Skip to main content
Log in

Quantitative comparison between 99mTc-HMPAO and 99mTc-ECD: measurement of arterial input and brain retention

  • Original Article
  • Published:
European Journal of Nuclear Medicine Aims and scope Submit manuscript

Abstract

This report describes a comparative study between technetium-99m ethyl cysteinate dimer (ECD) and 99mTc-hexamethylpropylene amine oxime (HMPAO) in five neurological patients. The conversion kinetics of the tracers in the blood from forms capable of diffusion across the blood-brain barrier to non-diffusible forms were studied by arterial sampling and rapid octanol extraction. We observed that HMPAO has a faster conversion rate in the blood but that the fraction of the injected dose available for brain extraction is higher than in the case of ECD. Regional brain concentrations of the tracers were measured with single-photon emission tomography (SPET) 35 min and 60 min after the injection and remained stable within this interval. On the basis of the measurements of the arterial input and of SPET brain concentrations of the tracers, the regional steadystate influx constants (Ki in ml/min/g) were determined for several brain regions. In the grey matter the Ki values were (mean ± SD) 0.32 ± 0.03 and 0.35 ± 0.04 for HMPAO and ECD, respectively; in the white matter the values were 0.23 ± 0.01 and 0.23 ± 0.02, respectively. The Ki values of the two tracers in corresponding regions were closely correlated (P<0.001). The correspondence of the Ki values of ECD and HMPAO demonstrates that ECD can also be considered a tracer that may be used for quantitative measurements of brain perfusion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Kanno I, Lassen NA. Two methods for calculating regional cerebral blood flow from emission computed tomography of inert gas concentration. J Comput Assist Tomogr 1979; 3: 71–76

    Google Scholar 

  2. Kuhl DE, Barrio JR, Huang S et al. Quantifying local cerebral blood flow by N-isopropyl-p-[123I] iodoamphetamine (IMP) tomography. J Nucl Med 1982; 23: 196–203

    Google Scholar 

  3. Neirinckx RD, Canning LR, Piper IM et al. [99mTc] d, l-HMPAO: A new radiopharmaceutical for SPECT imaging of regional cerebral blood perfusion. J Nucl Med 1987; 28: 191–202

    Google Scholar 

  4. Andersen AR. 99mTc-D, L-Hexamethylene-propyleneamine oxime (99mTc-HMPAO): basic kinetic studies of a tracer of cerebral blood flow. Cerebrovasc Brain Metab Rev 1989; 1: 288–318

    Google Scholar 

  5. Lassen NA, Andersen AR, Friberg L, Paulson OB. The retention of [99mTc]-d, l-HMPAO in the human brain after intracarotid bolus injection: a kinetic analysis. J Cereb Blood Flow Metab 1988; 8: S13-S22

    Google Scholar 

  6. Matsuda H, Oba H, Seki H et al. Determination of flow and rate constants in a kinetic model of [99mTc]-hexamethyl-propylene amine oxime in the human brain. J Cereb Blood Flow Metab 1988; 8: S61-S68

    Google Scholar 

  7. Pupi A, De Cristofaro MTR, Bacciottini L et al. An analysis of the arterial input curve for technetium-99m-HMPAO: quantification of rCBF using single-photon emission computed tomography. J Nucl Med 1991; 32: 1501–1506

    Google Scholar 

  8. Murase K, Tanada S, Fujita H, Sakaki A, Hamamoto K. Kinetic behaviour of technetium-99m-HMPAO in the human brain and quantification of cerebral blood flow using dynamic SPECT. J Nucl Med 1992; 33: 135–143

    Google Scholar 

  9. Walovitch RC, Franceschi M, Picard M et al. Metabolism of 99mTc-l, l-ethyl cysteinate dimer in healthy volunteers. Neuropharmacology 1991; 30: 283–292

    Article  CAS  PubMed  Google Scholar 

  10. Vallabhajosula S, Zimmerman RE, Picard M et al. Technetium-99m ECD: a new brain imaging agent: in vivo kinetics and biodistribution studies in normal human subjects. J Nucl Med 1989; 30: 599–604

    Google Scholar 

  11. Greenberg JH, Araki N, Karp A, Reivich M. Quantitative measurement of regional cerebral ischemia using Tc-99m ECD. J Nucl Med 1991; 32: 1070

    Google Scholar 

  12. Castagnoli A, Borsato N, Bruno A et al. SPECT brain imaging in chronic stroke and dementia: a comparison of 99mTc-ECD and (99mTc-HMPAO): In: Hartmmann A, Kuschinsky W Hoyer S, eds. Cerebral ischemia and dementia. Berlin Heidelberg New York: Springer; 1991: 327–333

    Google Scholar 

  13. Léveillé J, Demonceau G, Walovitch RC. Intrasubject comparison between technetium-99m-ECD and technetium-99m-HMPAO in healthy human subjects. J Nucl Med 1992; 33: 480–484

    Google Scholar 

  14. Nakagawara J, Nakamura J, Takeda R et al. Clinical comparison between Tc-99m ECD and 1231-IMP SPECT images in patients with cerebrovascular disease. J Cereb Blood Flow Metab 1991; 11: S31

    Google Scholar 

  15. Suzuki S, Sakai F, Akutsu T, Tazaki Y. Tracer kinetics of 123I-IMP, Tc-99m-HM-PAO and Tc-99m-ECD: measurements of temporal changes in arterial and jugular venous radioactivity. J Cereb Blood Flow Metab 1991; 11: S774

