Skip to main content

Preclinical Molecular Imaging Using PET and MRI

  • Chapter
  • First Online:
Molecular Imaging in Oncology

Part of the book series: Recent Results in Cancer Research ((RECENTCANCER,volume 187))

Abstract

Molecular imaging fundamentally changes the way we look at cancer. Imaging paradigms are now shifting away from classical morphological measures towards the assessment of functional, metabolic, cellular, and molecular information in vivo. Interdisciplinary driven developments of imaging methodology and probe molecules utilizing animal models of human cancers have enhanced our ability to non-invasively characterize neoplastic tissue and follow anti-cancer treatments. Preclinical molecular imaging offers a whole palette of excellent methodology to choose from. We will focus on positron emission tomography (PET) and magnetic resonance imaging (MRI) techniques, since they provide excellent and complementary molecular imaging capabilities and bear high potential for clinical translation. Prerequisites and consequences of using animal models as surrogates of human cancers in preclinical molecular imaging are outlined. We present physical principles, values and limitations of PET and MRI as molecular imaging modalities and comment on their high potential to non-invasively assess information on hypoxia, angiogenesis, apoptosis, gene expression, metabolism, and cell trafficking in preclinical cancer research.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aboagye EO (2005) Positron emission tomography imaging of small animals in anticancer drug development. Mol Imaging Biol 7:53–58

    Article  PubMed  Google Scholar 

  • Abolmaali N, Haase R, Koch A et al (2011) Two or four hour [18F]FMISO-PET in HNSCC. When is the contrast best. Nuklearmedizin 50:22–27

    Article  CAS  PubMed  Google Scholar 

  • Adonai N, Nguyen KN, Walsh J et al (2002) Ex vivo cell labeling with 64Cu-pyruvaldehyde-bis(N4-methylthiosemicarbazone) for imaging cell trafficking in mice with positron-emission tomography. Proc Natl Acad Sci U S A 99:3030–3035

    Article  CAS  PubMed  Google Scholar 

  • Ahrens ET, Rothbacher U, Jacobs RE et al (1998) A model for MRI contrast enhancement using T1 agents. Proc Natl Acad Sci U S A 95:8443–8448

    Article  CAS  PubMed  Google Scholar 

  • Ahrens ET, Flores R, Xu H et al (2005) In vivo imaging platform for tracking immunotherapeutic cells. Nat Biotechnol 23:983–987

    Article  CAS  PubMed  Google Scholar 

  • Aime S, Cabella C, Colombatto S et al (2002a) Insights into the use of paramagnetic Gd(III) complexes in MR-molecular imaging investigations. J Magn Reson Imaging 16:394–406

    Article  PubMed  Google Scholar 

  • Aime S, Barge A, Castelli DD et al (2002b) Paramagnetic Lanthanide(III) complexes as pH-sensitive chemical exchange saturation transfer (CEST) contrast agents for MRI applications. Magn Reson Med 47:639–648

    Article  CAS  PubMed  Google Scholar 

  • Aime S, Delli Castelli D, Fedeli F et al (2002c) A paramagnetic MRI-CEST agent responsive to lactate concentration. J Am Chem Soc 124:9364–9365

    Article  CAS  PubMed  Google Scholar 

  • Aime S, Castelli DD, Terreno E (2005a) Highly sensitive MRI chemical exchange saturation transfer agents using liposomes. Angew Chem Int Ed Engl 44:5513–5515

    Article  CAS  PubMed  Google Scholar 

  • Aime S, Carrera C, Castelli DD et al (2005b) Tunable imaging of cells labeled with MRI-PARACEST agents. Angew Chem Int Ed Engl 44:1813–1815

    Article  CAS  PubMed  Google Scholar 

  • Aime S, Castelli DD, Crich SG et al (2009) Pushing the sensitivity envelope of lanthanide-based magnetic resonance imaging (MRI) contrast agents for molecular imaging applications. Acc Chem Res 42:822–831

    Article  CAS  PubMed  Google Scholar 

  • Alessi P, Ebbinghaus C, Neri D (2004) Molecular targeting of angiogenesis. Biochim Biophys Acta Rev Cancer 1654:39–49

    Article  CAS  Google Scholar 

  • Ali MM, Yoo B, Pagel MD (2009a) Tracking the relative in vivo pharmacokinetics of nanoparticles with PARACEST MRI. Mol Pharm 6:1409–1416

    Article  CAS  PubMed  Google Scholar 

  • Ali MM, Liu G, Shah T et al (2009b) Using two chemical exchange saturation transfer magnetic resonance imaging contrast agents for molecular imaging studies. Acc Chem Res 42:915–924

    Article  CAS  PubMed  Google Scholar 

  • Allard M, Cote D, Davidson L et al (2007) Combined magnetic resonance and bioluminescence imaging of live mice. J Biomed Opt 12:034018

    Article  PubMed  CAS  Google Scholar 

  • Ambrosini V, Quarta C, Nanni C et al (2009) Small animal PET in oncology: the road from bench to bedside. Cancer Biother Radiopharm 24:277–285

    Article  CAS  PubMed  Google Scholar 

  • Arbab AS, Pandit SD, Anderson SA et al (2006) Magnetic resonance imaging and confocal microscopy studies of magnetically labeled endothelial progenitor cells trafficking to sites of tumor angiogenesis. Stem Cells 24:671–678

    Article  CAS  PubMed  Google Scholar 

  • Artemov D (2003) Molecular magnetic resonance imaging with targeted contrast agents. J Cell Biochem 90:518–524

    Article  CAS  PubMed  Google Scholar 

  • Asao C, Korogi Y, Kitajima M et al (2005) Diffusion-weighted imaging of radiation-induced brain injury for differentiation from tumor recurrence. Am J Neuroradiol 26:1455–1460

    PubMed  Google Scholar 

  • Bajada S, Mazakova I, Richardson JB et al (2008) Updates on stem cells and their applications in regenerative medicine. J Tissue Eng Regen Med 2:169–183

    Article  CAS  PubMed  Google Scholar 

  • Balaban RS, Hampshire VA (2001) Challenges in small animal noninvasive imaging. ILAR J 42:248–262

    CAS  PubMed  Google Scholar 

  • Barrett T, Brechbiel M, Bernardo M et al (2007) MRI of tumor angiogenesis. J Magn Reson Imaging 26:235–249

    Article  PubMed  Google Scholar 

  • Baudelet C, Gallez B (2002) How does blood oxygen level-dependent (BOLD) contrast correlate with oxygen partial pressure (pO2) inside tumors? Magn Reson Med 48:980–986

    Article  PubMed  Google Scholar 

  • Baudelet C, Gallez B (2004) Effect of anesthesia on the signal intensity in tumors using BOLD-MRI: comparison with flow measurements by Laser Doppler flowmetry and oxygen measurements by luminescence-based probes. Magn Reson Imaging 22:905–912

    Article  CAS  PubMed  Google Scholar 

  • Baudelet C, Ansiaux R, Jordan BF et al (2004) Physiological noise in murine solid tumours using T2*-weighted gradient-echo imaging: a marker of tumour acute hypoxia. Phys Med Biol 49:3389–3411

    Article  PubMed  Google Scholar 

  • Beloueche-Babari M, Chung YL, Al-Saffar NM et al (2010) Metabolic assessment of the action of targeted cancer therapeutics using magnetic resonance spectroscopy. Br J Cancer 102:1–7

    Article  CAS  PubMed  Google Scholar 

  • Bentzen L, Keiding S, Horsman MR et al (2002) Assessment of hypoxia in experimental mice tumours by [18F]fluoromisonidazole PET and pO2 electrode measurements. Influence of tumour volume and carbogen breathing. Acta Oncol 41:304–312

    Article  CAS  PubMed  Google Scholar 

  • Bergers G, Benjamin LE (2003) Tumorigenesis and the angiogenic switch. Nat Rev Cancer 3:401–410

    Article  CAS  PubMed  Google Scholar 

  • Blankenberg FG (2008) In vivo detection of apoptosis. J Nucl Med 49(Suppl 2):81S–95S

    Article  CAS  PubMed  Google Scholar 

  • Boerman OC, Oyen WJ (2008) Multimodality probes: amphibian cars for molecular imaging. J Nucl Med 49:1213–1214

    Article  PubMed  Google Scholar 

  • Brauer M (2003) In vivo monitoring of apoptosis. Prog Neuropsychopharmacol Biol Psychiatry 27:323–331

    Article  CAS  PubMed  Google Scholar 

  • Brockmann MA, Kemmling A, Groden C (2007) Current issues and perspectives in small rodent magnetic resonance imaging using clinical MRI scanners. Methods 43:79–87

    Article  CAS  PubMed  Google Scholar 

  • Brown JM, Wilson WR (2004) Exploiting tumour hypoxia in cancer treatment. Nat Rev Cancer 4:437–447

    Article  CAS  PubMed  Google Scholar 

  • Buck AK, Herrmann K, Shen C et al (2009) Molecular imaging of proliferation in vivo: positron emission tomography with [18F]fluorothymidine. Methods 48:205–215

    Article  CAS  PubMed  Google Scholar 

  • Bulte JW, Kraitchman DL (2004) Monitoring cell therapy using iron oxide MR contrast agents. Curr Pharm Biotechnol 5:567–584

    Article  CAS  PubMed  Google Scholar 

  • Bulte JW (2005) Hot spot MRI emerges from the background. Nat Biotechnol 23:945–946

    Article  CAS  PubMed  Google Scholar 

  • Bulte JW (2006) Intracellular endosomal magnetic labeling of cells. Methods Mol Med 124:419–439

    PubMed  Google Scholar 

  • Busk M, Horsman MR, Overgaard J (2008) Resolution in PET hypoxia imaging: voxel size matters. Acta Oncol 47:1201–1210

    Article  PubMed  Google Scholar 

  • Busk M, Horsman MR, Jakobsen S et al (2009) Can hypoxia-PET map hypoxic cell density heterogeneity accurately in an animal tumor model at a clinically obtainable image contrast. Radiother Oncol 92:429–436

    Article  CAS  PubMed  Google Scholar 

  • Cai QY, Kim SH, Choi KS et al (2007a) Colloidal gold nanoparticles as a blood-pool contrast agent for X-ray computed tomography in mice. Invest Radiol 42:797–806

    Article  CAS  PubMed  Google Scholar 

  • Cai W, Chen K, Li ZB et al (2007b) Dual-function probe for PET and near-infrared fluorescence imaging of tumor vasculature. J Nucl Med 48:1862–1870

    Article  CAS  PubMed  Google Scholar 

  • Cai W, Chen X (2008) Multimodality molecular imaging of tumor angiogenesis. J Nucl Med 49(Suppl 2):113S–128S

    Article  CAS  PubMed  Google Scholar 

  • Caruthers SD, Winter PM, Wickline SA et al (2006) Targeted magnetic resonance imaging contrast agents. Methods Mol Med 124:387–400

    CAS  PubMed  Google Scholar 

  • Cassidy PJ, Radda GK (2005) Molecular imaging perspectives. J R Soc Interface 2:133–144

    Article  CAS  PubMed  Google Scholar 

  • Catana C, Procissi D, Wu Y et al (2008) Simultaneous in vivo positron emission tomography and magnetic resonance imaging. Proc Natl Acad Sci U S A 105:3705–3710

    Article  CAS  PubMed  Google Scholar 

  • Cauchon N, Langlois R, Rousseau JA et al (2007) PET imaging of apoptosis with 64Cu-labeled streptavidin following pretargeting of phosphatidylserine with biotinylated annexin-V. Eur J Nucl Med Mol Imaging 34:247–258

    Article  CAS  PubMed  Google Scholar 

  • Chang CH, Wang HE, Wu SY et al (2006) Comparative evaluation of FET and FDG for differentiating lung carcinoma from inflammation in mice. Anticancer Res 26:917–925

    CAS  PubMed  Google Scholar 

  • Chatziioannou AF (2002) Molecular imaging of small animals with dedicated PET tomographs. Eur J Nucl Med Mol Imaging 29:98–114

    Article  PubMed  Google Scholar 

  • Chauvin T, Durand P, Bernier M et al (2008) Detection of enzymatic activity by PARACEST MRI: a general approach to target a large variety of enzymes. Angew Chem Int Ed Engl 47:4370–4372

    Article  CAS  PubMed  Google Scholar 

  • Chen F, De Keyzer F, Wang H et al (2007) Diffusion weighted imaging in small rodents using clinical MRI scanners. Methods 43:12–20

    Article  CAS  PubMed  Google Scholar 

  • Chen K, Cai W, Li ZB et al (2009) Quantitative PET imaging of VEGF receptor expression. Mol Imaging Biol 11:15–22

    Article  PubMed  Google Scholar 

  • Chenevert TL, Sundgren PC, Ross BD (2006) Diffusion imaging: insight to cell status and cytoarchitecture. Neuroimaging Clin N Am 16:61–632, viii-ix

    Google Scholar 

  • Cherry SR, Gambhir SS (2001) Use of positron emission tomography in animal research. ILAR J 42:219–232

    CAS  PubMed  Google Scholar 

  • Cherry SR (2006) The 2006 Henry N. Wagner lecture: of mice and men (and positrons)–advances in PET imaging technology. J Nucl Med 47:1735–1745

    CAS  PubMed  Google Scholar 

  • Christian N, Lee JA, Bol A et al (2008) Immobilization device for in vivo and in vitro multimodality image registration of rodent tumors. Radiother Oncol 87:147–151

    Article  PubMed  Google Scholar 

  • Colby LA, Morenko BJ (2004) Clinical considerations in rodent bioimaging. Comp Med 54:623–630

    CAS  PubMed  Google Scholar 

  • Corsten MF, Shah K (2008) Therapeutic stem-cells for cancer treatment: hopes and hurdles in tactical warfare. Lancet Oncol 9:376–384

    Article  PubMed  Google Scholar 

  • Crich SG, Biancone L, Cantaluppi V et al (2004) Improved route for the visualization of stem cells labeled with a Gd-/Eu-chelate as dual (MRI and fluorescence) agent. Magn Reson Med 51:938–944

    Article  CAS  PubMed  Google Scholar 

  • Croft BY (2002) Animal models for imaging. Dis Markers 18:365–374

    PubMed  Google Scholar 

  • Culver J, Akers W, Achilefu S (2008) Multimodality molecular imaging with combined optical and SPECT/PET modalities. J Nucl Med 49:169–172

    Article  PubMed  Google Scholar 

  • Cyran CC, Fu Y, Raatschen HJ et al (2008) New macromolecular polymeric MRI contrast agents for application in the differentiation of cancer from benign soft tissues. J Magn Reson Imaging 27:581–589

    Article  PubMed  Google Scholar 

  • De Leon-Rodriguez LM, Lubag AJ, Malloy CR et al (2009) Responsive MRI agents for sensing metabolism in vivo. Acc Chem Res 42:948–957

    Article  PubMed  CAS  Google Scholar 

  • Debatin KM, Krammer PH (2004) Death receptors in chemotherapy and cancer. Oncogene 23:2950–2966

    Article  CAS  PubMed  Google Scholar 

  • Deng J, Rhee TK, Sato KT et al (2006) In vivo diffusion-weighted imaging of liver tumor necrosis in the VX2 rabbit model at 1.5 Tesla. Invest Radiol 41:410–414

    Article  PubMed  Google Scholar 

  • Dennie J, Mandeville JB, Boxerman JL et al (1998) NMR imaging of changes in vascular morphology due to tumor angiogenesis. Magn Reson Med 40:793–799

    Article  CAS  PubMed  Google Scholar 

  • Diehl KH, Hull R, Morton D et al (2001) A good practice guide to the administration of substances and removal of blood, including routes and volumes. J Appl Toxicol 21:15–23

    Article  CAS  PubMed  Google Scholar 

  • Dierckx RA, Van de Wiele C (2008) FDG uptake, a surrogate of tumour hypoxia. Eur J Nucl Med Mol Imaging 35:1544–1549

    Article  CAS  PubMed  Google Scholar 

  • Doubrovin M, Serganova I, Mayer-Kuckuk P et al (2004) Multimodality in vivo molecular-genetic imaging. Bioconjug Chem 15:1376–1388

    Article  CAS  PubMed  Google Scholar 

  • Dubois L, Landuyt W, Haustermans K et al (2004) Evaluation of hypoxia in an experimental rat tumour model by [18F]fluoromisonidazole PET and immunohistochemistry. Br J Cancer 91:1947–1954

    Article  CAS  PubMed  Google Scholar 

  • Dubois L, Dresselaers T, Landuyt W et al (2007) Efficacy of gene therapy-delivered cytosine deaminase is determined by enzymatic activity but not expression. Br J Cancer 96:758–761

    Article  CAS  PubMed  Google Scholar 

  • Ebenhan T, Honer M, Ametamey SM et al (2009) Comparison of [18F]-tracers in various experimental tumor models by PET imaging and identification of an early response biomarker for the novel microtubule stabilizer patupilone. Mol Imaging Biol 11:308–321

    Article  CAS  PubMed  Google Scholar 

  • European Commission (2010) Commission staff working paper: sixth report on the statistics on the number of animals used for experimental and other scientific purposes in the member states of the European Union. Report nr SEC(2010) 1107 final/2, COM(2010) 511 final/2. Released 08.12.2010, Brussels

    Google Scholar 

  • Fan X, River JN, Zamora M et al (2002) Effect of carbogen on tumor oxygenation: combined fluorine-19 and proton MRI measurements. Int J Radiat Oncol Biol Phys 54:1202–1209

    Article  CAS  PubMed  Google Scholar 

  • Fani M, Andre JP, Maecke HR (2008) 68 Ga-PET: a powerful generator-based alternative to cyclotron-based PET radiopharmaceuticals. Contrast Media Mol Imaging 3:67–77

    Article  PubMed  CAS  Google Scholar 

  • Ferrara N, Gerber HP, LeCouter J (2003) The biology of VEGF and its receptors. Nat Med 9:669–676

    Article  CAS  PubMed  Google Scholar 

  • Ferrara N, Kerbel RS (2005) Angiogenesis as a therapeutic target. Nature 438:967–974

    Article  CAS  PubMed  Google Scholar 

  • Fink C, Kiessling F, Bock M et al (2003) High-resolution three-dimensional MR angiography of rodent tumors: morphologic characterization of intratumoral vasculature. J Magn Reson Imaging 18:59–65

    Article  PubMed  Google Scholar 

  • Fischer BM, Olsen MW, Ley CD et al (2006) How few cancer cells can be detected by positron emission tomography? A frequent question addressed by an in vitro study. Eur J Nucl Med Mol Imaging 33:697–702

    Article  PubMed  Google Scholar 

  • Flecknell PA (1993) Anaesthesia of animals for biomedical research. Br J Anaesth 71:885–894

    Article  CAS  PubMed  Google Scholar 

  • Foster-Gareau P, Heyn C, Alejski A et al (2003) Imaging single mammalian cells with a 1.5 T clinical MRI scanner. Magn Reson Med 49:968–971

    Article  PubMed  Google Scholar 

  • Foster PJ, Dunn EA, Karl KE et al (2008) Cellular magnetic resonance imaging: in vivo imaging of melanoma cells in lymph nodes of mice. Neoplasia 10:207–216

    CAS  PubMed  Google Scholar 

  • Fueger BJ, Czernin J, Hildebrandt I et al (2006) Impact of animal handling on the results of 18F-FDG PET studies in mice. J Nucl Med 47:999–1006

    CAS  PubMed  Google Scholar 

  • Gagel B, Reinartz P, DiMartino E et al (2004) pO2 polarography versus positron emission tomography ([18F]Fluoromisonidazole, [18F]-2-Fluoro-2′-Deoxyglucose). Strahlenther Onkol 180:616–622

    Article  PubMed  Google Scholar 

  • Gale ME, Robbins AH, Hamburger RJ et al (1984) Renal toxicity of contrast agents: iopamidol, iothalamate, and diatrizoate. AJR Am J Roentgenol 142:333–335

    CAS  PubMed  Google Scholar 

  • Gatenby RA, Gillies RJ (2004) Why do cancers have high aerobic glycolysis. Nat Rev Cancer 4:891–899

    Article  CAS  PubMed  Google Scholar 

  • Gilad AA, McMahon MT, Walczak P et al (2007) Artificial reporter gene providing MRI contrast based on proton exchange. Nat Biotechnol 25:217–219

    Article  CAS  PubMed  Google Scholar 

  • Gilad AA, Ziv K, McMahon MT et al (2008) MRI reporter genes. J Nucl Med 49:1905–1908

    Article  CAS  PubMed  Google Scholar 

  • Goertzen AL, Meadors AK, Silverman RW et al (2002) Simultaneous molecular and anatomical imaging of the mouse in vivo. Phys Med Biol 47:4315–4328

    Article  PubMed  Google Scholar 

  • Golay X, Hendrikse J, Lim TC (2004) Perfusion imaging using arterial spin labeling. Top Magn Reson Imaging 15:10–27

    Article  PubMed  Google Scholar 

  • Golman K, Olsson LE, Axelsson O et al (2003) Molecular imaging using hyperpolarized 13C. Br J Radiol 76:S118–S127

    Article  CAS  PubMed  Google Scholar 

  • Golman K, Zandt RI, Lerche M et al (2006) Metabolic imaging by hyperpolarized 13C magnetic resonance imaging for in vivo tumor diagnosis. Cancer Res 66:10855–10860

    Article  CAS  PubMed  Google Scholar 

  • Gore JC, Yankeelov TE, Peterson TE et al (2009) Molecular imaging without radiopharmaceuticals. J Nucl Med 50:999–1007

    Article  CAS  PubMed  Google Scholar 

  • Graves EE, Weissleder R, Ntziachristos V (2004) Fluorescence molecular imaging of small animal tumor models. Curr Mol Med 4:419–430

    Article  CAS  PubMed  Google Scholar 

  • Griffin JL, Shockcor JP (2004) Metabolic profiles of cancer cells. Nat Rev Cancer 4:551–561

    Article  CAS  PubMed  Google Scholar 

  • Grönroos T, Bentzen L, Marjamäki P et al (2004) Comparison of the biodistribution of two hypoxia markers [18F]FETNIM and [18F]FMISO in an experimental mammary carcinoma. Eur J Nucl Med Mol Imaging 31:513–520

    Article  PubMed  CAS  Google Scholar 

  • Gross S, Gilead A, Scherz A et al (2003) Monitoring photodynamic therapy of solid tumors online by BOLD-contrast MRI. Nat Med 9:1327–1331

    Article  CAS  PubMed  Google Scholar 

  • Gueant-Rodriguez RM, Romano A, Barbaud A et al (2006) Hypersensitivity reactions to iodinated contrast media. Curr Pharm Des 12:3359–3372

    Article  CAS  PubMed  Google Scholar 

  • Haase R, Böhme H-J, Zips D et al (2011) Swarm intelligence for medical volume segmentation: the contribution of self-reproduction. KI 2011: advances in artificial intelligence. Berlin 7006:111–121

    Google Scholar 

  • Hainfeld JF, Slatkin DN, Focella TM et al (2006) Gold nanoparticles: a new X-ray contrast agent. Br J Radiol 79:248–253

    Article  CAS  PubMed  Google Scholar 

  • Hakumaki JM, Liimatainen T (2005) Molecular imaging of apoptosis in cancer. Eur J Radiol 56:143–153

    Article  PubMed  Google Scholar 

  • Hall EJ, Giaccia AJ (2006) Radiobiology for the radiologist. Lippincott Williams & Wilkins, Philadelphia

    Google Scholar 

  • Hamstra DA, Lee KC, Tychewicz JM et al (2004) The use of 19F spectroscopy and diffusion-weighted MRI to evaluate differences in gene-dependent enzyme prodrug therapies. Mol Ther 10:916–928

    Article  CAS  PubMed  Google Scholar 

  • Hamstra DA, Rehemtulla A, Ross BD (2007) Diffusion magnetic resonance imaging: a biomarker for treatment response in oncology. J Clin Oncol 25:4104–4109

    Article  PubMed  Google Scholar 

  • Hanahan D, Weinberg RA (2000) The hallmarks of cancer. Cell 100:57–70

    Article  CAS  PubMed  Google Scholar 

  • Hanusch C, Hoeger S, Beck GC (2007) Anaesthesia of small rodents during magnetic resonance imaging. Methods 43:68–78

    Article  CAS  PubMed  Google Scholar 

  • Hart LS, El-Deiry WS (2008) Invincible, but not invisible: imaging approaches toward in vivo detection of cancer stem cells. J Clin Oncol 26:2901–2910

    Article  PubMed  Google Scholar 

  • Haubner R (2006) alpha(v)beta (3)-integrin imaging: a new approach to characterise angiogenesis? E. Eur J Nucl Med Mol Imaging 33(Suppl 13):54–63

    Article  PubMed  CAS  Google Scholar 

  • He Q, Xu RZ, Shkarin P et al (2004) Magnetic resonance spectroscopic imaging of tumor metabolic markers for cancer diagnosis, metabolic phenotyping, and characterization of tumor microenvironment. Dis Markers 19:69–94

    Google Scholar 

  • Hehlgans S, Haase M, Cordes N (2007) Signalling via integrins: implications for cell survival and anticancer strategies. Biochim Biophys Acta 1775:163–180

    CAS  PubMed  Google Scholar 

  • Hengartner MO (2000) The biochemistry of apoptosis. Nature 407:770–776

    Article  CAS  PubMed  Google Scholar 

  • Herneth AM, Guccione S, Bednarski M (2003) Apparent diffusion coefficient: a quantitative parameter for in vivo tumor characterization. Eur J Radiol 45:208–213

    Article  PubMed  Google Scholar 

  • Herschman HR (2004) PET reporter genes for noninvasive imaging of gene therapy, cell tracking and transgenic analysis. Crit Rev Oncol Hematol 51:191–204

    Article  PubMed  Google Scholar 

  • Herzig M, Christofori G (2002) Recent advances in cancer research: mouse models of tumorigenesis. Biochim Biophys Acta 1602:97–113

    CAS  PubMed  Google Scholar 

  • Heyn C, Bowen CV, Rutt BK et al (2005) Detection threshold of single SPIO-labeled cells with FIESTA. Magn Reson Med 53:312–320

    Article  PubMed  Google Scholar 

  • Heyn C, Ronald JA, Mackenzie LT et al (2006) In vivo magnetic resonance imaging of single cells in mouse brain with optical validation. Magn Reson Med 55:23–29

    Article  PubMed  Google Scholar 

  • Hildebrandt IJ, Su H, Weber WA (2008) Anesthesia and other considerations for in vivo imaging of small animals. ILAR J 49:17–26

    CAS  PubMed  Google Scholar 

  • Hillen F, Griffioen AW (2007) Tumour vascularization: sprouting angiogenesis and beyond. Cancer Metastasis Rev 26:489–502

    Article  PubMed  Google Scholar 

  • Himmelreich U, Dresselaers T (2009) Cell labeling and tracking for experimental models using magnetic resonance imaging. Methods 48:112–124

    Article  CAS  PubMed  Google Scholar 

  • Hoff MN, Yapp DT, Yung AC et al (2008) In vivo measurement of the hypoxia marker EF5 in Shionogi tumours using 19F magnetic resonance spectroscopy. Int J Radiat Biol 84:237–242

    Article  CAS  PubMed  Google Scholar 

  • Hortelano S, Garcia-Martin ML, Cerdan S et al (2001) Intracellular water motion decreases in apoptotic macrophages after caspase activation. Cell Death Differ 8:1022–1028

    Article  CAS  PubMed  Google Scholar 

  • Howe FA, Robinson SP, McIntyre DJO et al (2001) Issues in flow and oxygenation dependent contrast (FLOOD) imaging of tumours. NMR Biomed 14:497–506

    Article  CAS  PubMed  Google Scholar 

  • Huang J, Lee CC, Sutcliffe JL et al (2008) Radiolabeling rhesus monkey CD34+ hematopoietic and mesenchymal stem cells with 64Cu-pyruvaldehyde-bis(N4-methylthiosemicarbazone) for microPET imaging. Mol Imaging 7:1–11

    CAS  PubMed  Google Scholar 

  • Hylton N (2006) Dynamic contrast-enhanced magnetic resonance imaging as an imaging biomarker. J Clin Oncol 24:3293–3298

    Article  CAS  PubMed  Google Scholar 

  • Hyodo F, Chandramouli GV, Matsumoto S et al (2009) Estimation of tumor microvessel density by MRI using a blood pool contrast agent. Int J Oncol 35:797–804

    PubMed  Google Scholar 

  • Jacobs AH, Rueger MA, Winkeler A et al (2007) Imaging-guided gene therapy of experimental gliomas. Cancer Res 67:1706–1715

    Article  CAS  PubMed  Google Scholar 

  • Jain RK (2005) Normalization of tumor vasculature: an emerging concept in antiangiogenic therapy. Science 307:58–62

    Article  CAS  PubMed  Google Scholar 

  • Johnson M, Karanikolas BD, Priceman SJ et al (2009) Titration of variant HSV1-tk gene expression to determine the sensitivity of 18F-FHBG PET imaging in a prostate tumor. J Nucl Med 50:757–764

    Article  CAS  PubMed  Google Scholar 

  • Josephs D, Spicer J, O’Doherty M (2009) Molecular imaging in clinical trials. Target Oncol 4:151–168

    Article  PubMed  Google Scholar 

  • Judenhofer MS, Wehrl HF, Newport DF et al (2008) Simultaneous PET-MRI: a new approach for functional and morphological imaging. Nat Med 14:459–465

    Article  CAS  PubMed  Google Scholar 

  • Kang JH, Chung JK (2008) Molecular-genetic imaging based on reporter gene expression. J Nucl Med 49(Suppl 2):164S–179S

    Article  CAS  PubMed  Google Scholar 

  • Kauczor HU, Zechmann C, Stieltjes B et al (2006) Functional magnetic resonance imaging for defining the biological target volume. Cancer Imaging 6:51–55

    Article  PubMed  Google Scholar 

  • Kelland LR (2004) Of mice and men: values and liabilities of the athymic nude mouse model in anticancer drug development. Eur J Cancer 40:827–836

    Article  CAS  PubMed  Google Scholar 

  • Kiessling F, Jugold M, Woenne EC et al (2007) Non-invasive assessment of vessel morphology and function in tumors by magnetic resonance imaging. Eur Radiol 17:2136–2148

    Article  PubMed  Google Scholar 

  • Kiessling F, Huppert J, Palmowski M (2009) Functional and molecular ultrasound imaging: concepts and contrast agents. Curr Med Chem 16:627–642

    Article  CAS  PubMed  Google Scholar 

  • Kim D, Hong KS, Song J (2007) The present status of cell tracking methods in animal models using magnetic resonance imaging technology. Mol Cells 23:132–137

    CAS  PubMed  Google Scholar 

  • Kim H, Morgan DE, Zeng H et al (2008a) Breast tumor xenografts: diffusion-weighted MR imaging to assess early therapy with novel apoptosis-inducing anti-DR5 antibody. Radiology 248:844–851

    Article  PubMed  Google Scholar 

  • Kim H, Morgan DE, Buchsbaum DJ et al (2008b) Early therapy evaluation of combined anti-death receptor 5 antibody and gemcitabine in orthotopic pancreatic tumor xenografts by diffusion-weighted magnetic resonance imaging. Cancer Res 68:8369–8376

    Article  CAS  PubMed  Google Scholar 

  • Kim S, Loevner L, Quon H et al (2009) Diffusion-weighted magnetic resonance imaging for predicting and detecting early response to chemoradiation therapy of squamous cell carcinomas of the head and neck. Clin Cancer Res 15:986–994

    Article  CAS  PubMed  Google Scholar 

  • Kim YR, Yudina A, Figueiredo J et al (2005) Detection of early antiangiogenic effects in human colon adenocarcinoma xenografts: in vivo changes of tumor blood volume in response to experimental VEGFR tyrosine kinase inhibitor. Cancer Res 65:9253–9260

    Article  CAS  PubMed  Google Scholar 

  • Knopp MV, Giesel FL, Marcos H et al (2001) Dynamic contrast-enhanced magnetic resonance imaging in oncology. Top Magn Reson Imaging 12:301–308

    Article  CAS  PubMed  Google Scholar 

  • Koch U, Krause M, Baumann M (2010) Cancer stem cells at the crossroads of current cancer therapy failures-radiation oncology perspective. Semin Cancer Biol 20:116–124

    Article  PubMed  Google Scholar 

  • Kodibagkar VD, Wang X, Pacheco-Torres J et al (2008) Proton imaging of siloxanes to map tissue oxygenation levels (PISTOL): a tool for quantitative tissue oximetry. NMR Biomed 21:899–907

    Article  CAS  PubMed  Google Scholar 

  • Koo V, Hamilton PW, Williamson K (2006) Non-invasive in vivo imaging in small animal research. Cell Oncol 28:127–139

    CAS  PubMed  Google Scholar 

  • Kosztowski T, Zaidi HA, Quinones-Hinojosa A (2009) Applications of neural and mesenchymal stem cells in the treatment of gliomas. Expert Rev Anticancer Ther 9:597–612

    Article  CAS  PubMed  Google Scholar 

  • Krohn KA, Link JM, Mason RP (2008) Molecular imaging of hypoxia. J Nucl Med 49(Suppl 2):129S–148S

    Article  CAS  PubMed  Google Scholar 

  • Kubota T (1994) Metastatic models of human cancer xenografted in the nude mouse: the importance of orthotopic transplantation. J Cell Biochem 56:4–8

    Article  CAS  PubMed  Google Scholar 

  • Kuhn LT, Bommerich U, Bargon J (2006) Transfer of parahydrogen-induced hyperpolarization to 19F. J Phys Chem A 110:3521–3526

    Article  CAS  PubMed  Google Scholar 

  • Lahorte CM, Vanderheyden JL, Steinmetz N et al (2004) Apoptosis-detecting radioligands: current state of the art and future perspectives. Eur J Nucl Med Mol Imaging 31:887–919

    Article  CAS  PubMed  Google Scholar 

  • LaManna JC, Harik SI (1986) Regional studies of blood-brain barrier transport of glucose and leucine in awake and anesthetized rats. J Cereb Blood Flow Metab 6:717–723

    Article  CAS  PubMed  Google Scholar 

  • Landuyt W, Hermans R, Bosmans H et al (2001) BOLD contrast fMRI of whole rodent tumour during air or carbogen breathing using echo-planar imaging at 1.5 T. Eur Radiol 11:2332–2340

    Article  CAS  PubMed  Google Scholar 

  • Lee HY, Li Z, Chen K et al (2008) PET/MRI dual-modality tumor imaging using arginine-glycine-aspartic (RGD)-conjugated radiolabeled iron oxide nanoparticles. J Nucl Med 49:1371–1379

    Article  CAS  PubMed  Google Scholar 

  • Lee JH, Lee K, Moon SH et al (2009) All-in-one target-cell-specific magnetic nanoparticles for simultaneous molecular imaging and siRNA delivery. Angew Chem Int Ed Engl 48:4174–4179

    Article  CAS  PubMed  Google Scholar 

  • Lee KH, Ko BH, Paik JY et al (2005) Effects of anesthetic agents and fasting duration on 18F-FDG biodistribution and insulin levels in tumor-bearing mice. J Nucl Med 46:1531–1536

    CAS  PubMed  Google Scholar 

  • Li AX, Wojciechowski F, Suchy M et al (2008a) A sensitive PARACEST contrast agent for temperature MRI: Eu3+-DOTAM-glycine (Gly)-phenylalanine (Phe). Magn Reson Med 59:374–381

    Article  CAS  PubMed  Google Scholar 

  • Li S, Xue HD, Wang XH et al (2008b) MR diffusion weighted imaging for evaluation of radiotherapeutic effects on rabbit VX2 tumor model. Chin Med Sci J 23:172–177

    Article  PubMed  Google Scholar 

  • Li ZB, Chen K, Wu Z et al (2009) 64Cu-labeled PEGylated polyethylenimine for cell trafficking and tumor imaging. Mol Imaging Biol 11:415–423

    Article  PubMed  Google Scholar 

  • Liang HD, Blomley MJ (2003) The role of ultrasound in molecular imaging. Br J Radiol 76 Spec No 2:S140–150

    Google Scholar 

  • Liimatainen T, Hakumaki JM, Kauppinen RA et al (2009) Monitoring of gliomas in vivo by diffusion MRI and (1)H MRS during gene therapy-induced apoptosis: interrelationships between water diffusion and mobile lipids. NMR Biomed 22:272–279

    Article  CAS  PubMed  Google Scholar 

  • Lin CY, Lin MH, Cheung WM et al (2009) In vivo cerebromicrovasculatural visualization using 3D DeltaR2-based microscopy of magnetic resonance angiography (3DDeltaR2-mMRA). Neuroimage 45:824–831

    Article  PubMed  Google Scholar 

  • Liu Z, Yan Y, Chin FT et al (2009) Dual integrin and gastrin-releasing peptide receptor targeted tumor imaging using 18F-labeled PEGylated RGD-bombesin heterodimer 18F-FB-PEG3-Glu-RGD-BBN. J Med Chem 52:425–432

    Article  CAS  PubMed  Google Scholar 

  • Lukasik VM, Gillies RJ (2003) Animal anaesthesia for in vivo magnetic resonance. NMR Biomed 16:459–467

    Article  CAS  PubMed  Google Scholar 

  • Mahmood U, Josephson L (2005) Molecular MR Imaging Probes. Proc IEEE Inst Electr Electron Eng 93:800–808

    Article  CAS  PubMed  Google Scholar 

  • Major JL, Meade TJ (2009) Bioresponsive, cell-penetrating, and multimeric MR contrast agents. Acc Chem Res 42:893–903

    Article  CAS  PubMed  Google Scholar 

  • Maramraju SH, Smith SD, Junnarkar SS et al (2011) Small animal simultaneous PET/MRI: initial experiences in a 9.4 T microMRI. Phys Med Biol 56:2459–2480

    Article  PubMed  Google Scholar 

  • Matsumura A, Isobe T, Takano S et al (2005) Non-invasive quantification of lactate by proton MR spectroscopy and its clinical applications. Clin Neurol Neurosurg 107:379–384

    Article  PubMed  Google Scholar 

  • McConathy J, Goodman MM (2008) Non-natural amino acids for tumor imaging using positron emission tomography and single photon emission computed tomography. Cancer Metastasis Rev 27:555–573

    Article  PubMed  Google Scholar 

  • McMahon MT, Gilad AA, DeLiso MA et al (2008) New “multicolor” polypeptide diamagnetic chemical exchange saturation transfer (DIACEST) contrast agents for MRI. Magn Reson Med 60:803–812

    Article  CAS  PubMed  Google Scholar 

  • Medarova Z, Pham W, Farrar C et al (2007) In vivo imaging of siRNA delivery and silencing in tumors. Nat Med 13:372–377

    Article  CAS  PubMed  Google Scholar 

  • Mees G, Dierckx R, Vangestel C et al (2009) Molecular imaging of hypoxia with radiolabelled agents. Eur J Nucl Med Mol Imaging 36:1674–1686

    Article  CAS  PubMed  Google Scholar 

  • Meng Y, Lei H (2009) A novel continuous arterial spin labeling approach for CBF measurement in rats with reduced labeling time and optimized signal-to-noise ratio efficiency. MAGMA 22:135–142

    Article  CAS  PubMed  Google Scholar 

  • Miletic H, Fischer Y, Litwak S et al (2007) Bystander killing of malignant glioma by bone marrow-derived tumor-infiltrating progenitor cells expressing a suicide gene. Mol Ther 15:1373–1381

    Article  CAS  PubMed  Google Scholar 

  • Milkiewicz M, Ispanovic E, Doyle JL et al (2006) Regulators of angiogenesis and strategies for their therapeutic manipulation. Int J Biochem Cell Biol 38:333–357

    Article  CAS  PubMed  Google Scholar 

  • Mirus M, Tokalov SV, Koch A et al (2010) Effects of co-transplantation of endothelial cells on the vascularization of human tumor xenografts. Eur J Cell Biol 89(S1):22

    Google Scholar 

  • Mishra NC, Kumar S (2005) Apoptosis: a mitochondrial perspective on cell death. Indian J Exp Biol 43:25–34

    CAS  PubMed  Google Scholar 

  • Modo M, Hoehn M, Bulte JW (2005) Cellular MR imaging. Mol Imaging 4:143–164

    PubMed  Google Scholar 

  • Moffat BA, Hall DE, Stojanovska J et al (2004) Diffusion imaging for evaluation of tumor therapies in preclinical animal models. Magma 17:249–259

    Article  CAS  PubMed  Google Scholar 

  • Moffat BA, Chenevert TL, Hall DE et al (2005) Continuous arterial spin labeling using a train of adiabatic inversion pulses. J Magn Reson Imaging 21:290–296

    Article  PubMed  Google Scholar 

  • Moffat BA, Chen M, Kariaapper MS et al (2006) Inhibition of vascular endothelial growth factor (VEGF)-A causes a paradoxical increase in tumor blood flow and up-regulation of VEGF-D. Clin Cancer Res 12:1525–1532

    Article  CAS  PubMed  Google Scholar 

  • Morawski AM, Winter PM, Crowder KC et al (2004) Targeted nanoparticles for quantitative imaging of sparse molecular epitopes with MRI. Magn Reson Med 51:480–486

    Article  CAS  PubMed  Google Scholar 

  • Morawski AM, Lanza GA, Wickline SA (2005) Targeted contrast agents for magnetic resonance imaging and ultrasound. Curr Opin Biotechnol 16:89–92

    Article  CAS  PubMed  Google Scholar 

  • Mori T, Nomori H, Ikeda K et al (2008) Diffusion-weighted magnetic resonance imaging for diagnosing malignant pulmonary nodules/masses: comparison with positron emission tomography. J Thorac Oncol 3:358–364

    Article  PubMed  Google Scholar 

  • Morton DB, Jennings M, Buckwell A et al (2001) Refining procedures for the administration of substances. report of the BVAAWF/FRAME/RSPCA/UFAW joint working group on refinement. British veterinary association animal welfare foundation/fund for the replacement of animals in medical experiments/royal society for the prevention of cruelty to animals/universities federation for animal welfare. Lab Anim 35:1–41

    Article  CAS  PubMed  Google Scholar 

  • Muja N, Bulte JWM (2009) Magnetic resonance imaging of cells in experimental disease models. Progr NMR Spectrosc 55:61–77

    Article  CAS  Google Scholar 

  • Mulder WJ, Castermans K, van Beijnum JR et al (2009a) Molecular imaging of tumor angiogenesis using alphavbeta3-integrin targeted multimodal quantum dots. Angiogenesis 12:17–24

    Article  CAS  PubMed  Google Scholar 

  • Mulder WJ, Strijkers GJ, van Tilborg GA et al (2009b) Nanoparticulate assemblies of amphiphiles and diagnostically active materials for multimodality imaging. Acc Chem Res 42:904–914

    Article  CAS  PubMed  Google Scholar 

  • Mulder WJM, Strijkers GJ, Tilborg GAFv et al (2006) Lipid-based nanoparticles for contrast-enhanced MRI and molecular imaging. NMR Biomed 19:142–164

    Article  CAS  PubMed  Google Scholar 

  • Murakami R, Sugahara T, Nakamura H et al (2007) Malignant supratentorial astrocytoma treated with postoperative radiation therapy: prognostic value of pretreatment quantitative diffusion-weighted MR imaging. Radiology 243:493–499

    Article  PubMed  Google Scholar 

  • Murayama C, Harada N, Kakiuchi T et al (2009) Evaluation of D-18F-FMT, 18F-FDG, L-11C-MET, and 18F-FLT for monitoring the response of tumors to radiotherapy in mice. J Nucl Med 50:290–295

    Article  PubMed  Google Scholar 

  • Muruganandham M, Alfieri AA, Matei C et al (2005) Metabolic signatures associated with a NAD synthesis inhibitor-induced tumor apoptosis identified by 1H-decoupled-31P magnetic resonance spectroscopy. Clin Cancer Res 11:3503–3513

    Article  CAS  PubMed  Google Scholar 

  • Muruganandham M, Lupu M, Dyke JP et al (2006) Preclinical evaluation of tumor microvascular response to a novel antiangiogenic/antitumor agent RO0281501 by dynamic contrast-enhanced MRI at 1.5 T. Mol Cancer Ther 5:1950–1957

    Article  CAS  PubMed  Google Scholar 

  • Neeman M, Gilad AA, Dafni H et al (2007) Molecular imaging of angiogenesis. J Magn Reson Imaging 25:1–12

    Article  PubMed  Google Scholar 

  • Nehmeh SA, Lee NY, Schroder H et al (2008) Reproducibility of intratumor distribution of (18)F-fluoromisonidazole in head and neck cancer. Int J Radiat Oncol Biol Phys 70:235–242

    Article  CAS  PubMed  Google Scholar 

  • Neufeld G, Cohen T, Gengrinovitch S et al (1999) Vascular endothelial growth factor (VEGF) and its receptors. FASEB J 13:9–22

    CAS  PubMed  Google Scholar 

  • Ni Y, Wang H, Chen F et al (2009) Tumor models and specific contrast agents for small animal imaging in oncology. Methods 48:125–138

    Article  CAS  PubMed  Google Scholar 

  • Nomori H, Mori T, Ikeda K et al (2008) Diffusion-weighted magnetic resonance imaging can be used in place of positron emission tomography for N staging of non-small cell lung cancer with fewer false-positive results. J Thorac Cardiovasc Surg 135:816–822

    Article  PubMed  Google Scholar 

  • O’Connor JPB, Watson Y, Jackson A (2007) Dynamic contrast-enhanced MR imaging in cancer. Radiography 13:e45–e53

    Article  Google Scholar 

  • O’Donoghue JA, Zanzonico P, Pugachev A et al (2005) Assessment of regional tumor hypoxia using 18F-fluoromisonidazole and 64Cu(II)-diacetyl-bis(N4-methylthiosemicarbazone) positron emission tomography: comparative study featuring microPET imaging, Po2 probe measurement, autoradiography, and fluorescent microscopy in the R3327-AT and FaDu rat tumor models. Int J Radiat Oncol Biol Phys 61:1493–1502

    Article  PubMed  CAS  Google Scholar 

  • Oka S, Hattori R, Kurosaki F et al (2007) A preliminary study of anti-1-amino-3-18F-fluorocyclobutyl-1-carboxylic acid for the detection of prostate cancer. J Nucl Med 48:46–55

    CAS  PubMed  Google Scholar 

  • Olasz EB, Lang L, Seidel J et al (2002) Fluorine-18 labeled mouse bone marrow-derived dendritic cells can be detected in vivo by high resolution projection imaging. J Immunol Methods 260:137–148

    Article  CAS  PubMed  Google Scholar 

  • Ostrand-Rosenberg S (2004) Animal models of tumor immunity, immunotherapy and cancer vaccines. Curr Opin Immunol 16:143–150

    Article  CAS  PubMed  Google Scholar 

  • Padhani AR, Krohn KA, Lewis JS et al (2007) Imaging oxygenation of human tumours. Eur Radiol 17:861–872

    Article  PubMed  Google Scholar 

  • Padhani AR, Liu G, Mu-Koh D et al (2009) Diffusion-weighted magnetic resonance imaging as a cancer biomarker: consensus and recommendations. Neoplasia 11:102–125

    CAS  PubMed  Google Scholar 

  • Partlow KC, Chen J, Brant JA et al (2007) 19F magnetic resonance imaging for stem/progenitor cell tracking with multiple unique perfluorocarbon nanobeacons. FASEB J 21:1647–1654

    Article  CAS  PubMed  Google Scholar 

  • Patterson DM, Padhani AR, Collins DJ (2008) Technology insight: water diffusion MRI–a potential new biomarker of response to cancer therapy. Nat Rev Clin Oncol 5:220–233

    Google Scholar 

  • Petersen ET, Zimine I, Ho YC et al (2006) Non-invasive measurement of perfusion: a critical review of arterial spin labelling techniques. Br J Radiol 79:688–701

    Article  CAS  PubMed  Google Scholar 

  • Pickles MD, Gibbs P, Lowry M et al (2006) Diffusion changes precede size reduction in neoadjuvant treatment of breast cancer. Magn Reson Imaging 24:843–847

    Article  PubMed  Google Scholar 

  • Piert M, Machulla H-J, Picchio M et al (2005) Hypoxia-specific tumor imaging with 18f-fluoroazomycin arabinoside. J Nucl Med 46:106–113

    PubMed  Google Scholar 

  • Podichetty AK, Wagner S, Schroer S et al (2009) Fluorinated isatin derivatives. Part 2. New N-substituted 5-pyrrolidinylsulfonyl isatins as potential tools for molecular imaging of caspases in apoptosis. J Med Chem 52:3484–3495

    Article  CAS  PubMed  Google Scholar 

  • Popovtzer R, Agrawal A, Kotov NA et al (2008) Targeted gold nanoparticles enable molecular ct imaging of cancer. Nano Lett 8:4593–4596

    Article  CAS  PubMed  Google Scholar 

  • Preda A, van Vliet M, Krestin GP et al (2006) Magnetic resonance macromolecular agents for monitoring tumor microvessels and angiogenesis inhibition. Invest Radiol 41:325–331

    Article  PubMed  Google Scholar 

  • Procissi D, Claus F, Burgman P et al (2007) In vivo 19F magnetic resonance spectroscopy and chemical shift imaging of tri-fluoro-nitroimidazole as a potential hypoxia reporter in solid tumors. Clin Cancer Res 13:3738–3747

    Article  CAS  PubMed  Google Scholar 

  • Pugachev A, Ruan S, Carlin S et al (2005) Dependence of FDG uptake on tumor microenvironment. Int J Radiat Oncol Biol Phys 62:545–553

    Article  CAS  PubMed  Google Scholar 

  • Qiu HH, Cofer GP, Hedlund LW et al (1997) Automated feedback control of body temperature for small animal studies with MR microscopy. IEEE Trans Biomed Eng 44:1107–1113

    Article  CAS  PubMed  Google Scholar 

  • Rad AM, Iskander AS, Janic B et al (2009) AC133+ progenitor cells as gene delivery vehicle and cellular probe in subcutaneous tumor models: a preliminary study. BMC Biotechnol 9:28

    Article  PubMed  CAS  Google Scholar 

  • Raman V, Pathak AP, Glunde K et al (2007) Magnetic resonance imaging and spectroscopy of transgenic models of cancer. NMR Biomed 20:186–199

    Article  PubMed  Google Scholar 

  • Reichardt W, Hu-Lowe D, Torres D et al (2005) Imaging of VEGF receptor kinase inhibitor-induced antiangiogenic effects in drug-resistant human adenocarcinoma model. Neoplasia 7:847–853

    Article  CAS  PubMed  Google Scholar 

  • Reichardt W, Juettner E, Uhl M et al (2009) Diffusion-weighted imaging as predictor of therapy response in an animal model of ewing sarcoma. Invest Radiol 44:298–303

    Article  PubMed  Google Scholar 

  • Reijnders K, English SJ, Krishna MC et al (2004) Influence of body temperature on the BOLD effect in murine SCC tumors. Magn Reson Med 51:389–393

    Article  PubMed  Google Scholar 

  • Ren J, Trokowski R, Zhang S et al (2008) Imaging the tissue distribution of glucose in livers using a PARACEST sensor. Magn Reson Med 60:1047–1055

    Article  CAS  PubMed  Google Scholar 

  • Robinson SP, Rijken PF, Howe FA et al (2003) Tumor vascular architecture and function evaluated by non-invasive susceptibility MRI methods and immunohistochemistry. J Magn Reson Imaging 17:445–454

    Article  PubMed  Google Scholar 

  • Robinson SP, Griffiths JR (2004) Current issues in the utility of 19F nuclear magnetic resonance methodologies for the assessment of tumour hypoxia. Philos Trans R Soc Lond B Biol Sci 359:987–996

    Article  CAS  PubMed  Google Scholar 

  • Robinson SP, Ludwig C, Paulsson J et al (2008) The effects of tumor-derived platelet-derived growth factor on vascular morphology and function in vivo revealed by susceptibility MRI. Int J Cancer 122:1548–1556

    Article  CAS  PubMed  Google Scholar 

  • Rodrigues LM, Howe FA, Griffiths JR et al (2004) Tumor R2* is a prognostic indicator of acute radiotherapeutic response in rodent tumors. J Magn Reson Imaging 19:482–488

    Article  PubMed  Google Scholar 

  • Rommel D, Abarca-Quinones J, Christian N et al (2008) Alginate moulding: an empirical method for magnetic resonance imaging/positron emission tomography co-registration in a tumor rat model. Nucl Med Biol 35:571–577

    Article  CAS  PubMed  Google Scholar 

  • Rossin R, Berndorff D, Friebe M et al (2007) Small-animal PET of tumor angiogenesis using a (76)Br-labeled human recombinant antibody fragment to the ED-B domain of fibronectin. J Nucl Med 48:1172–1179

    Article  CAS  PubMed  Google Scholar 

  • Roth Y, Tichler T, Kostenich G et al (2004) High-b-value diffusion-weighted MR imaging for pretreatment prediction and early monitoring of tumor response to therapy in mice. Radiology 232:685–692

    Article  PubMed  Google Scholar 

  • Ruf J, Amthauer H, Oettle H et al (2004) Role of F18-FDG PET for monitoring of radiochemotherapy: estimation of detectable number of tumour cells. Onkologie 27:287–290

    Article  CAS  PubMed  Google Scholar 

  • Saleem A, Charnley N, Price P (2006) Clinical molecular imaging with positron emission tomography. Eur J Cancer 42:1720–1727

    Article  CAS  PubMed  Google Scholar 

  • Salmon HW, Siemann DW (2004) Utility of 19F MRS detection of the hypoxic cell marker EF5 to assess cellular hypoxia in solid tumors. Radiother Oncol 73:359–366

    Article  PubMed  Google Scholar 

  • Schein PS, Scheffler B (2006) Barriers to efficient development of cancer therapeutics. Clin Cancer Res 12:3243–3248

    Article  CAS  PubMed  Google Scholar 

  • Schellenberger EA, Bogdanov A Jr, Hogemann D et al (2002) Annexin V-CLIO: a nanoparticle for detecting apoptosis by MRI. Mol Imaging 1:102–107

    Article  CAS  PubMed  Google Scholar 

  • Schindler S, Tokalov S, Wolf G et al (2010) Mesenchymal progenitor cells visualized in a clinical 1.5 Tesla MRI. Cell Oncol 32:237

    Google Scholar 

  • Schmieder AH, Winter PM, Caruthers SD et al (2005) Molecular MR imaging of melanoma angiogenesis with alphanubeta3-targeted paramagnetic nanoparticles. Magn Reson Med 53:621–627

    Article  CAS  PubMed  Google Scholar 

  • Schuh JC (2004) Trials, tribulations, and trends in tumor modeling in mice. Toxicol Pathol 32(Suppl 1):53–66

    Article  CAS  PubMed  Google Scholar 

  • Scott CE, Adebodun F (1999) 13C-NMR investigation of protein synthesis during apoptosis in human leukemic cell lines. J Cell Physiol 181:147–152

    Article  CAS  PubMed  Google Scholar 

  • Segers J, Laumonier C, Burtea C et al (2007) From phage display to magnetophage, a new tool for magnetic resonance molecular imaging. Bioconjug Chem 18:1251–1258

