Skip to main content

Advertisement

Log in

Non-invasive assessment of vessel morphology and function in tumors by magnetic resonance imaging

  • Oncology
  • Published:
European Radiology Aims and scope Submit manuscript

Abstract

The switch to an angiogenic phenotype is an important precondition for tumor growth, invasion and spread. Since newly formed vessels are characterized by structural, functional and molecular abnormalities, they offer promising targets for tumor diagnosis and therapy. Previous studies indicate that MRI is valuable to assess vessel morphology and function. It can be used to distinguish between benign and malignant lesions and to improve delineation of proliferating areas within heterogeneous tumors. In addition, tracer kinetic analysis of contrast-enhanced image series allows the estimation of well-defined physiological parameters such as blood volume, blood flow and vessel permeability. Frequently, changes of these parameters during cytostatic, anti-angiogenic and radiation therapy precede tumor volume reduction. Moreover, target-specific MRI techniques can be used to elucidate the expression of angiogenic markers at the molecular level. This review summarizes strategies for non-invasive characterization of tumor vascularization by functional and molecular MRI, hereby introducing representative preclinical and clinical applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Folkman J (1970) Tumor angiogenesis therapeutic implication. N Engl J Med 285:1182–1186

    Google Scholar 

  2. Folkman J (1972) Anti-angiogenesis: new concept for therapy of solid tumor. Ann Surg 175:409–416

    Article  PubMed  CAS  Google Scholar 

  3. Carmeliet P, Jain RK (2000) Angiogenesis in cancer and other diseases. Nature 407:249–257

    Article  PubMed  CAS  Google Scholar 

  4. Folkman J (1995) Seminars in Medicine of the Beth Israel Hospital, Boston. Clinical applications of research on angiogenesis. N Engl J Med 333:1757–1763

    Article  PubMed  CAS  Google Scholar 

  5. Vaupel P (2004) The role of hypoxia-induced factors in tumor progression. The Oncologist 9:10–17

    Article  PubMed  CAS  Google Scholar 

  6. Bergers G, Benjamin LE (2003) Tumorigenesis and the angiogenic switch. Nature Rev Cancer 3:401–410

    Article  CAS  Google Scholar 

  7. Vaupel P, Harrison L (2004) Tumor hypoxia: causative factors, compensatory mechanisms, and cellular response. Oncologist 9:4–9

    Article  PubMed  Google Scholar 

  8. Garcea G, Lloyd TD, Gescher A, Dennison AR, Steward WP, Berry DP (2004) Angiogenesis of gastrointestinal tumours and their metastases-a target for intervention? Eur J Cancer 40:1302–1313

    Article  PubMed  CAS  Google Scholar 

  9. Folkman J (2003) Angiogenesis inhibitors: a new class of drugs. Cancer Biol Ther 2:127–133

    Google Scholar 

  10. Gilad AA, Israely T, Dafni H, Meir G, Cohen B, Neeman M (2005) Functional and molecular mapping of uncoupling between vascular permeability and loss of vascular maturation in ovarian carcinoma xenografts: the role of stroma cells in tumor angiogenesis. Int J Cancer 117:202–211

    Article  PubMed  CAS  Google Scholar 

  11. Overall CM, Kleifeld O (2006) Tumour microenvironment-opinion: validating matrix metalloproteinases as drug targets and anti-targets for cancer therapy. Nat Rev Cancer 6:227–239

    Article  PubMed  CAS  Google Scholar 

  12. Folkman J (2004) Endogenous angiogenesis inhibitors. APMIS 112:496–507

    Article  PubMed  CAS  Google Scholar 

  13. Jain RK (2003) Molecular regulation of vessel maturation. Nature Med 9:685–693

    Article  PubMed  CAS  Google Scholar 

  14. Kerbel RS, Kamen BA (2004) The anti-angiogenic basis of metronomic chemotherapy. Nat Rev 4:423–426

    CAS  Google Scholar 

  15. Ferrara N, Kerbel RS (2005) Angiogenesis as a therapeutic target. Nature 15:967–974

    Article  CAS  Google Scholar 

  16. Browder T, Butterfield CE, Kraling BM, Shi B, Marshall B, O’Reilly MS, Folkman J (2000) Antiangiogenic scheduling of chemotherapy improves efficacy against experimental drug-resistant cancer. Cancer Res 60:1878–1886

    PubMed  CAS  Google Scholar 

  17. Huston J, Rufenacht DA, Ehman, RL, Wiebers DO (1991) Intracranial aneurysms and vascular malformations: Comparison of time-of-flight and phase-contrast MR angiography. Radiology 16:531–538

    Google Scholar 

  18. Kesava P, Baker E, Mehta M, Turski P (1996) Staging of arteriovenous malformations using three-dimensional time-of-flight MR angiography and volume-rendered displays of surface anatomy. Am J Roentgenol 167:605–609

    CAS  Google Scholar 

  19. Essig M, Reichenbach JR, Schad LR, Schoenberg SO, Debus J, Kaiser WA (1999) High-resolution MR venography of cerebral arteriovenous malformations. Magn Reson Imaging 17:1417–1425

    Article  PubMed  CAS  Google Scholar 

  20. Kobayashi H, Sato N, Kawamoto S, Saga T, Hiraga A, Ishimori T, Konishi J, Togashi K, Brechbiel MW (2001) 3D MR angiography of intratumoral vasculature using a novel macromolecular MR contrast agent. Magn Reson Med 46:579–585

    Article  PubMed  CAS  Google Scholar 

  21. Kobayashi H, Brechbiel MW (2003) Dendrimer-based macromolecular MRI contrast agents: characteristics and application. Mol Imaging 2:1–10

    Article  PubMed  CAS  Google Scholar 

  22. Kiessling F, Heilmann M, Lammers T, Ulbrich K, Subr V, Peschke P, Waengler B, Mier W, Schrenk HH, Bock M, Schad L, Semmler W (2006) Synthesis and characterization of HE-24.8: a polymeric contrast agent for magnetic resonance angiography. Bioconjug Chem 17:42–51

    Article  PubMed  CAS  Google Scholar 

  23. Fink C, Kiessling F, Bock M, Lichy M, Misselwitz B, Peschke P, Fusenig NE, Grobholz R, Delorme S (2003) High-resolution 3D MR angiography of rodent tumors: morphologic characterization of intratumoral vasculature. J Magn Reson Imag 18:59–65

    Article  Google Scholar 

  24. Kiessling F, Greschus S, Lichy MP, Bock M, Fink C, Vosseler S, Moll J, Mueller MM, Fusenig NE, Traupe H, Semmler W (2004) Volumetric computed tomography (VCT): a new technology for noninvasive, high-resolution monitoring of tumor angiogenesis. Nat Med 10:1133–1138

    Article  PubMed  CAS  Google Scholar 

  25. Tropres I, Lamalle L, Peoc’h M, Farion R, Usson Y, Decorps M, Remy C (2004) In vivo assessment of tumoral angiogenesis. Magn Reson Med 51:533–541

    Article  PubMed  CAS  Google Scholar 

  26. Tropres I, Grimault S, Vaeth A, Grillon E, Julien C, Payen JF, Lamalle L, Decorps M (2001) Vessel size imaging. Magn Reson Med 45:397–408

    Article  PubMed  CAS  Google Scholar 

  27. Kiselev VG, Strecker R, Ziyeh S, Speck O, Hennig J (2005) Vessel size imaging in humans. Magn Reson Med 53:553–563

    Article  PubMed  CAS  Google Scholar 

  28. Weber MA, Risse F, Giesel FL, Schad LR, Kauczor HU, Essig M (2005) Perfusion measurement using the T2* contrast media dynamics in neuro-oncology. Physical basics and clinical applications. Radiologe 5:618–632

    Article  Google Scholar 

  29. Cha S (2004) Perfusion MR imaging of brain tumors. Top Magn Reson Imaging 15:279–289

    Article  PubMed  Google Scholar 

  30. Steward GN (1894) Researches on the circulation time in organs and on the influence which affect it, parts I-III. J Physiol 15:1

    Google Scholar 

  31. Meier P, Zierler KL (1954) On the theory of the indicator-dilution method for measurement of blood flow and volume. Appl Physiol 6:731–744

    CAS  Google Scholar 

  32. Ostergaard L, Weisskoff RM, Chesler DA, Gyldensted C, Rosen BR (1996) High resolution measurement of cerebral blood flow using intravascular tracer bolus passages. Part I: Mathematical approach and statistical analysis. Magn Reson Med 36:715–725

    Article  PubMed  CAS  Google Scholar 

  33. Ostergaard L, Sorensen AG, Kwong KK, Weisskoff RM, Gyldensted C, Rosen BR (1996) High resolution measurement of cerebral blood flow using intravascular tracer bolus passages. Part II: Experimental comparison and preliminary results. Magn Reson Med 36:726–736

    Article  PubMed  CAS  Google Scholar 

  34. Daldrup HE, Shames DM, Husseini W, Wendland MF, Okuhata Y, Brasch RC (1998) Quantification of the extraction fraction for gadopentetate across breast cancer capillaries. Magn Reson Med 40:537–543

    Article  PubMed  CAS  Google Scholar 

  35. Ichikawa T, Arbab AS, Araki T, Touyama K, Haradome H, Hachiya J, Yamaguchi M, Kumagai H, Aoki S (1999) Perfusion MR imaging with a superparamagnetic iron oxide using T2-weighted and susceptibility-sensitive echoplanar sequences: evaluation of tumor vascularity in hepatocellular carcinoma. AJR 173:207–213

    PubMed  CAS  Google Scholar 

  36. Kuhl CK, Bieling H, Gieseke J, Ebel T, Mielcarek P, Far F, Folkers P, Elevelt A, Schild HH (1997) Breast neoplasms: T2* susceptibility-contrast, first-pass perfusion MR imaging. Radiology 202:87–95

    PubMed  CAS  Google Scholar 

  37. Kvistad KA, Lundgren S, Fjosne HE, Smenes E, Smethurst HB, Haraldseth O (1999) Differentiating benign and malignant breast lesions with T2*-weighted first pass perfusion imaging. Acta Radiol 40:45–51

    Article  PubMed  CAS  Google Scholar 

  38. Fuss M, Wenz F, Essig M, Muenter M, Debus J, Herman TS, Wannenmacher M (2001) Tumor angiogenesis of low-grade astrocytomas measured by dynamic susceptibility contrast-enhanced MRI (DSC-MRI) is predictive of local tumor control after radiation therapy. Int J Radiat Oncol Biol Phys 51:478–482

    Article  PubMed  CAS  Google Scholar 

  39. Padhani AR, Leach MO (2005) Antivascular cancer treatments: functional assessments by dynamic contrast-enhanced magnetic resonance imaging. Abdom Imaging 30:324–341

    Article  PubMed  CAS  Google Scholar 

  40. Akella SN, Twieg DB, Mikkelsen T, Hochberg FH, Grossman S, Cloud GA, Nabors LB (2004) Assessment of brain tumor angiogenesis inhibitors using perfusion magnetic resonance imaging: quality and analysis results of a phase I trial. J Magn Reson Imaging 20:913–922

    Article  PubMed  Google Scholar 

  41. Kaiser WA, Zeitler E (1989) MR imaging of the breast: fast imaging sequences with and without Gd-DTPA. Preliminary observations. Radiology 170:681–686

    PubMed  CAS  Google Scholar 

  42. Kuhl CK, Mielcareck P, Klaschik S, Leutner C, Wardelmann E, Gieseke J, Schild HH (1999) Dynamic breast MR imaging: are signal intensity time course data useful for differential diagnosis of enhancing lesions? Radiology 211:101–110

    PubMed  CAS  Google Scholar 

  43. Kuhl CK, Schild HH (2000) Dynamic image interpretation of MRI of the breast. J Magn Reson Imaging 12:965–974

    Article  PubMed  CAS  Google Scholar 

  44. Kiessling F, Lichy M, Grobholz R, Heilmann M, Farhan N, Michel MS, Trojan L, Ederle J, Abel U, Kauczor HU, Semmler W, Delorme S (2004) Simple models improve the discrimination of prostate cancers from the peripheral gland by T1-weighted dynamic MRI. Eur Radiol 14:1793–1801

    PubMed  Google Scholar 

  45. Barentsz JO, Engelbrecht M, Jager GJ, Witjes JA, de LaRosette J, van Der Sanden BP, Huisman HJ, Heerschap A (1999) Fast dynamic gadolinium-enhanced MR imaging of urinary bladder and prostate cancer. J Magn Reson Imaging 10:295–304

    Article  PubMed  CAS  Google Scholar 

  46. Huisman HJ, Engelbrecht MR, Barentsz JO (2001) Accurate estimation of pharmacokinetic contrast-enhanced dynamic MRI parameters of the prostate. J Magn Reson Imag 13:607–614

    Article  CAS  Google Scholar 

  47. Preziosi P, Orlacchio A, Giambattista G, Renzi P, Bortolotti L, Fabiano A, Cruciani E, Pasqualetti P (2003) Enhancement pattern of prostate cancer in dynamic MRI. Eur Radiol 13:925–930

    PubMed  Google Scholar 

  48. Tofts PS, Kermode AG (1991) Measurement of the blood-brain barrier permeability and leakage space using dynamic MR imaging. 1. Fundamental concepts. Magn Reson Med 17:357–367

    Article  PubMed  CAS  Google Scholar 

  49. Brix G, Semmler W, Port R, Schad LR, Layer G, Lorenz WJ (1991) Pharmacokinetic parameters in CNS Gd-DTPA enhanced MR imaging. J Comp Assist Tomogr 15:621–628

    CAS  Google Scholar 

  50. Brix G, Kiessling F, Lucht R, Darai S, Griebel J, Delorme S (2004) Microcirculation and microvasculature in breast tumors: quantitative characterization by pharmacokinetic analysis of dynamic MR image series. Magn Reson Med 52:420–429

    Article  PubMed  Google Scholar 

  51. Port RE, Knopp MV, Hoffmann U, Milker-Zabel S, Brix G (1999) Multicompartment analysis of gadolinium chelate kinetics: blood-tissue exchange in mammary tumors as monitored by dynamic MR imaging. J Magn Reson Imaging 10:233–241

    Article  PubMed  CAS  Google Scholar 

  52. Mussurakis S, Buckley DL, Bowsley SJ, Carleton PJ, Fox JN, Turnbull LW, Horsman A (1995) Dynamic contrast-enhanced magnetic resonance imaging of the breast combined with pharmacokinetic analysis of gadolinium-DTPA uptake in the diagnosis of local recurrence of early stage breast carcinoma. Invest Radiol 30:650–662

    Article  PubMed  CAS  Google Scholar 

  53. Hulka CA, Edmister WB, Smith BL, Tan L, Sgroi DC, Campbell T, Kopans DB, Weisskoff RM (1997) Dynamic echo-planar imaging of the breast: experience in diagnosing breast carcinoma and correlation with tumor angiogenesis. Radiology 205:837–842

    PubMed  CAS  Google Scholar 

  54. Buadu LD, Murakami J, Murayama S, Hashiguchi N, Sakai S, Masuda K, Toyoshima S, Kuroki S, Ohno S (1996) Breast lesions: correlation of contrast medium enhancement patterns on MR images with histopathologic findings and tumor angiogenesis. Radiology 200:639–649

    PubMed  CAS  Google Scholar 

  55. Schlemmer HP, Merkle J, Grobholz R, Jaeger T, Michel MS, Werner A, Rabe J, van Kaick G (2004) Contrast-enhanced dynamic MR imaging for the assessment of microvessel density in prostate cancer. Eur Radiol 14:309–317

    Article  PubMed  Google Scholar 

  56. Liu PF, Krestin GP, Huch RA, Gohde SC, Caduff RF, Debatin JF (1998) MRI of the uterus, uterine cervix, and vagina: diagnostic performance of dynamic contrast-enhanced fast multiplanar gradient-echo imaging in comparison with fast spin-echo T2-weighted pulse imaging. Eur Radiol 8:1433–1440

    Article  PubMed  CAS  Google Scholar 

  57. Hawighorst H, Weikel W, Knapstein PG, Knopp MV, Zuna I, Schonberg SO, Vaupel P, van Kaick G (1998) Angiogenic activity of cervical carcinoma: assessment by functional magnetic resonance imaging-based parameters and a histomorphological approach in correlation with disease outcome. Clin Cancer Res 4:2305–2312

    PubMed  CAS  Google Scholar 

  58. Hawighorst H, Knapstein PG, Knopp MV, Weikel W, Brix G, Zuna I, Schonberg SO, Essig M, Vaupel P, van Kaick G (1998) Uterine cervical carcinoma: comparison of standard and pharmacokinetic analysis of time-intensity curves for assessment of tumor angiogenesis and patient survival. Cancer Res 58:3598–3602

    PubMed  CAS  Google Scholar 

  59. Miller JC, Pien HH, Sahani D, Sorensen AG, Thrall JH (2005) Imaging angiogenesis: applications and potential for drug development. J Natl Cancer Inst 97:172–187

    Article  PubMed  CAS  Google Scholar 

  60. Moehler TM, Hawighorst H, Neben K, Egerer G, Hillengass J, Max R, Benner A, Ho AD, van Kaick G, Goldschmidt H (2001) Bone marrow microcirculation analysis in multiple myeloma by contrast-enhanced dynamic magnetic resonance imaging. Int J Cancer 93:862–868

    Article  PubMed  CAS  Google Scholar 

  61. Nosas-Garcia S, Moehler T, Wasser K, Kiessling F, Bartl R, Zuna I, Hillengass J, Goldschmidt H, Kauczor HU, Delorme S (2005) Dynamic contrast-enhanced MRI for assessing the disease activity of multiple myeloma: a comparative study with histology and clinical markers. J Magn Reson Imaging 22:154–162

    Article  PubMed  Google Scholar 

  62. Padhani AR (2003) MRI for assessing antivascular cancer treatments. Br J Radiol 76:60–80

    Article  Google Scholar 

  63. Kiessling F, Farhan N, Lichy M, Vosseler S, Heilmann M, Krix M, Bohlen P, Miller DW, Mueller MA, Semmler W, Fusenig NE, Delorme S (2004) Dynamic contrast enhanced magnetic resonance imaging rapidly indicates vessel regression in human squamous cell carcinomas grown in nude mice caused by VEGF-receptor 2 blockade with DC101. Neoplasia 6:213–223

    Article  PubMed  CAS  Google Scholar 

  64. Knopp MV, Weiss E, Sinn HP, Mattern J, Junkermann H, Radeleff J, Magener A, Brix G, Delorme S, Zuna I, van Kaick G (1999) Pathophysiologic basis of contrast enhancement in breast tumors. J Magn Reson Imaging 10:260–266

    Article  PubMed  CAS  Google Scholar 

  65. Pham CD, Roberts TP, van Bruggen N, Melnyk O, Mann J, Ferrara N, Cohen RL, Brasch RC (1998) Magnetic resonance imaging detects suppression of tumor vascular permeability after administration of antibody to vascular endothelial growth factor. Cancer Invest 16:225–230

    PubMed  CAS  Google Scholar 

  66. Morgan B, Thomas A, Drevs J, Hennig J, Buchert, M, Jivan, A, Horsfield MA, Mross K, Ball HA, Lee L, Mietlowski W, Fuxuis S, Unger C, O’Byrne K, Henry A, Cherryman GR, Laurent D, Dugan M, Marme D, Steward WP (2003) Dynamic contrast-enhanced magnetic resonance imaging as a biomarker for the pharmacological response of PTK787/ZK 222584, an inhibitor of the vascular endothelial growth factor receptor tyrosine kinases, in patients with advanced colorectal cancer and liver metastases: results from two phase I studies. J Clin Oncol 21:3955–3964

    Article  PubMed  CAS  Google Scholar 

  67. Thomas AL, Morgan B, Drevs J, Unger C, Wiedenmann B, Vanhoefer U, Laurent D, Dugan M, Steward WP (2003) Vascular endothelial growth factor receptor tyrosine kinase inhibitors: PTK787/ZK 222584. Semin Oncol 30:32–38

    PubMed  CAS  Google Scholar 

  68. Preda A, Novikov V, Moglich M, Turetschek K, Shames DM, Brasch RC, Cavagna FM, Roberts TP (2004) MRI monitoring of Avastin antiangiogenesis therapy using B22956/1, a new blood pool contrast agent, in an experimental model of human cancer. J Magn Reson Imaging 20:865–873

    Article  PubMed  Google Scholar 

  69. Brasch RC, Gossmann A, Helbich TH, Kuriyama N, Roberts TP, Shames DM, van Bruggen N, Wendland MF, Israel MA (2002) Can a small-molecular gadolinium contrast agent be applied successfully with dynamic MRI to quantitatively define brain tumor microvascular responses to angiogenesis inhibition? Acad Radiol 9 Suppl 2:326–327

    Article  Google Scholar 

  70. Brasch R, Turetschek K (2000) MRI characterization of tumors and grading angiogenesis using macromolecular contrast media: status report. Eur J Radiol 34:148–155

    Article  PubMed  CAS  Google Scholar 

  71. Roberts TP, Turetschek K, Preda A, Novikov V, Moeglich M, Shames DM, Brasch RC, Weinmann HJ (2002) Tumor microvascular changes to anti-angiogenic treatment assessed by MR contrast media of different molecular weights. Acad Radiol 9 Suppl 2:511–513

    Article  Google Scholar 

  72. Turetschek K, Preda A, Novikov V, Brasch RC, Weinmann HJ, Wunderbaldinger P, Roberts TP (2004) Tumor microvascular changes in antiangiogenic treatment: assessment by magnetic resonance contrast media of different molecular weights. J Magn Reson Imaging 20:138–144

    Article  PubMed  Google Scholar 

  73. Bremer C, Mustafa M, Bogdanov A, Ntziachristos V, Petrovsky A, Weissleder R (2003) Steady-state blood volume measurements in experimental tumors with different angiogenic burdens a study in mice. Radiology 226:214–220

    Article  PubMed  Google Scholar 

  74. Dafni H, Israely T, Bhujwalla ZM, Benjamin LE, Neeman M (2002) Over-expression of vascular endothelial growth factor 165 drives peri-tumor interstitial convection and induces lymphatic drain: Magnetic resonance imaging, confocal microscopy, and histological tracking of triple labeled albumin. Cancer Res 62:6731–6739

    PubMed  CAS  Google Scholar 

  75. Ogawa S, Lee TM, Nayak AS, Glynn P (1990) Oxygenation-sensitive contrast in magnetic resonance image of rodent brain at high magnetic fields. Magn Reson Med 14:68–78

    Article  PubMed  CAS  Google Scholar 

  76. Abramovitch R, Dafni H, Smouha E, Benjamin LE, Neeman M (1999) In vivo prediction of vascular susceptibility to vascular susceptibility endothelial growth factor withdrawal: magnetic resonance imaging of C6 rat glioma in nude mice. Cancer Res 59:5012–5016

    PubMed  CAS  Google Scholar 

  77. Gross DJ, Reibstein I, Weiss L, Slavin S, Stein I, Neeman M, Abramovitch R, Benjamin LE (1999) The antiangiogenic agent linomide inhibits the growth rate of von Hippel-Lindau paraganglioma xenografts to mice. Clin Cancer Res 5:3669–3675

    PubMed  CAS  Google Scholar 

  78. Gross S, Gilead A, Scherz A, Neeman M, Salomon Y (2003) Monitoring photodynamic therapy of solid tumors online by BOLD-contrast MRI. Nat Med 9:1327–1331

    Article  PubMed  CAS  Google Scholar 

  79. Sawyer TK (2004) Cancer metastasis therapeutic targets and drug discovery: emerging small-molecule protein kinase inhibitors. Expert Opin Investig Drugs 13:1–19

    Article  PubMed  CAS  Google Scholar 

  80. Menger M, Glokler J, Rimmele M (2006) Application of aptamers in therapeutics and for small-molecule detection. Handb Exp Pharmacol 173:359–373

    Article  PubMed  CAS  Google Scholar 

  81. White RR, Shan S, Rusconi CP, Shetty G, Dewhirst MW, Kontos CD, Sullenger BA (2003) Inhibition of rat corneal angiogenesis by a nuclease-resistant RNA aptamer specific for angiopoietin-2. Proc Natl Acad Sci 9:295028–295033

    Google Scholar 

  82. Mulder WJM, Strijkers GJ, van Tilborg GAF, Griffioe AW, Nicolay K (2006) Lipid-based nanoparticles for contrast-enhanced MRI and molecular imaging. NMR Biomed 19:142–164

    Article  PubMed  CAS  Google Scholar 

  83. Colin M, Harbottle RP, Knight A, Kornprobst M, Cooper RG, Miller AD, Trugnan G, Capeau J, Coutelle C, Brahimi-Horn MC (1998) Liposomes enhance delivery and expression of an RGD-oligolysine gene transfer vector in human tracheal cells. Gene Ther 5(11):1488–1498

    Article  PubMed  CAS  Google Scholar 

  84. Nallamothu R, Wood GC, Pattillo CB, Scott RC, Kiani MF, Moore BM, Thoma LA (2006) A tumor vasculature targeted liposome delivery system for combretastatin A4: design, characterization, and in vitro evaluation. AAPS PharmSciTech 7 (2) Article 32

  85. Winter PM, Morawski AM, Caruthers SD, Fuhrhop RW, Zhang H, Williams TA, Allen JS, Lacy EK, Robertson JD, Lanza GM, Wickline SA (2003) Molecular imaging of angiogenesis in early-stage atherosclerosis with alpha(v)beta3-integrin-targeted nanoparticles. Circulation 108:2270–2274

    Article  PubMed  CAS  Google Scholar 

  86. Winter PM, Caruthers SD, Kassner A, Harris TD, Chinen LK, Allen JS, Lacy EK, Zhang H, Robertson JD, Wickline SA, Lanza GM (2003) Molecular imaging of angiogenesis in nascent Vx-2 rabbit tumors using a novel αvβ3-targeted nanoparticle and 1.5 Tesla magnetic resonance imaging. Cancer Res 63:5838–5843

    PubMed  CAS  Google Scholar 

  87. Mulder WJM, Strijkers GJ, Habets JW, Bleeker EJW, Schaft DWJ, Storm G, Koning GA, Griffioen AW, Nicolay K (2005) MR molecular imaging and fluorescence microscopy for identification of activated tumor endothelium using a bimodal lipidic nanoparticle. FASEB J 19:2008–2010

    PubMed  CAS  Google Scholar 

  88. Sipkins DA, Cheresh DA, Kazemi MR, Nevin LM, Bednarski MD, Li KC (1998) Detection of tumor angiogenesis in vivo by alphaVbeta3-targeted magnetic resonance imaging. Nat Med 4:623–626

    Article  PubMed  CAS  Google Scholar 

  89. Zhang C, Jugold M, Woenne EC, Lammers T, Morgenstern B, Mueller MM, Zentgraf H, Bock M, Eisenhut M, Semmler W, Kiessling F (2006) Specific targeting of tumor angiogenesis by RGD-conjugated APTMS-coated USPIO using a clinical 1.5 T MR-scanner. (in revision)

  90. Daldrup-Link HE, Simon GH, Brasch RC (2006) Imaging of tumor angiogenesis: current approaches and future prospects. Curr Pharm Des 12:2661–2672

    Article  PubMed  CAS  Google Scholar 

  91. Kang HW, Torres D, Wald L, Weissleder R, Bogdanov AA Jr (2006) Targeted imaging of human endothelial-specific marker in a model of adoptive cell transfer. Lab Invest 86:599–609

    PubMed  CAS  Google Scholar 

  92. Anderson SA, Rader RK, Westlin WF, Null C, Jackson D, Lanza GM, Wickline SA, Kotyk JJ (2000) Magnetic resonance contrast enhancement of neovasculature with alpha(v)beta(3)-targeted nanoparticles. Magn Reson Med 44:433–439

    Article  PubMed  CAS  Google Scholar 

  93. Sipkins DA, Gijbels K, Tropper FD, Bednarski M, Li KC, Steinman LJ (2000) ICAM-1 expression in autoimmune encephalitis visualized using magnetic resonance imaging. Neuroimmunol 104:1–9

    Article  CAS  Google Scholar 

  94. Crich SG, Bussolati B, Tei L, Grange C, Esposito G, Lanzardo S, Camussi G, Aime S (2006) Magnetic resonance visualization of tumor angiogenesis by targeting neural cell adhesion molecules with the highly sensitive gadolinium-loaded apoferritin probe. Cancer Res 66:9196–9201

    Article  CAS  Google Scholar 

  95. Umathum R, Mangalathu Arumana, Semmler W, Bock M (2005) A solenoid receive array for multi-mouse imaging at 1.5 T. Proc. 13th Ann Meet Intl Soc Mag Reson Med:924

  96. Tofts PS, Brix G, Buckley DL, Evelhoch JL, Henderson E, Knopp MV, Larsson HBW, Lee TY, Mayr NA, Parker GJM, Port RE, Taylor J, Weisskoff RM (1999) Estimating kinetic parameters from dynamic contrast-enhanced T1-weighted MRI of a diffusable tracer: standardized quantities and symbols. J Magn Reson Imaging 10:223–232

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fabian Kiessling.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kiessling, F., Jugold, M., Woenne, E.C. et al. Non-invasive assessment of vessel morphology and function in tumors by magnetic resonance imaging. Eur Radiol 17, 2136–2148 (2007). https://doi.org/10.1007/s00330-006-0566-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00330-006-0566-x

Keywords

Navigation