    Google Scholar 

  16. Tanada S, Kurase K, Inoue T et al. In vivo comparison of intracerebral behaviour of Tc-99m labeled ECD with Tc-99m labeled HMPAO using dynamic brain SPECT and a compartment model analysis. J Cereb Blood Flow Metab 1991; 11: S769

    Google Scholar 

  17. Bacciottini L, Lunghi F, Pupi A et al. Evaluation of technetium 99m cyclobutylpropylene amine oxime as a potential brain perfusion imaging agent for SPET. Eur J Nucl Med 1990; 17: 242–247

    Google Scholar 

  18. Oh TE, Davis NJ. Radial artery cannulation. Anaesth Intensive Care 1975; 3: 12–18

    Google Scholar 

  19. Formiconi AR, Pupi A, Passeri A. Compensation of spatial system response in SPECT with conjugate gradient reconstruction technique. Phys Med Biol 1989; 34: 69–84

    Google Scholar 

  20. Formiconi AR. Oblique angle sections in emission computed tomography. J Nucl Med Allied Sci 1984; 28: 109–114

    Google Scholar 

  21. De Cristofaro MTR, Mascalchi M, Pupi A et al. Subcortical arteriosclerotic encephalopathy: single photon emission computed tomography-magnetic resonance imaging correlation. Am J Physiol Imaging 1990; 5: 68–74

    Google Scholar 

  22. Formiconi AR, Pupi A, De Cristofaro MTR et al. Superimposition of brain sections from different acquisition techniques (CT and SPECT). J Cereb Blood Flow Metab 1989; 9: S413

    Google Scholar 

  23. Pupi A, De Cristofaro MTR, Formiconi AR, et al. A brain phantom for studying contrast recovery in emission computerized tomography. Eur J Nucl Med 1990; 17: 15–20

    Google Scholar 

  24. Frackowiak RSJ, Lenzi GL, Jones T, Heather JD. Quantitative measurement of regional cerebral blood flow and oxygen metabolism in man using 15O and positron emission tomography: theory, procedure, and normal values. J Comput Assist Tomogr 1980; 4: 727–736

    Google Scholar 

  25. Levine R, Sunderland JJ, Lagreze HL et al. Cerebral perfusion reserve indexes determined by fluoromethane positron emission scanning. Stroke 1988; 19: 19–27

    Google Scholar 

  26. Rapoport SI. Positron emission tomography in Alzheimer's disease in relation to disease pathogenesis: a critical review. Cerebrovasc Brain Metab Rev 1991; 3: 297–335

    Google Scholar 

  27. Leblanc R. Physiologic studies of cerebral ischemia. Clin Neurosurg 1991; 37: 289–311

    Google Scholar 

  28. Kuwert T, Hennerici M, Langen KJ et al. Compensatory mechanism in patients with asymptomatic carotid artery occlusion. Neurol Res 1990; 12: 89–93

    Google Scholar 

  29. Maurer AH. Nuclear medicine: SPECT comparisons to PET. Radiol Clin North Am 1988; 26: 1059–1074

    Google Scholar 

  30. Rattner Z, Smith EO, Woods S, Dey H, Hoffer PB. Toward absolute quantitation of cerebral blood flow using technetium-99m-HMPAO and a single scan. J Nucl Med 1991; 32: 1506–1507

    Google Scholar 

  31. Holm S, Madsen PL, Rubin P, et al. Tc-99m HMPAO activation studies: validation of the split-dose, image subtraction approach. J Cereb Blood Flow Metab 1991; 11: S766

    Google Scholar 

  32. Andersen AR, Friberg H, Lassen NA et al. Assessment of the arterial input curve for [99mTc]-d, l-HM-PAO by rapid octanol extraction. J Cereb Blood Flow Metab 1988; 8: S23-S30

    Google Scholar 

  33. Léveillé J, Demonceau G, De Roo M et al. Characterization of technetium-99m-L,L-ECD for brain perfusion imaging. Part 2. Biodistribution and brain imaging in humans. J Nucl Med 1989; 30: 1902–1910

    CAS  PubMed  Google Scholar 

  34. Holman BL, Hellman RS, Goldsmith SJ et al. Biodistribution, dosimetry and clinical evaluation of a technetium-99m ethyl cisteinate dimer in normal subjects and in patients with chronic cerebral infarction. J Nucl Med 1989; 30: 1018–1024

    Google Scholar 

  35. Di Rocco RJ, Silva DA, Kuczynski BL et al. The single-pass cerebral extraction and capillary permeability-surface area product of several putative cerebral blood flow imaging agents. J Nucl Med 1993; 34: 641–648

    Google Scholar 

  36. Budinger TF, Derenzo SE, Greenberg WL, Gullberg GT. Quantitative potentials of dynamic emission computed tomography. J Nucl Med 1978; 19: 309–315

    Google Scholar 

  37. Correia J. A bloody future for clinical PET? J Nucl Med 1992; 32: 620–622

    Google Scholar 

  38. Bradbury MWB, Kleeman CR. Stability of the potassium content of cerebrospinal fluid and brain. Am J Physiol 1967; 213: 519–528

    Google Scholar 

  39. Patlak CS, Blasberg RG, Fenstermacher JD. Graphical evaluation of blood-to-brain transfer constants from multiple-time uptake data. J Cereb Blood Flow Metab 1983; 3: 1–7

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Correspondence to: A. Pupi

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pupi, A., Castagnoli, A., De Cristofaro, M.T.R. et al. Quantitative comparison between 99mTc-HMPAO and 99mTc-ECD: measurement of arterial input and brain retention. Eur J Nucl Med 21, 124–130 (1994). https://doi.org/10.1007/BF00175759

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00175759

Key words

Navigation