    Article  CAS  PubMed  Google Scholar 

  • Serganova I, Blasberg R (2005) Reporter gene imaging: potential impact on therapy. Nucl Med Biol 32:763–780

    Article  CAS  PubMed  Google Scholar 

  • Shah K, Weissleder R (2005) Molecular optical imaging: applications leading to the development of present day therapeutics. NeuroRx 2:215–225

    Article  PubMed  Google Scholar 

  • Sharpless NE, Depinho RA (2006) The mighty mouse: genetically engineered mouse models in cancer drug development. Nat Rev Drug Discov 5:741–754

    Article  CAS  PubMed  Google Scholar 

  • Shu CJ, Radu CG, Shelly SM et al (2009) Quantitative PET reporter gene imaging of CD8+ T cells specific for a melanoma-expressed self-antigen. Int Immunol 21:155–165

    Article  CAS  PubMed  Google Scholar 

  • Silva AC, Kim SG, Garwood M (2000) Imaging blood flow in brain tumors using arterial spin labeling. Magn Reson Med 44:169–173

    Article  CAS  PubMed  Google Scholar 

  • Song SK, Qu Z, Garabedian EM et al (2002) Improved magnetic resonance imaging detection of prostate cancer in a transgenic mouse model. Cancer Res 62:1555–1558

    CAS  PubMed  Google Scholar 

  • Strijkers GJ, Mulder WJ, van Tilborg GA et al (2007) MRI contrast agents: current status and future perspectives. Anticancer Agents Med Chem 7:291–305

    Article  CAS  PubMed  Google Scholar 

  • Suggitt M, Bibby MC (2005) 50 years of preclinical anticancer drug screening: empirical to target-driven approaches. Clin Cancer Res 11:971–981

    CAS  PubMed  Google Scholar 

  • Sun X, Wang H, Chen F et al (2009) Diffusion-weighted MRI of hepatic tumor in rats: comparison between in vivo and postmortem imaging acquisitions. J Magn Reson Imaging 29:621–628

    Article  PubMed  Google Scholar 

  • Sun Y, Schmidt NO, Schmidt K et al (2004) Perfusion MRI of U87 brain tumors in a mouse model. Magn Reson Med 51:893–899

    Article  PubMed  Google Scholar 

  • Szczesny G, Veihelmann A, Massberg S et al (2004) Long-term anaesthesia using inhalatory isoflurane in different strains of mice-the haemodynamic effects. Lab Anim 38:64–69

    Article  CAS  PubMed  Google Scholar 

  • Talmadge JE, Singh RK, Fidler IJ et al (2007) Murine models to evaluate novel and conventional therapeutic strategies for cancer. Am J Pathol 170:793–804

    Article  CAS  PubMed  Google Scholar 

  • Taschereau R, Chatziioannou AF (2007) Monte Carlo simulations of absorbed dose in a mouse phantom from 18-fluorine compounds. Med Phys 34:1026–1036

    Article  CAS  PubMed  Google Scholar 

  • Tatum JL, Kelloff GJ, Gillies RJ et al (2006) Hypoxia: importance in tumor biology, noninvasive measurement by imaging, and value of its measurement in the management of cancer therapy. Int J Radiat Biol 82:699–757

    Article  CAS  PubMed  Google Scholar 

  • Taupitz M, Schmitz S, Hamm B (2003) Superparamagnetic iron oxide particles: current state and future development. Rofo 175:752–765

    Article  CAS  PubMed  Google Scholar 

  • Thakur M, Lentle BC (2005) Report of a summit on molecular imaging. Radiology 236:753–755

    Article  PubMed  Google Scholar 

  • Thoeny HC, De Keyzer F, Vandecaveye V et al (2005) Effect of vascular targeting agent in rat tumor model: dynamic contrast-enhanced versus diffusion-weighted MR imaging. Radiology 237:492–499

    Article  PubMed  Google Scholar 

  • Tokalov SV, Heinold J, Koch A et al (2010) Analysis of the cellular glucose metabolism in small animals by positron emission tomography using a clinical scanner. Eur J Cell Biol 89(S1):33

    Google Scholar 

  • Topal A, Gul N, Ilcol Y et al (2003) Hepatic effects of halothane, isoflurane or sevoflurane anaesthesia in dogs. J Vet Med A Physiol Pathol Clin Med 50:530–533

    Article  CAS  PubMed  Google Scholar 

  • Towner R, Smith N, Asano Y et al (2010) Molecular MRI approaches used to aid in the understanding of angiogenesis in vivo: implications for tissue engineering. Tissue Eng Part A 16:357–364

    Article  CAS  PubMed  Google Scholar 

  • Toyama H, Ichise M, Liow JS et al (2004) Evaluation of anesthesia effects on [18F]FDG uptake in mouse brain and heart using small animal PET. Nucl Med Biol 31:251–256

    Article  CAS  PubMed  Google Scholar 

  • Tropres I, Grimault S, Vaeth A et al (2001) Vessel size imaging. Magn Reson Med 45:397–408

    Article  CAS  PubMed  Google Scholar 

  • Tropres I, Lamalle L, Peoc’h M et al (2004) In vivo assessment of tumoral angiogenesis. Magn Reson Med 51:533–541

    Article  CAS  PubMed  Google Scholar 

  • Turetschek K, Preda A, Novikov V et al (2004) Tumor microvascular changes in antiangiogenic treatment: assessment by magnetic resonance contrast media of different molecular weights. J Magn Reson Imaging 20:138–144

    Article  PubMed  Google Scholar 

  • Valable S, Lemasson B, Farion R et al (2008) Assessment of blood volume, vessel size, and the expression of angiogenic factors in two rat glioma models: a longitudinal in vivo and ex vivo study. NMR Biomed 21:1043–1056

    Article  CAS  PubMed  Google Scholar 

  • Valonen PK, Lehtimaki KK, Vaisanen TH et al (2004) Water diffusion in a rat glioma during ganciclovir-thymidine kinase gene therapy-induced programmed cell death in vivo: correlation with cell density. J Magn Reson Imaging 19:389–396

    Article  PubMed  Google Scholar 

  • van Waarde A, Elsinga PH (2008) Proliferation markers for the differential diagnosis of tumor and inflammation. Curr Pharm Des 14:3326–3339

    Article  PubMed  Google Scholar 

  • Vandecaveye V, de Keyzer F, Vander Poorten V et al (2006) Evaluation of the larynx for tumour recurrence by diffusion-weighted MRI after radiotherapy: initial experience in four cases. Br J Radiol 79:681–687

    Article  CAS  PubMed  Google Scholar 

  • Vaupel P, Mayer A (2007) Hypoxia in cancer: significance and impact on clinical outcome. Cancer Metastasis Rev 26:225–239

    Google Scholar 

  • Vogel-Claussen J, Gimi B, Artemov D et al (2007) Diffusion-weighted and macromolecular contrast enhanced MRI of tumor response to antivascular therapy with ZD6126. Cancer Biol Ther 6:1469–1475

    Article  CAS  PubMed  Google Scholar 

  • Voskoglou-Nomikos T, Pater JL, Seymour L (2003) Clinical predictive value of the in vitro cell line, human xenograft, and mouse allograft preclinical cancer models. Clin Cancer Res 9:4227–4239

    PubMed  Google Scholar 

  • Waerzeggers Y, Monfared P, Viel T et al (2009) Methods to monitor gene therapy with molecular imaging. Methods 48:146–160

    Article  CAS  PubMed  Google Scholar 

  • Walenta S, Schroeder T, Mueller-Klieser W (2004) Lactate in solid malignant tumors: potential basis of a metabolic classification in clinical oncology. Curr Med Chem 11:2195–2204

    Article  CAS  PubMed  Google Scholar 

  • Walenta S, Mueller-Klieser WF (2004) Lactate: mirror and motor of tumor malignancy. Semin Radiat Oncol 14:267–274

    Article  PubMed  Google Scholar 

  • Wang H, Cai W, Chen K et al (2007) A new PET tracer specific for vascular endothelial growth factor receptor. Eur J Nucl Med Mol Imaging 34:2001–2010

    Article  CAS  PubMed  Google Scholar 

  • Wang H, Sun X, Chen F et al (2009) Treatment of rodent liver tumor with combretastatin a4 phosphate: noninvasive therapeutic evaluation using multiparametric magnetic resonance imaging in correlation with microangiography and histology. Invest Radiol 44:44–53

    Article  CAS  PubMed  Google Scholar 

  • Wang HE, Yu HM, Liu RS et al (2006) Molecular imaging with 123I-FIAU, 18F-FUdR, 18F-FET, and 18F-FDG for monitoring herpes simplex virus type 1 thymidine kinase and ganciclovir prodrug activation gene therapy of cancer. J Nucl Med 47:1161–1171

    CAS  PubMed  Google Scholar 

  • Wang K, Wang K, Shen B et al (2010) MR reporter gene imaging of endostatin expression and therapy. Mol Imaging Biol 12:520–529

    Article  PubMed  Google Scholar 

  • Ward KM, Aletras AH, Balaban RS (2000) A new class of contrast agents for MRI based on proton chemical exchange dependent saturation transfer (CEST). J Magn Reson 143:79–87

    Article  CAS  PubMed  Google Scholar 

  • Warmuth C, Gunther M, Zimmer C (2003) Quantification of blood flow in brain tumors: comparison of arterial spin labeling and dynamic susceptibility-weighted contrast-enhanced MR imaging. Radiology 228:523–532

    Article  PubMed  Google Scholar 

  • Waters EA, Chen J, Yang X et al (2008) Detection of targeted perfluorocarbon nanoparticle binding using 19F diffusion weighted MR spectroscopy. Magn Reson Med 60:1232–1236

    Article  CAS  PubMed  Google Scholar 

  • Weber MA, Gunther M, Lichy MP et al (2003) Comparison of arterial spin-labeling techniques and dynamic susceptibility-weighted contrast-enhanced MRI in perfusion imaging of normal brain tissue. Invest Radiol 38:712–718

    Article  PubMed  Google Scholar 

  • Wehrl HF, Judenhofer MS, Wiehr S et al (2009) Pre-clinical PET/MR: technological advances and new perspectives in biomedical research. Eur J Nucl Med Mol Imaging 36(Suppl 1):S56–S68

    Article  PubMed  Google Scholar 

  • Weinmann M, Belka C, Plasswilm L (2004) Tumour hypoxia: impact on biology, prognosis and treatment of solid malignant tumours. Onkologie 27:83–90

    Article  CAS  PubMed  Google Scholar 

  • Williams KJ, Cowen RL, Brown LM et al (2004) Hypoxia in tumors: molecular targets for anti-cancer therapeutics. Adv Enzyme Regul 44:93–108

    Article  CAS  PubMed  Google Scholar 

  • Willmann JK, Cheng Z, Davis C et al (2008) Targeted microbubbles for imaging tumor angiogenesis: assessment of whole-body biodistribution with dynamic micro-PET in mice. Radiology 249:212–219

    Article  PubMed  Google Scholar 

  • Winnard PT Jr, Pathak AP, Dhara S et al (2008) Molecular imaging of metastatic potential. J Nucl Med 49(Suppl 2):96S–112S

    Article  PubMed  Google Scholar 

  • Wolf G, Grüner S, Schindler S et al (2007) Diffusionsgewichtete und morphologische Ganzkörper-MRT der Ratte bei 1.5 T. RoFo 179:S272

    Google Scholar 

  • Wolf G, Abolmaali N (2009) Imaging tumour-bearing animals using clinical scanners. Int J Radiat Biol 85:752–762

    Article  CAS  PubMed  Google Scholar 

  • Wolf G, Tokalov S, Mirus M et al (2010) Quantifying vascularity in human tumor xenograft models using clinical scanners. Eur Radiol 20(Suppl 1):S287

    Google Scholar 

  • Wolf G, Laniado M, Abolmaali N et al (2012a) Development of a tissue-equivalent phantom for standardisation of diffusion-weighted MRI. Insights Imaging 3(Suppl 1):S167

    Google Scholar 

  • Wolf G, De Keyzer F, Paulus T et al (2012b) Towards standardisation of diffusion-weighted MRI: status survey across instruments using a tissue-equivalent phantom. Insights Imaging 3(Suppl 1):S168

    Google Scholar 

  • Wong FC, Kim EE (2009) A review of molecular imaging studies reaching the clinical stage. Eur J Radiol 70:205–211

    Article  PubMed  Google Scholar 

  • Woods M, Woessner DE, Sherry AD (2006) Paramagnetic lanthanide complexes as PARACEST agents for medical imaging. Chem Soc Rev 35:500–511

    Article  CAS  PubMed  Google Scholar 

  • Wu EX, Tang H, Jensen JH (2004) Applications of ultrasmall superparamagnetic iron oxide contrast agents in the MR study of animal models. NMR Biomed 17:478–483

    Article  PubMed  Google Scholar 

  • Wyss C, Schaefer SC, Juillerat-Jeanneret L et al (2009) Molecular imaging by micro-CT: specific E-selectin imaging. Eur Radiol 19:2487–2494

    Article  PubMed  Google Scholar 

  • Wyss M, Honer M, Schubiger P et al (2006) NanoPET imaging of [18F]fluoromisonidazole uptake in experimental mouse tumours. Eur J Nucl Med Mol Imaging (in press)

    Google Scholar 

  • Xue HD, Li S, Sun HY et al (2008) Experimental study of inflammatory and metastatic lymph nodes with diffusion weighted imaging on animal model: comparison with conventional methods. Chin Med Sci J 23:166–171

    Article  PubMed  Google Scholar 

  • Yamamoto S, Imaizumi M, Kanai Y et al (2010) Design and performance from an integrated PET/MRI system for small animals. Ann Nucl Med 24:89–98

    Article  PubMed  Google Scholar 

  • Yan G-P, Robinson L, Hogg P (2007) Magnetic resonance imaging contrast agents: overview and perspectives. Radiography 13:e5–e19

    Article  Google Scholar 

  • Ye FQ, Berman KF, Ellmore T et al (2000) H2 15O PET validation of steady-state arterial spin tagging cerebral blood flow measurements in humans. Magn Reson Med 44:450–456

    Article  CAS  PubMed  Google Scholar 

  • Yoo B, Raam MS, Rosenblum RM et al (2007) Enzyme-responsive PARACEST MRI contrast agents: a new biomedical imaging approach for studies of the proteasome. Contrast Media Mol Imaging 2:189–198

    Article  CAS  PubMed  Google Scholar 

  • Youn BJ, Chung JW, Son KR et al (2008) Diffusion-weighted MR: therapeutic evaluation after chemoembolization of VX-2 carcinoma implanted in rabbit liver. Acad Radiol 15:593–600

    Article  PubMed  Google Scholar 

  • Yu JX, Kodibagkar VD, Cui W et al (2005) 19F: a versatile reporter for non-invasive physiology and pharmacology using magnetic resonance. Curr Med Chem 12:819–848

    Article  CAS  PubMed  Google Scholar 

  • Yuji K, Songji Z, Toshiki T et al (2009) Molecular imaging of apoptosis with radio-labeled annexin A5 focused on the evaluation of tumor response to chemotherapy. Anticancer Agents Med Chem11:233–241

    Google Scholar 

  • Zaidi H, Mawlawi O, Orton CG (2007) Point/counterpoint. simultaneous PET/MR will replace PET/CT as the molecular multimodality imaging platform of choice. Med Phys 34:1525–1528

    Article  PubMed  Google Scholar 

  • Zhang C, Jugold M, Woenne EC et al (2007) Specific targeting of tumor angiogenesis by RGD-conjugated ultrasmall superparamagnetic iron oxide particles using a clinical 1.5-T magnetic resonance scanner. Cancer Res 67:1555–1562

    Article  CAS  PubMed  Google Scholar 

  • Zhang M, Huang M, Le C et al (2008) Accuracy and reproducibility of tumor positioning during prolonged and multi-modality animal imaging studies. Phys Med Biol 53:5867–5882

    Article  PubMed  Google Scholar 

  • Zhang S, Merritt M, Woessner DE et al (2003a) PARACEST agents: modulating MRI contrast via water proton exchange. Acc Chem Res 36:783–790

    Article  CAS  PubMed  Google Scholar 

  • Zhang S, Trokowski R, Sherry AD (2003b) A paramagnetic CEST agent for imaging glucose by MRI. J Am Chem Soc 125:15288–15289

    Article  CAS  PubMed  Google Scholar 

  • Zhang S, Malloy CR, Sherry AD (2005) MRI thermometry based on PARACEST agents. J Am Chem Soc 127:17572–17573

    Article  CAS  PubMed  Google Scholar 

  • Zhang X, Xiong Z, Wu Y et al (2006) Quantitative PET imaging of tumor integrin {alpha}v{beta}3 expression with 18F-FRGD2. J Nucl Med 47:113–121

    CAS  PubMed  Google Scholar 

  • Zhao D, Ran S, Constantinescu A et al (2003) Tumor oxygen dynamics correlation of in vivo MRI with histological findings. Neoplasia 5:308–318

    PubMed  Google Scholar 

  • Zhao M, Beauregard DA, Loizou L et al (2001) Non-invasive detection of apoptosis using magnetic resonance imaging and a targeted contrast agent. Nat Med 7:1241–1244

    Article  CAS  PubMed  Google Scholar 

  • Zhao S, Kuge Y, Kohanawa M et al (2008) Usefulness of 11C-methionine for differentiating tumors from granulomas in experimental rat models: a comparison with 18F-FDG and 18F-FLT. J Nucl Med 49:135–141

    Article  CAS  PubMed  Google Scholar 

  • Zhou D, Chu W, Chen DL et al (2009) [18F]- and [11C]-labeled N-benzyl-isatin sulfonamide analogues as PET tracers for apoptosis: synthesis, radiolabeling mechanism, and in vivo imaging study of apoptosis in Fas-treated mice using [11C]WC-98. Org Biomol Chem 7:1337–1348

    Article  CAS  PubMed  Google Scholar 

  • Zurkiya O, Chan AW, Hu X (2008) MagA is sufficient for producing magnetic nanoparticles in mammalian cells, making it an MRI reporter. Magn Reson Med 59:1225–1231

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors thank Arne Koch for his exhaustive commitment, his assistance and responsibility. The authors are supported by the Federal Ministry of Education and Research, Germany (BMBF contract 03ZIK042).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nasreddin Abolmaali .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Wolf, G., Abolmaali, N. (2013). Preclinical Molecular Imaging Using PET and MRI. In: Schober, O., Riemann, B. (eds) Molecular Imaging in Oncology. Recent Results in Cancer Research, vol 187. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-10853-2_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-10853-2_9

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-10852-5

  • Online ISBN: 978-3-642-10853-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics