Skip to main content

Pros and Cons of Assisted Mechanical Ventilation in Acute Lung Injury

  • Chapter
Annual Update in Intensive Care and Emergency Medicine 2011

Part of the book series: Annual Update in Intensive Care and Emergency Medicine 2011 ((AUICEM,volume 1))

  • 2145 Accesses

Abstract

Protective ventilation with low tidal volume (VT) has become the standard of care in patients with acute lung injury/acute respiratory distress syndrome (ALI/ARDS) to prevent ventilator-associated lung injury (VALI) [1]. While tight control of VT is more easily achieved with controlled ventilation, assisted ventilatory modes are available, and their performance and suitability for use in ALI/ARDS differs according to specific criteria. In the present chapter, we discuss the effects and applications of various assisted ventilation modes on different aspects of ALI/ARDS.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. The Acute Respiratory Distress Syndrome Network (2000) Ventilation with lower tidal volumes as compared with traditional tidal volumes for acute lung injury and the acute respiratory distress syndrome. N Engl J Med 342: 1301–1308

    Article  Google Scholar 

  2. Kallet RH, Campbell AR, Dicker RA Katz JA, Mackersie RC (2006) Effects of tidal volume on work of breathing during lung-protective ventilation in patients with acute lung injury and acute respiratory distress syndrome. Crit Care Med 34: 8–14

    Article  PubMed  Google Scholar 

  3. Chiumello D, Pelosi P, Calvi E, Bigatello LM, Gattinoni L (2002) Different modes of assisted ventilation in patients with acute respiratory failure. Eur Respir J 20: 925–933

    Article  PubMed  CAS  Google Scholar 

  4. Kahn JM, Andersson L, Karir V, Polissar NL, Neff MJ, Rubenfeld GD (2005) Low tidal volume ventilation does not increase sedation use in patients with acute lung injury. Crit Care Med 33: 766–771

    Article  PubMed  Google Scholar 

  5. Cheng IW, Eisner MD, Thompson BT, Ware LB, Matthay MA (2005) Acute effects of tidal volume strategy on hemodynamics, fluid balance, and sedation in acute lung injury. Crit Care Med 33: 63–70

    Article  PubMed  Google Scholar 

  6. Gainnier M, Roch A, Forel JM, et al (2004) Effect of neuromuscular blocking agents on gas exchange in patients presenting with acute respiratory distress syndrome. Crit Care Med 32: 113–119

    Article  PubMed  CAS  Google Scholar 

  7. Forel JM, Roch A, Marin V, et al (2006) Neuromuscular blocking agents decrease inflammatory response in patients presenting with acute respiratory distress syndrome. Crit Care Med 34: 2749–2757

    Article  PubMed  CAS  Google Scholar 

  8. Papazian L, Forel JM, Gacouin A, et al (2010) Neuromuscular blockers in early acute respiratory distress syndrome. N Engl J Med 363: 1107–1116

    Article  PubMed  CAS  Google Scholar 

  9. Kallet RH, Campbell AR, Alonso JA, Morabito DJ, Mackersie RC (2000) The effects of pressure control versus volume control assisted ventilation on patient work of breathing in acute lung injury and acute respiratory distress syndrome. Respir Care 45: 1085–1096

    PubMed  CAS  Google Scholar 

  10. Esteban A, Ferguson ND, Meade MO, et al (2008) Evolution of mechanical ventilation in response to clinical research. Am J Respir Crit Care Med 177: 170–177

    Article  PubMed  Google Scholar 

  11. Varelmann D, Muders T, Zinserling J, et al (2008) Cardiorespiratory effects of spontaneous breathing in two different models of experimental lung injury: a randomized controlled trial. Crit Care 12: R135

    Article  PubMed  Google Scholar 

  12. Younes M, Webster K, Kun J, Roberts D, Masiowski B (2001) A method for measuring passive elastance during proportional assist ventilation. Am J Respir Crit Care Med 164: 50–60

    PubMed  CAS  Google Scholar 

  13. Sulemanji D, Marchese A, Garbarini P, Wysocki M, Kacmarek RM (2009) Adaptive support ventilation: an appropriate mechanical ventilation strategy for acute respiratory distress syndrome? Anesthesiology 111: 863–870

    Article  PubMed  Google Scholar 

  14. Dongelmans DA, Veelo DP, Binnekade JM, et al (2010) Adaptive support ventilation with protocolized de-escalation and escalation does not accelerate tracheal extubation of patients after nonfast-track cardiothoracic surgery. Anesth Analg 111: 961–967

    PubMed  Google Scholar 

  15. Colombo D, Cammarota G, Bergamaschi V, De Lucia M, Corte FD, Navalesi P (2008) Physiologic response to varying levels of pressure support and neurally adjusted ventilatory assist in patients with acute respiratory failure. Intensive Care Med 34: 2010–2018

    Article  PubMed  Google Scholar 

  16. Suki B, Alencar AM, Sujeer MK et al (1998) Life-support system benefits from noise. Nature 393: 127–128

    Article  PubMed  CAS  Google Scholar 

  17. Varelmann D, Wrigge H, Zinserling I, Muders T, Hering R, Putensen C (2005) Proportional assist versus pressure support ventilation in patients with acute respiratory failure: cardiorespiratory responses to artificially increased ventilatory demand. Crit Care Med 33: 1968–1975

    Article  PubMed  Google Scholar 

  18. Schmidt M, Demoule A, Cracco C, et al (2010) Neurally adjusted ventilatory assist increases respiratory variability and complexity in acute respiratory failure. Anesthesiology 112: 670–681

    Article  PubMed  Google Scholar 

  19. Gama de Abreu M, Spieth P, Pelosi P, et al (2008) Noisy pressure support ventilation: a pilot study on a new assisted ventilation mode in experimental lung injury. Crit Care Med 36: 818–827

    Article  PubMed  Google Scholar 

  20. Cereda M, Foti G, Marcora B, et al (2000) Pressure support ventilation in patients with acute lung injury. Crit Care Med 28: 1269–1275

    Article  PubMed  CAS  Google Scholar 

  21. Yoshida T, Rinka H, Kaji, A et al (2009) The impact of spontaneous ventilation on distribution of lung aeration in patients with acute respiratory distress syndrome: airway pressure release ventilation versus pressure support ventilation. Anesth Analg 109: 1892–1900

    Article  PubMed  Google Scholar 

  22. Wrigge H, Zinserling J, Neumann P, et al (2003) Spontaneous breathing improves lung aeration in oleic acid-induced lung injury. Anesthesiology 99: 376–384

    Article  PubMed  Google Scholar 

  23. Putensen C, Mutz N, Putensen-Himmer G, Zinserling J (1999) Spontaneous breathing during ventilatory support improves ventilation-perfusion distributions in patients with acute respiratory distress syndrome. Am J Respir Crit Care Med 159: 1241–1248

    PubMed  CAS  Google Scholar 

  24. Putensen C, Zech S, Wrigge H, et al (2001) Long-term effects of spontaneous breathing during ventilatory support in patients with acute lung injury. Am J Respir Crit Care Med 164: 43–49

    PubMed  CAS  Google Scholar 

  25. Kondili E, Xirouchaki N, Vaporidi K, Klimathianaki M, Georgopoulos D (2006) Short-term cardiorespiratory effects of proportional assist and pressure-support ventilation in patients with acute lung injury/acute respiratory distress syndrome. Anesthesiology 105: 703–708

    Article  PubMed  Google Scholar 

  26. Brander L, Sinderby C, Lecomte F, et al (2009) Neurally adjusted ventilatory assist decreases ventilator-induced lung injury and non-pulmonary organ dysfunction in rabbits with acute lung injury. Intensive Care Med 35: 1979–1989

    Article  PubMed  Google Scholar 

  27. Spieth P, Carvalho AR, Güldner A, et al (2009) Effects of different levels of pressure support variability in experimental lung injury. Anesthesiology 110: 342–350

    PubMed  Google Scholar 

  28. Wrigge H, Zinserling J, Neumann P, et al (2005) Spontaneous breathing with airway pressure release ventilation favors ventilation in dependent lung regions and counters cyclic alveolar collapse in oleic-acid-induced lung injury: a randomized controlled computed tomography trial. Crit Care 9: R780–R789

    Article  PubMed  Google Scholar 

  29. Gama de Abreu M, Cuevas M, Spieth PM, et al (2010) Regional lung aeration and ventilation during pressure support and biphasic positive airway pressure ventilation in experimental lung injury. Crit Care 14: R34

    Article  PubMed  Google Scholar 

  30. Dellinger RP, Jean S, Cinel I, et al (2007) Regional distribution of acoustic-based lung vibration as a function of mechanical ventilation mode. Crit Care 11: R26

    Article  PubMed  Google Scholar 

  31. Neumann P, Wrigge H, Zinserling J, et al (2005) Spontaneous breathing affects the spatial ventilation and perfusion distribution during mechanical ventilatory support. Crit Care Med 33: 1090–1095

    Article  PubMed  Google Scholar 

  32. Carvalho AR, Spieth PM, Pelosi P, et al (2009) Pressure support ventilation and biphasic positive airway pressure improve oxygenation by redistribution of pulmonary blood flow. Anesth Analg 109: 856–865

    Article  PubMed  Google Scholar 

  33. Gattinoni L, Carlesso E, Cadringher P, Valenza F, Vagginelli F, Chiumello D (2003) Physical and biological triggers of ventilator-induced lung injury and its prevention. Eur Respir J Suppl 47: 15s–25s

    Article  PubMed  CAS  Google Scholar 

  34. Hotchkiss JR, Jr., Blanch L, Naveira A, et al (2001) Relative roles of vascular and airspace pressures in ventilator-induced lung injury. Crit Care Med 29: 1593–1598

    Article  PubMed  Google Scholar 

  35. Thille AW, Rodriguez P, Cabello B, Lellouche F, Brochard L (2006) Patient-ventilator asynchrony during assisted mechanical ventilation. Intensive Care Med 32: 1515–1522

    Article  PubMed  Google Scholar 

  36. Kallet RH, Alonso JA, Luce JM, Matthay MA (1999) Exacerbation of acute pulmonary edema during assisted mechanical ventilation using a low-tidal volume, lung-protective ventilator strategy. Chest 116: 1826–1832

    Article  PubMed  CAS  Google Scholar 

  37. Saddy F, Oliveira GP, Garcia CS, et al (2009) Assisted ventilation modes reduce the expression of lung inflammatory and fibrogenic mediators in a model of mild acute lung injury. Intensive Care Med 36: 1417–1426

    Article  Google Scholar 

  38. Gama de Abreu M, Spieth PM, Carvalho AR, et al (2010) Pressure support ventilation improves oxygenation with less lung injury and is further improved by random variation of pressure support. Am J Respir Crit Care Med 181: A4073 (abst)

    Google Scholar 

  39. Henzler D, Hochhausen N, Bensberg R, et al (2010) Effects of preserved spontaneous breathing activity during mechanical ventilation in experimental intra-abdominal hypertension. Intensive Care Med 36: 1427–1435

    Article  PubMed  CAS  Google Scholar 

  40. Yang LY, Huang YC, Macintyre NR (2007) Patient-ventilator synchrony during pressure-targeted versus flow-targeted small tidal volume assisted ventilation. J Crit Care 22: 252–257

    Article  PubMed  Google Scholar 

  41. Thille AW, Cabello B, Galia F, Lyazidi A, Brochard L (2008) Reduction of patient-ventilator asynchrony by reducing tidal volume during pressure-support ventilation. Intensive Care Med 34: 1477–1486

    Article  PubMed  Google Scholar 

  42. Chiumello D, Pelosi P, Taccone P, Slutsky A, Gattinoni L (2003) Effect of different inspiratory rise time and cycling off criteria during pressure support ventilation in patients recovering from acute lung injury. Crit Care Med 31: 2604–2610

    Article  PubMed  Google Scholar 

  43. Pelosi P, Cadringher P, Bottino N, et al (1999) Sigh in Acute Respiratory Distress Syndrome. Am I Respir Crit Care Med 159: 872–880

    CAS  Google Scholar 

  44. Patroniti N, Foti G, Cortinovis B, et al (2002) Sigh improves gas exchange and lung volume in patients with acute respiratory distress syndrome undergoing pressure support ventilation. Anesthesiology 96: 788–794

    Article  PubMed  Google Scholar 

  45. Steimback PW, Oliveira GP, Rzezinksi AF, et al (2009) Effects of frequency and inspiratory plateau pressure during recruitment manoeuvres on lung and distal organs in acute lung injury. Intensive Care Med 35: 1120–1128

    Article  PubMed  Google Scholar 

  46. Levine S, Nguyen T, Taylor N, et al (2008) Rapid disuse atrophy of diaphragm fibers in mechanically ventilated humans. N Engl I Med 358: 1327–1335

    Article  CAS  Google Scholar 

  47. Hermans G, Agten A, Testelmans D, Decramer M, Gayan-Ramirez G (2010) Increased duration of mechanical ventilation is associated with decreased diaphragmatic force: a prospective observational study. Crit Care 14: R127

    Article  PubMed  Google Scholar 

  48. Sassoon CS, Zhu E, Caiozzo VI (2004) Assist-control mechanical ventilation attenuates ventilator-induced diaphragmatic dysfunction. Am I Respir Crit Care Med 170: 626–632

    Article  Google Scholar 

  49. Futier E, Constantin IM, Combaret L, et al (2008) Pressure support ventilation attenuates ventilator-induced protein modifications in the diaphragm. Crit Care 12: R116

    Article  PubMed  Google Scholar 

  50. Jung B, Constantin IM, Rossel N, et al (2010) Adaptive support ventilation prevents ventilator-induced diaphragmatic dysfunction in piglet: an in vivo and in vitro study. Anesthesiology 112: 1435–1443

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media LLC

About this chapter

Cite this chapter

Gama de Abreu, M., Rocco, P.R.M., Pelosi, P. (2011). Pros and Cons of Assisted Mechanical Ventilation in Acute Lung Injury. In: Vincent, JL. (eds) Annual Update in Intensive Care and Emergency Medicine 2011. Annual Update in Intensive Care and Emergency Medicine 2011, vol 1. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-18081-1_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-18081-1_14

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-18080-4

  • Online ISBN: 978-3-642-18081-1

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics