SPECT on the same day. J Cereb Blood Flow Metab 14[Suppl 1]:S44–S48

    PubMed  Google Scholar 

  • Lassen NA, Henriksen S et al (1983) Cerebral blood-flow tomography: Xenon-133 compared with isopropylamphetamine-iodine-123. J Nucl Med 24:17–21

    PubMed  CAS  Google Scholar 

  • Lassen NA, Andersen AR et al (1988) The retention of [99mTc]-d,l-HM-PAO in the human brain after intracarotid bolus injection: a kinetic analysis. J Cereb Blood Flow Metab 8[Suppl 1]: S13–S22

    Article  PubMed  CAS  Google Scholar 

  • Léveillé J, Demonceau G et al (1989) Characterization of technetium-99m-L,L-ECD for brain perfusion imaging, part 2: biodistribution and brain imaging in humans. J Nucl Med 30:1901–1910

    Google Scholar 

  • Lindegaard MW, Skretting A et al (1986) Cerebral and cerebellar uptake of Tc99m-d,l-hexamethylpropyleneamine oxime (HMPAO) in patients with brain tumor studied by single photon emission computerized tomography. Eur J Nucl Med 14:39–44

    Google Scholar 

  • Messa C, Perani D et al (1994) High-resolution technetium-99m-HMPAO SPECT in patients with probable Alzheimer’s disease: comparison with fluorine-18-FDG PET. J Nucl Med 35:210–216

    PubMed  CAS  Google Scholar 

  • Meyer M, Wahner HW (1990) Focal high uptake of HMPAO in brain perfusion studies: a clue in the diagnosis of encephalitis. J Nucl Med 31:1094–1098

    PubMed  CAS  Google Scholar 

  • Miyazawa N, Koizumi K et al (1998) Discrepancies in brain perfusion SPECT findings between Tc-99m HMPAO and Tc-99m ECD: evaluation using dynamic SPECT in patients with hyperemia. Clin Nucl Med 23:686–690

    Article  PubMed  CAS  Google Scholar 

  • Moretti JL, Defer G et al (1990) “Luxury perfusion” with 99mTc-HMPAO and 123-IMP SPECT imaging during the subacute phase of stroke. Eur Nucl Med 16:17–22

    Article  CAS  Google Scholar 

  • Moretti JL, Caglar M et al (1995) Cerebral perfusion imaging tracers for SPECT: which one to choose? J Nucl Med 36:359–363

    PubMed  CAS  Google Scholar 

  • Murase K, Tanada S et al (1992) Kinetic behavior of technetium-99m-HMPAO in the human brain and quantification of cerebral blood flow using dynamic SPECT. J Nucl Med 33:135–143

    PubMed  CAS  Google Scholar 

  • Nakagawa M, Kuwabara Y et al (2002) 1lC-methionine uptake in cerebrovascular disease: a comparison with 18F-fDG PET and 99mTc-HMPAO SPECT. Ann Nucl Med 16:207–211

    Article  PubMed  CAS  Google Scholar 

  • Neirinckx R, Burke JF et al (1988) The retention mechanism of technetium-99m-HM-PAO: intracellular reaction with glutathione. J Cereb Blood Flow 8:S4–S12

    Article  CAS  Google Scholar 

  • Ogawa Y, Hashmi R et al (2001) Increased uptake of 99Tcm-ethyl cysteinate dimer in patients with brain tumours. Nucl Med Commun 22:479–483

    Article  PubMed  CAS  Google Scholar 

  • Orlandi C, Crane PD et al (1990) Regional cerebral blood flow and distribution of 99mTc ethyl cysteinate dimer in nonhuman primates. Stroke 21:1059–1063

    Article  PubMed  CAS  Google Scholar 

  • Papazyan JP, Delavelle J et al (1997) Discrepancies between HMPAO and ECD SPECT imaging in brain tumors. J Nucl Med 38:592–596

    PubMed  CAS  Google Scholar 

  • Pellerin L, Magistretti P (1994) Glutamate uptake into astrocytes stimulates aerobic glycolysis: a mechanism coupling neuronal activity to glucose utilization. Proc Natl Acad Sci U S A 91: 10625–10629

    Article  PubMed  CAS  Google Scholar 

  • Peters A, Palay SL et al (1991) The fine structure of the nervous system: neurons and their supporting cells. Saunders, Philadelphia

    Google Scholar 

  • Phelps ME, Huang SC et al (1979) Tomographic measurement of local cerebral glucose metabolic rate in humans with F-18 2-fluoro-2-deoxy-D-glucose: validation of method. Ann Neurol 6:371–388

    Article  PubMed  CAS  Google Scholar 

  • Pupi A, de Cristofaro MTR et al (1991) An analysis of the arterial input curve for technetium-99mHMPAO: quantification of rCBF using single-photon emission computed tomography. J Nucl Med 32:1501–1506

    PubMed  CAS  Google Scholar 

  • Pupi A, Castagnoli A et al (1994) Quantitative comparison between 99m Tc-HMPAO and 99m Tc-ECD: measurement of arterial input and brain retention. Eur J Nucl Med 21:124–130

    Article  PubMed  CAS  Google Scholar 

  • Rieck H, Adelwohrer C et al (1998) Discordance of technetium-99m-HMPAO and technetium-99m-ECD SPECT in herpes simplex encephalitis. J Nucl Med 39:1508–1510

    PubMed  CAS  Google Scholar 

  • Rodrigues M, Fonseca AT et al (1993) Tc99m-HMPAO brain SPECT in the evaluation of prognosis after surgical resection of astrocytoma. Comparison with other noninvasive imaging techniques (CT, MRI and Tl201 SPECT). Nucl Med Com 14:1050–1060

    Article  CAS  Google Scholar 

  • Roy CS, Sherrington CS (1890) On the regulation of the blood supply of the brain. J Physiol 11: 85–108

    PubMed  CAS  Google Scholar 

  • Schwartz RB, Carvalho PA, Alexander E 3rd, Loeffler JS, Folkerth R, Holman BL (1992) Radiation necrosis vs high-grade recurrent glioma: differentiation by using dual-isotope SPECT with 201 TI and 99m Tc-HMPAO. AJNR Am J Neuroradiol 12:1187–1192

    Google Scholar 

  • Slosman DO, Brill AB et al (1987) Evaluation of [Iodine-125] N,N,N′,-trimethyl-N′-[2-Hydroxy-3-methyl-5-iodobenzyl]-propanediamine lung uptake using an isolated-perfused lung model. J Nucl Med 28:203–208

    PubMed  CAS  Google Scholar 

  • Slosman DO, Donath A et al (1989) 131I-metaiodobenzyl-guanidine and 125I-iodoamphetamine lung extraction in rat: parameters of lung endothelial cell function and pulmonary vascular area. Eur J Nucl Med 15:207–210

    Article  PubMed  CAS  Google Scholar 

  • Slosman DO, Chicherio C et al (2001a) 133Xe SPECT cerebral blood flow study in a healthy population: determination of the T-score values. J Nucl Med 42:864–870

    PubMed  CAS  Google Scholar 

  • Slosman DO, Ludwig C, Zerarka S, Pellerin L, Chicherio C, de Ribaupierre A, Annoni JM, Bouras C, Herrmann F, Michel JP, Giacobini E, Magistretti PJ (2001b) Brain energy metabolism in Alzheimer’s disease: 99mTc-HMPAO SPECT imaging during verbal fluency and role of astrocytes in the cellular mechanism of 99mTc-HMPAO retention. Brain Res Brain Res Rev 36: 230–240

    Article  PubMed  CAS  Google Scholar 

  • Small GW, Mazziotta JC et al (1995) Apolipoprotein E type 4 allele and cerebral glucose metabolism in relatives at risk for familial Alzheimer disease. JAMA 273:942–947

    Article  PubMed  CAS  Google Scholar 

  • Sokoloff L, Reivich M et al (1977) The (14C)deoxyglucose method for the measurement of local cerebral glucose utilization: theory, procedure and normal values in the conscious and anesthetized albino rat. J Neurochem 28:897–916

    Article  PubMed  CAS  Google Scholar 

  • Takahashi S, Driscoll BF et al (1995) Role of sodium and potassium ions in regulation of glucose metabolism in cultured astroglia. Proc Natl Acad Sci U S A 92:4616–4620

    Article  PubMed  CAS  Google Scholar 

  • Tamgac F, Moretti J-L et al (1994) Non-matched images with I-123 IMP and Tc-99m bicisate single-photon emission tomography in the demonstration of focal hyperaemia during the subacute phase of an ischaemic stroke. Eur J Nucl Med 21:254–257

    Article  PubMed  CAS  Google Scholar 

  • Tsacopoulos M, Magistretti PJ (1996) Metabolic coupling between glia and neurons. J Neurosci 16:877–885

    PubMed  CAS  Google Scholar 

  • Tsuchida T, Nishizawa S et al (1994) SPECT images of technetium-99m-ethyl cysteinate dimer in cerebrovascular diseases: comparison with other cerebral perfusion tracers and PET. J Nucl Med 35:27–31

    PubMed  CAS  Google Scholar 

  • Walovitch RC, Hill TC et al (1989) Characterization of technetium-99m-L,L-ECD for brain perfusion imaging, part 1: pharmacology of technetium-99m ECD in nonhuman primates. J Nucl Med 30:1892–1901

    PubMed  CAS  Google Scholar 

  • Walovitch RC, Franceschi M et al (1991) Metabolism of 99mTc-L,L-Ethyl cysteinate dimer in healthy volunteers. Neuropharmacology 30:283–292

    Article  PubMed  CAS  Google Scholar 

  • Walovitch RC, Cheesman EH et al (1994) Studies of the retention mechanism of the brain perfusion imaging agent 99mTc-bicisate (99mTc-ECD). J Cereb Blood Flow Metab 14[Suppl 1]: S4–S11

    PubMed  CAS  Google Scholar 

  • Wolfe N, Reed BR et al (1995) Temporal lobe perfusion on single photon emission computed tomography predicts the rate of cognitive decline in Alzheimer’s disease. Arch Neurol 52:257–262

    Article  PubMed  CAS  Google Scholar 

  • Yonekura Y, Nishizawa S et al (1988) SPECT with (99mTc)-d,l-hexamethyl-propylene amine oxime (HM-PAO) compared with regional cerebral blood flow measured by PET: effect of linearization. J Cereb Blood Flow 8:S82–S89

    Article  CAS  Google Scholar 

  • Yonekura Y, Nishizawa S et al (1993) Functional mapping of flow and back-diffusion rate of N-isopropyl-p-iodoamphetamine in human brain. J Nucl Med 34:839–844

    PubMed  CAS  Google Scholar 

  • Zerarka S, Pellerin L et al (2001) Astrocytes as a predominant cellular site of (99m)Tc-HMPAO retention. J Cereb Blood Flow Metab 21:456–468

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Slosman, D.O., Pellerin, L. (2004). Perfusion Tracers: Biological Bases and Clinical Implications. In: Otte, A., Audenaert, K., Peremans, K., van Heeringen, K., Dierckx, R.A. (eds) Nuclear Medicine in Psychiatry. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-18773-5_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-18773-5_3

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-62287-8

  • Online ISBN: 978-3-642-18773-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics