Skip to main content

Antifungal Therapy in The ICU: The Bug, the Drug, and the Mug

  • Chapter
Annual Update in Intensive Care and Emergency Medicine 2011

Part of the book series: Annual Update in Intensive Care and Emergency Medicine 2011 ((AUICEM,volume 1))

Abstract

The incidence of invasive fungal infections has increased steadily, namely due to the increasing number of immunocompromised and critically ill patients. Candida spp. is by far the most frequent fungal pathogen isolated in critically ill patients, accounting for more than 85 % of fungal infections. Intensive care candidiasis represents 25 – 50 % of all invasive candidiasis. The incidence of candidemia, although rather variable from unit to unit, ranging from 2.8 to 22 per 10 000 patient days, is tenfold higher in the intensive care unit (ICU) than in the wards and Candida species are responsible for around 10 % of all ICU-acquired infections worldwide. In the recent Sepsis Occurrence in Acutely ill Patients (SOAP) study, Candida spp. accounted for 17 % of all cases of sepsis in the ICU and for 20 % of all ICU-acquired sepsis [1]. In the large, multicenter Extended Prevalence of Infection in the ICU (EPIC II) study, fungi were responsible for 20 % of all microbiologically documented infections and Candida spp. was the main fungal pathogen (17 %) [2]. However, previously uncommon or even new fungal pathogens are increasing in the ICU, namely Aspergillus spp. (mainly Aspergillus fumigatus), Zygomycetes (mainly Mucor and Rhizopus) and Fusarium. In recent years, several reports have described an increasing incidence of invasive pulmonary aspergillosis in critically ill patients admitted to the ICU, even in the absence of an apparent predisposing immunodeficiency, such as neutropenia or hematologic malignancy. Factors like the use of steroids, chronic obstructive pulmonary disease (COPD) and chronic liver failure seem to be associated with the development of invasive pulmonary aspergillosis in the ICU, whose incidence ranges from 0.3 % to as much as 5.8 % [3]–[5].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Vincent JL, Sakr Y, Sprung C, et al (2006) Sepsis in European Intensive Care Units: Results of the SOAP Study. Crit Care Med 34: 344–353

    Article  PubMed  Google Scholar 

  2. Vincent JL, Rello J, Marshall J, et al (2009) International Study of the Prevalence and Outcomes of Infection in Intensive Care Units. JAMA 302: 2323–2329

    Article  PubMed  CAS  Google Scholar 

  3. Garnacho-Montero J, Amaya-Villar R, Ortiz-Leyba C, et al (2005) Isolation of Aspergillus spp. from the respiratory tract in critically ill patients: risk factors, clinical presentation and outcome. Crit Care 9: R191–199

    Article  PubMed  Google Scholar 

  4. Meersseman W, Vandecasteele SJ, Wilmer A, Verbeken E, Peetermans WE, Van Wijngaerden E (2004) Invasive aspergillosis in critically ill patients without malignancy. Am J Respir Crit Care Med 170: 621–625

    Article  PubMed  Google Scholar 

  5. Vandewoude KH, Blot SI, Depuydt P, et al (2006) Clinical relevance of Aspergillus isolation from respiratory tract samples in critically ill patients. Crit Care 10: R31

    Article  PubMed  Google Scholar 

  6. Como JA, Dismukes WE (1994) Oral azoles as systemic antifungal therapy. N Engl J Med 330: 263–272

    Article  PubMed  CAS  Google Scholar 

  7. Saag MS, Dismukes WE (1988) Azole anti-fungal agents: emphasis on new triazoles. Antimicrob Agents Chemother 32: 1–8

    PubMed  CAS  Google Scholar 

  8. Nguyen MH, Yu CY (1998) Voriconazole against fluconazole-susceptible and resistant Candida isolates: in vitro efficacy compared with that of itraconazole and ketoconazole. J Antimicrob Chemother 42: 253–256

    Article  PubMed  CAS  Google Scholar 

  9. Pfaller MA, Jones RN, Messer SAA, Edmond MB, Wenzel RP (1998) National surveillance of nosocomial bloodstream infections due to Candida albicans: frequency of occurrence and antifungal susceptibility in the SCOPE Program. Diagn Microbiol Infect Dis 31: 327–332

    Article  PubMed  CAS  Google Scholar 

  10. British Society for Antimicrobial Chemotherapy Working Party on Fungal Infections (1994) Management of deep Candida infection in surgical and intensive care units. Intensive Care Med 20: 522–528

    Article  Google Scholar 

  11. Sanglard D, Ischer F, Monod M, Bille J (1996) Susceptibilities of Candida albicans multidrug transporter mutants to various antifungal agents and other metabolic inhibitors. Antimicrob Agents Chemother 40: 2300–2305

    PubMed  CAS  Google Scholar 

  12. Hernaez ML, Gil C, Pla J, Nombela C (1998) Induced expression of the Candida albicans multidrug resistance gene CDR1 in response to fluconazole and other antifungals. Yeasts 14: 517–526

    Article  CAS  Google Scholar 

  13. White MH, Bowden RA, Sandler ES, et al (1998) Randomized, double-blind clinical trial of amphotericin B colloidal dispersion versus amphotericin B in the empirical treatment of fever and neutropenia. Clin Infect Dis 27: 296–302

    Article  PubMed  CAS  Google Scholar 

  14. Marr KA, Lyons CN, Rustad T, Bowden RA, White TC (1998) Rapid, transient fluconazole resistance in Candida albicans is associated with increased mRNA levels of CDR. Antimicrob Agents Chemother 42: 2584–2589

    PubMed  CAS  Google Scholar 

  15. Moran GP, Sanglard D, Donnelly SM, Shanley DB, Sullivan DJ, Coleman DC (1998) Identification and expression of multidrug transporters responsible for fluconazole resistance in Candida dubliniensis. Antimicrob Agents Chemother 42: 1819–1830

    PubMed  CAS  Google Scholar 

  16. De Pauw BE, Meis JF (1998) Progress in fighting systemic fungal infection in hematological neoplasia. Support Cancer Center 6: 31–37

    Article  Google Scholar 

  17. Johnson EM, Davey KG, Szekely A, Warnock DW (1995) Itraconazole susceptibilities of fluconazole susceptible and resistant isolates of five Candida species. J Antimicrob Chemother 36: 787–793

    Article  PubMed  CAS  Google Scholar 

  18. Pfaller MA, Jones RN, Doern GV, Sader HS, Hollis RJ, Messer SA (1998) International surveillance of bloodstream infections due to Candida species: frequency of occurence and antifungal susceptibilities of isolates collected in 1997 in the United States, Canada and South America for the SENTRY Program. J Clin Microbiol 36: 1886–1889

    PubMed  CAS  Google Scholar 

  19. Pfaller MA, Jones RN, Messer SA, Edmond MB, Wenzel RP (1998) National surveillance of nosocomial bloodstream infections due to species of Candida other than Candida albicans: frequency of occurrence and antifungal susceptibility in the SCOPE program. Diagn Microbiol Infect Dis 30: 121–129

    Article  PubMed  CAS  Google Scholar 

  20. Pfaller MA, Messer SA, Hollis RJ, Jones RN, Diekema DJ (2002) In vitro activities of ravuconazole and voriconazole compared with those of four approved systemic antifungal agents against 6,970 clinical isolates of Candida spp. Antimicrob Agents Chemother 46: 1723–1727

    Article  PubMed  CAS  Google Scholar 

  21. Moore CB, Walls CM, Denning DW (2000) In vitro activity of the new triazole BMS-207147 against Aspergillus species in comparison with itraconazole and amphotericin B. Antimicrob Agents Chemother 44: 441–443

    Article  PubMed  CAS  Google Scholar 

  22. Diekema DJ, Pfaller MA, Messer SA, et al (1999) In vitro activities of BMS-207147 against over 600 contemporary clinical bloodstream isolates of Candida species from the SENTRY antimicrobial surveillance programme in North America and Latin America. Antimicrob Agents Chemother 43: 2236–2239

    PubMed  CAS  Google Scholar 

  23. Fung-Tome JC, Huczko E, Minassian B, Bonner DP (1998) In vitro activity of a new oral triazole: BMS-207147. Antimicrob Agents Chemother 42: 313–318

    Google Scholar 

  24. Hata K, Kimura J, Miki H, Toyosawa t, Nakamura T, Katsu K (1996) In vitro and in vivo antifungal activities of ER-30346, a novel oral triazole with a broad antifungal spectrum. Antimicrob Agents Chemother 40: 2237–2242

    PubMed  CAS  Google Scholar 

  25. Yamazumi T, Pfaller MA, Messer SA, Houston A, Hollis RJ, Jones RN (2000) In vitro activities of ravuconazole against 541 clinical isolates of Cryptococcus neoformans. Antimicrob Agents Chemother 44: 2883–2886

    Article  PubMed  CAS  Google Scholar 

  26. Pfaller MA, Messer SA, Hollis RJ, Jones RN (1998) In vitro susceptibilities of Candida bloodstream isolates to the new triazole antifungal agents BMS-207147, Sch 56592 and voriconazole. Antimicrob Agents Chemother 42: 3242–3244

    PubMed  CAS  Google Scholar 

  27. Sheehan DJ, Hitchcock CA, Sibley CM (1999) Current and emerging azole antifungal agents. Clin Microbiol Rev 12: 40–79

    PubMed  CAS  Google Scholar 

  28. Law D, Moore CB, Denning DW (1997) Activity of SCH 56592 compared with those of fluconazole and itraconazole against Candida spp. Antimicrob Agents Chemother 41: 2310–2311

    PubMed  CAS  Google Scholar 

  29. Pfaller MA, Messer SA, Jones RN (1997) Activity of a new triazole, Sch 56592, compared with those of four other antifungal agents tested against clinical isolates of Candida spp. and Sacharomyces cerevisiae. Antimicrob Agents Chemother 41: 233–235

    PubMed  CAS  Google Scholar 

  30. Bodey GP (1991) Antifungal agents. In: Bodey GP (ed) Candidiasis: Pathogenesis, Diagnosis and Treatment. Raven Press, New York, pp 371–384

    Google Scholar 

  31. Pfaller MA, Messer SA, Hollis RJ, Jones RN (2002) Antifungal activities of Posaconazole, Ravuconazole and Voriconazole compared to those of Itraconazole and Amphotericin B against 239 clinical isolates of Aspergillus spp. and other filamentous fungi: report from SENTRY antimicrobial surveillance program, 2000. Antimicrob Agents Chemother 46: 1032–1037

    Article  PubMed  CAS  Google Scholar 

  32. Richardson MD, Warnock DW (1997) Antifungal drugs. In: Richardson MD, Warnock DW (eds) Fungal Infections-Diagnosis and Management, 2nd edn. Blackwell Science, Oxford pp 21–28

    Google Scholar 

  33. Iwata K (1992) Drug resistance in human pathogenic fungi. Eur J Epidemiol 8: 407–421

    Article  PubMed  CAS  Google Scholar 

  34. Vincent JL, Anaissie E, Bruining H, et al (1998) Epidemiology, diagnosis and treatment of systemic Candida infection in surgical patients under intensive care. Intensive Care Med 24: 206–216

    Article  PubMed  CAS  Google Scholar 

  35. Flanagan PG, Barnes RA (1998) Fungal infections in the intensive care unit. J Hosp Infect 38: 163–177

    Article  PubMed  CAS  Google Scholar 

  36. Wey SB, Motomi M, Pfaller MA, Woolson RF, Wenzel RP (1988) Hospital acquired candidemia: the attributable mortality and excess length of stay. Arch Intern Med 148: 2642–2645

    Article  PubMed  CAS  Google Scholar 

  37. Warnock DW (1995) Fungal complications of transplantations: diagnosis, treatment and prevention. J Antimicrob Chemother 36: 73–84

    PubMed  CAS  Google Scholar 

  38. Denning DW (2003) Echinocandin antifungal drugs. Lancet 362: 1142–1151

    Article  PubMed  CAS  Google Scholar 

  39. Perlin DS (2007) Resistance to echinocandin-class antifungal drugs. Drug Resist Updat 10: 121–130

    Article  PubMed  CAS  Google Scholar 

  40. Playford EG, Eggimann P, Calandra T (2008) Antifungals in the ICU. Curr Opin Infect Dis 21: 610–619

    Article  PubMed  CAS  Google Scholar 

  41. Pappas PG, Kauffman CA, Andes D, et al (2009) Clinical Practice Guidelines for the Management of Candidiasis: 2009 Update by the Infectious Diseases Society of America. Clin Infect Dis 48: 503–535

    Article  PubMed  CAS  Google Scholar 

  42. Reboli A, Rotstein C, Pappas PG, et al (2007) Anidulafungin versus Fluconazole for Invasive Candidiasis. N Eng J Med 356: 2477–2482

    Article  Google Scholar 

  43. Guery BP, Arendrup MC, Auzinger G, et al (2009) Management of invasive candidiasis and candidemia in adult non-neutropenic intensive care unit patients: Part II. Treatment. Intensive Care Med 35: 206–214

    Article  PubMed  CAS  Google Scholar 

  44. Herbrecht R, Denning DW, Patterson TF, et al (2002) Voriconazole versus amphotericin B for primary therapy of invasive aspergillosis. N Engl J Med 347: 408–415

    Article  PubMed  CAS  Google Scholar 

  45. Walsh TJ, Anaissie EJ, Denning DW, et al (2008) Treatment of Aspergillosis: Clinical Practice Guidelines of the Infectious Diseases Society of America. Clin Infect Dis 46: 327–360

    Article  PubMed  CAS  Google Scholar 

  46. Blum RA, D’Andrea DT, Florentino BM, et al (1991) Increased gastric pH and the bioavailability of fluconazole and ketoconazole. Ann Intern Med 114: 755–757

    PubMed  CAS  Google Scholar 

  47. Lutsar I, Roffey S, Troke P (2004) Voriconazole concentrations in the cerebrospinal fluid and brain tissue of guinea pigs and immunocompromised patients. Br J Clin Pharmacol 57: 218–222

    Google Scholar 

  48. Arndt CA, Walsh TJ, McCully CL, Balis FM, Pizzo PA, Poplack DG (1988) Fluconazole penetration into cerebrospinal fluid: implications for treating fungal infections of the central nervous system. J Infect Dis 157: 178–180

    Article  PubMed  CAS  Google Scholar 

  49. Foulds G, Brennan DR, Wajszczuk C, et al (1988) Fluconazole penetration into cerebrospinal fluid in humans. J Clin Pharmacol 28: 363–366

    PubMed  CAS  Google Scholar 

  50. Donnelly JP, De Pauw BE (2004) Voriconazole-a new therapeutic agent with an extended spectrum of antifungal activity. Clin Microbiol Infect 10(Suppl 1): 107–117

    Article  PubMed  CAS  Google Scholar 

  51. Bland SE (2002) Voriconazole. Pharmacotherapy Perspectives Nov/Dec: 32–39

    Google Scholar 

  52. Ashley E, Lewis R, Lewis JS, Martin C, Andes D (2006): Pharmacology of systemic antifungal agents. Clin Infect Dis 43(Suppl 1): S28–S39

    Article  Google Scholar 

  53. Groll AH, Piscitelli SC, Walsh TJ (1998) Clinical pharmacology of systemic antifungal agents: a comprehensive review of agents in clinical use, current investigational compounds and putative targets for antifungal drug development. Adv Pharmacol 44: 343–500

    Article  PubMed  CAS  Google Scholar 

  54. Raasch RH (2004) Anidulafungin: review of a new echinocandinantifungal agent. Expert Rev Anti Infect Ther 2: 499–508

    Article  PubMed  CAS  Google Scholar 

  55. Richardson MD, Kokki M (1988) Therapeutic Guidelines in Systemic Fungal Infections. Current Medical Literature, London

    Google Scholar 

  56. Silvestri L, Mur Laffon D, Gullo A (1998) Antifungal agents. In: van Saene HKF, Silvestri L, de la Cal MA (eds) Infection Control in the Intensive Care Unit. Springer, Milan, pp 50

    Google Scholar 

  57. Albengres E, Le Fouet H, Tillement JP (1998) Systemic antifungal agents. Drug Saf 18: 83–97

    Article  PubMed  CAS  Google Scholar 

  58. Michalets EL (1998) Update: clinically significant cytochrome P450 drug interactions. Pharmacotherapy 18: 84–112

    PubMed  CAS  Google Scholar 

  59. Groll AH, Gea-Banacloche JC, Glasmacher A, Just-Nuebling G, Maschmeyer G, Walsh TJ (2003) Clinical pharmacology of antifungal compounds. Infect Dis Clin North Am 17: 159–191

    Article  PubMed  Google Scholar 

  60. Holland S, Stone J, Wickersham P, Deutsch P, Winchell G, Hesney M (2001) Drug interactions between caspofungin and tacrolimus. Program and Abstracts of the 41st Interscience Conference on Antimicrobial Agents and Chemotherapy. American Society for Microbiology, Chicago, A13 (abst)

    Google Scholar 

  61. Del Poeta M, Cruz MC, Cardenas ME, Perfect JR, Heitman J (2000) Synergistic antifungal activities of bafilomycin A(l), fluconazole and the pneumocandin MK-0991/caspofungin acetate with calcineurin inhibitors FK506 and L-685,818 against Cryptococcus neoformans. Antimicrob Agents Chemother 44: 739–746

    Article  PubMed  Google Scholar 

  62. Terrell CL HC (1992) Antifungal agents used for deep-seated mycotic infections. Mayo Clin Proc 67: 69–91

    PubMed  CAS  Google Scholar 

  63. Saag MS, Dismukes WE (1988) Azole anti-fungal agents: emphasis on new triazoles. Antimicrob Agents Chemother 32: 1–8

    PubMed  CAS  Google Scholar 

  64. Bronstein JA, Gros P, Hernandez E, Larroque P, Molinie C (1997) Fatal acute hepatitis necrosis due to dose-dependent fluconazole hepatotoxicity. Clin Infect Dis 25: 1266–1267

    Article  PubMed  CAS  Google Scholar 

  65. Munoz P, Moreno S, Berenguer J, Bernaldo de Quiros JL, Bouza E (1991) Fluconazole related hepatotoxicity in patients with acquired immunodeficiency syndrome. Arch Intern Med 151: 1020–1021

    Article  PubMed  CAS  Google Scholar 

  66. Hay RJ (1993) Risk/benefit of modern antifungal therapy: focus on hepatic reactions. J Am Acad Dermatol 29: S50–S54

    Article  PubMed  CAS  Google Scholar 

  67. Pascual A, Calandra T, Bolay S, Buclin T, Bille J, Marchetti 0 (2008) Voriconazole therapeutic drug monitoring in patients with invasive mycoses improves efficacy and safety outcomes. Clin Infect Dis 46: 201–211

    Article  PubMed  CAS  Google Scholar 

  68. Chia JKS, McManus EJ (1990) In vitro tumor necrosis factor induction assay for analysis of febrile toxicity associated with amphotericin B preparations. Antimicrob Agents Chemother 34: 906–908

    PubMed  CAS  Google Scholar 

  69. Grasela TH Jr, Goodwin SD, Walawander MK, Cramer RL, Fuhs DW, Moriarty VP (1990) Prospective surveillance of intravenous amphotericin B use patterns. Pharmacotherapy 10: 341–348

    PubMed  Google Scholar 

  70. Gelfand JA, Kimball K, Burke JF, Dinarello CA (1988) Amphotericin B treatment of human mononuclear cells in vitro results in secretion of tumour necrosis factor and interleukin-1. Clin Res 36: 456A

    Google Scholar 

  71. Lin AC, Goldwasser E, Bernard EM, Chapman SW (1990) Amphotericin B blunts erythropoietin response to anemia. J Infect Dis 161: 348–351

    Article  PubMed  CAS  Google Scholar 

  72. Gallis HA, Drew RH, Pickard WW (1990) Amphotericin B: 30 years of clinical experience. Rev Infect Dis 12: 308–329

    Article  PubMed  CAS  Google Scholar 

  73. Branch RA (1988) Prevention of amphotericin B induced renal impairment: a review on the use of sodium supplementation. Arch Intern Med 148: 2389–2394.

    Article  PubMed  CAS  Google Scholar 

  74. Khoo SH, Bond J, Denning DW (1994) Administering amphotericin B: a pratical approach. J Antimicrob Chemother 33: 203–213

    Article  PubMed  CAS  Google Scholar 

  75. Villanueva A, Arathoon EG, Noriega LM, Berman RS, DiNubile MJ, Sable CA (2001) A randomized double-blind study of caspofungin versus amphotericin for the treatment of candidal esophagitis. Clin Infect Dis 33: 1529–1535

    Article  PubMed  CAS  Google Scholar 

  76. Arathon EG, Gotuzzo E, Noriega LM, Berman RS, DiNubile M, Sable CA (2002) Randomized, double-blind, multicenter study of caspofungin versus amphotericin B for treatment of oropharyngeal and esophageal candidiasis. Antimicrob Agents Chemother 46: 451–457

    Article  Google Scholar 

  77. Villanueva A, Gotuzzo E, Arathoon EG, et al (2002) A randomized double-blind study of caspofungin versus fluconazole for the treatment of esophageal candidiasis. Am J Med 113: 294–299

    Article  PubMed  CAS  Google Scholar 

  78. Graybill JR (1989) New antifungal agents. Eur J Clin Microbiol Infect Dis 8: 402–412

    Article  PubMed  CAS  Google Scholar 

  79. Toon S, Ross CE, Gokal R, Rowland M (1990) An assessment of the effects of impaired renal function and hemodyalisis on the pharmacokinetics of fluconazole. Br J Clin Pharmacol 29: 221–226

    PubMed  CAS  Google Scholar 

  80. Trotman RL, Williamson JC, Shoemaker DM, Salzer WL (2005) Antibiotic dosing in critically ill adult patients receiving continuous renal replacement therapy. Clin Infect Dis 41: 1159–1166

    Article  PubMed  CAS  Google Scholar 

  81. Walsh TJ, Adamson PC, Seibel NL, et al (2005) Pharmacokinetics, safety, and tolerability of caspofungin in children and adolescents. Antimicrob Agents Chemother 49: 4536–4545

    Article  PubMed  CAS  Google Scholar 

  82. Nguyen TH, Hoppe-Tichy T, Geiss HK, et al (2007) Factors influencing caspofungin plasma concentrations in patients of a surgical intensive care unit. J Antimicrob Chemother 60: 100–106

    Article  PubMed  CAS  Google Scholar 

  83. Hollenbach E (2008) Invasive candidiasis in the ICU: evidence based and on the edge of evidence. Mycoses 51(Suppl 2): 25–30

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media LLC

About this chapter

Cite this chapter

Pereira, J.M., Paiva, J.A. (2011). Antifungal Therapy in The ICU: The Bug, the Drug, and the Mug. In: Vincent, JL. (eds) Annual Update in Intensive Care and Emergency Medicine 2011. Annual Update in Intensive Care and Emergency Medicine 2011, vol 1. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-18081-1_47

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-18081-1_47

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-18080-4

  • Online ISBN: 978-3-642-18081-1

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics