Skip to main content

Mycorrhizal Associations in Agroforestry Systems

  • Chapter
  • First Online:
Soil Biology and Agriculture in the Tropics

Part of the book series: Soil Biology ((SOILBIOL,volume 21))

Abstract

Agroforestry systems can be a viable alternative to the preservation of natural resources while contributing to sustainable food production in the tropics. These perennial systems promote beneficial biological interactions between micro-organisms and plant species, especially those formed by arbuscular mycorrhizal fungi and roots. Mycorrhizal fungi increase the soil volume explored by the roots, increase nutrient absorption by the plants, protect the root system against pathogens, toxic elements and certain heavy metals, help the formation and maintenance of soil structure, increase the input of soil carbon, and contribute to the maintenance of biodiversity. Agroforestry systems have the potential to maximize the benefits associated with AMF, which in turn could mitigate negative interactions between trees and annual crops. This beneficial impact between agroforestry management and mycorrhizal action may be depicted as a particular form of symbiosis, and deserves more study.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abbott LK, Robson AD (1991) Factors influencing the occurrence of vesicular–arbuscular mycorrhizas. Agr Ecosyst Environ 35:121–150

    Article  Google Scholar 

  • Adholeya A, Tiwari P, Singh R (2005) Large-scale inoculum production of arbuscular mycorrhizal fungi on root organs and inoculation strategies. In: Declerck S, Strullu D-G, Fortin JA (eds) In vitro culture of mycorrhizas. Springer, Berlin, pp 315–338

    Chapter  Google Scholar 

  • Al-Karaki GN (2000) Growth of mycorrhizal tomato and mineral acquisition under salt stress. Mycorrhiza 10:51–54

    Article  CAS  Google Scholar 

  • Allen MF (2007) Mycorrhizal fungi: highways for water and nutrients in arid soils. Vadose Zone J 6:291–297

    Article  Google Scholar 

  • Andrade SAL, Abreu CA, Abreu MF, Silveira APD (2003) Interação de chumbo, da saturação por bases do solo e de micorriza arbuscular no crescimento e nutrição mineral da soja. R Bras Ci Solo 27:945–954

    CAS  Google Scholar 

  • Andrianjaka Z et al (2007) Biological control of Striga hermonthica by Cubitermes termite mound powder amendment in sorghum culture. Appl Soil Ecol 37:175–183

    Article  Google Scholar 

  • Augé RM (2001) Water relations, drought and vesicular–arbuscular mycorrhizal symbiosis. Mycorrhiza 11:3–42

    Article  Google Scholar 

  • Azcón-Aguilar C, Barea JM (1996) Arbuscular mycorrhizas and biological control of soil-borne plant pathogens — an overview of the mechanisms involved. Mycorrhiza 6:457–464

    Article  Google Scholar 

  • Bago B, Pfeffer PE, Shachar-Hill Y (2000) Carbon metabolism and transport in arbuscular mycorrhizas. Plant Physiol 124:949–957

    Article  PubMed  CAS  Google Scholar 

  • Baylis GTS (1975) The magnolioid mycorrhiza and mycotrophy in root systems derived from it. In: Sanders FE, Mosse B, Tinker PB (eds) Endomycorrhizas. Academic, London, pp 373–389

    Google Scholar 

  • Bethlenfalvay GJ, Bayne HG, Pacovsky RS (1983) Parasitic and mutualistic associations between a mycorrhizal fungus and soybean: the effect of phosphorus on host plant–endophyte interactions. Physiol Plantarum 57:543–548

    Article  CAS  Google Scholar 

  • Bhadalung N, Suwanarit A, Dell B, Nopamornbodi O, Thamchaipenet A, Rungchuang J (2005) Effects of long-term NP-fertilization on abundance and diversity of arbuscular mycorrhizal fungi under a maize cropping system. Plant Soil 270:371–382

    Article  CAS  Google Scholar 

  • Bolan NS (1991) A critical review on the role of mycorrhizal fungi in the uptake of phosphorus by plants. Plant Soil 134:189–207

    Article  CAS  Google Scholar 

  • Bolan NS, Robson AD, Barrow NJ (1987) Effects of vesicular–arbuscular mycorrhiza on the availability of iron phosphates to plants. Plant Soil 99:401–410

    Article  CAS  Google Scholar 

  • Brundrett MC (2002) Coevolution of roots and mycorrhizas of land plants. New Phytol 154:275–304

    Article  Google Scholar 

  • Brundrett MC, Abbott LK (1994) Mycorrhizal fungus propagules in the jarrah forest. New Phytol 127:539–546

    Article  Google Scholar 

  • Bucher M (2007) Functional biology of plant phosphate uptake at root and mycorrhiza interfaces. New Phytol 173:11–26

    Article  PubMed  CAS  Google Scholar 

  • Cardoso IM, Kuyper TW (2006) Mycorrhizas and tropical soil fertility. Agric Ecosyst Environ 116:72–84

    Article  Google Scholar 

  • Cardoso IM, Guijt I, Franco FS, Carvalho AF, Ferreira Neto PS (2001) Continual learning for agroforestry system design university, NGO and farmer partnership in Minas Gerais, Brazil. Agric Syst 69:235–257

    Article  Google Scholar 

  • Cardoso IM, Boddington C, Janssen BH, Oenema O, Kuyper TW (2003a) Distribution of mycorrhizal fungal spores in soils under agroforestry and monocultural coffee systems in Brazil. Agroforest Syst 58:33–43

    Article  Google Scholar 

  • Cardoso IM, Janssen BH, Oenema O, Kuyper TW (2003b) Phosphorus pools in Oxisols under shaded and unshaded coffee systems on farmers’ fields in Brazil. Agroforest Syst 58:55–64

    Article  Google Scholar 

  • Cardoso IM, Boddington C, Janssen BH, Oenema O, Kuyper TW (2006) Differential access to phosphorus pools of an Oxisol by mycorrhizal and non-mycorrhizal maize. Commun Soil Sci Plant Anal 37:11–12

    Article  CAS  Google Scholar 

  • Carneiro MAC, Siqueira JO, Davide AC, Gomes LJ, Curi N, Vale FR (1996) Fungo micorrízico e superfosfato no crescimento de espécies arbóreas tropicais. Scient Forestalis 50:21–36

    Google Scholar 

  • Carneiro MAC, Siqueira JO, Moreira FMS, Carvalho D, Botelho AS, Saggin-Júnior OJ (1998) Micorriza arbuscular em espécies arbóreas e arbustivas nativas de ocorrência no Sudoeste do Brasil. Cerne 41:129–145

    Google Scholar 

  • Chapela IG, Osher LJ, Horton TR, Henn MR (2001) Ectomycorrhizal fungi introduced with exotic pine plantations induce soil carbon depletion. Soil Biol Biochem 33:1733–1740

    Article  CAS  Google Scholar 

  • Colozzi A, Cardoso EJBN (2000) Detection of arbuscular mycorrhizal fungi in roots of coffee plants and Crotalaria cultivated between rows. Pesqui Agropecu Bras 35:203–2042

    Google Scholar 

  • Dorioz JM, Robert M, Chenu C (1993) The role of roots, fungi and bacteria on clay particle organization — an experimental approach. Geoderma 56:179–194

    Article  Google Scholar 

  • Driver JD, Holben WE, Rillig MC (2005) Characterization of glomalin as a hyphal wall component of arbuscular mycorrhizal fungi. Soil Biol Biochem 37:101–106

    Article  CAS  Google Scholar 

  • Egerton-Warburton LM, Querejeta JI, Allen MF (2007) Common mycorrhizal networks provide a potential pathway for the transfer of hydraulically lifted water between plants. J Exp Bot 58:1473–1483

    Article  PubMed  CAS  Google Scholar 

  • Elsen A, Gervacio D, Swennen R, De Waele D (2008) AMF-induced biocontrol against plant parasitic nematodes in Musa sp.: a systemic effect. Mycorrhiza 18:251–256

    Article  PubMed  CAS  Google Scholar 

  • Ewel JJ (1999) Natural systems as a model for the design of sustainable systems of land use. Agroforest Syst 45:1–21

    Article  Google Scholar 

  • Faquin V, Malavolta E, Muraoka T (1990) Cinética da absorção de fosfato em soja sob influência de micorriza vesículo–arbuscular. Rev Bras Cienc Solo 14:41–48

    CAS  Google Scholar 

  • Farrell JG, Altieri MA (2002) Sistemas agroflorestais. In: Altieri MA (ed) Agroecologia: bases científicas para uma agricultura sustentável. Agropecuária, Guaíba, pp 413–440

    Google Scholar 

  • Feng G, Song YC, Li XL, Christie P (2003) Contribution of arbuscular mycorrhizal fungi to utilization of organic sources of phosphorus by red clover in a calcareous soil. Appl Soil Ecol 22:139–148

    Article  Google Scholar 

  • Fitter AH (2001) Specificity, links and networks in the control of diversity in plant and microbial communities. In: Press MC, Huntly NJ, Levin S (eds) Ecology: achievement and challenge. Blackwell, Oxford, pp 95–114

    Google Scholar 

  • Foley JA et al (2005) Global consequences of land use. Science 309:570–574

    Article  PubMed  CAS  Google Scholar 

  • Garg N, Geetanjali K, Amandeep K (2006) Arbuscular mycorrhiza: nutritional aspects. Arch Agron Soil Sci 52:593–606

    Article  CAS  Google Scholar 

  • Gonzales-Chavez MC, Carillo-Gonzalez A, Wright AS, Nichols KA (2004) Glomalin: a mechanism for heavy-metal sequestration by arbuscular mycorrhizal fungi. Environ Pollut 130:317–323

    Article  CAS  Google Scholar 

  • Gworgwor NA, Weber HC (2003) Arbuscular mycorrhizal fungi–parasite–host interaction for control of Striga hermonthica (Del.) Benth. in sorghum [Sorghum bicolor (L.) Moench]. Mycorrhiza 13:27–281

    Article  Google Scholar 

  • Hamel C (2004) Impact of arbuscular mycorrhizal fungi on N and P cycling in the root zone. Can J Soil Sci 84:383–395

    CAS  Google Scholar 

  • Hart MM, Reader RJ, Klironomos JN (2001) Life-history strategies of arbuscular mycorrhizal fungi in relation to their successional dynamics. Mycologia 93:1186–1194

    Article  Google Scholar 

  • Hayman DS (1983) The physiology of vesicular–arbuscular endomycorrhizal symbiosis. Can J Bot 61:944–963

    Article  Google Scholar 

  • He XH, Critchley C, Bledsoe C (2003) Nitrogen transfer within and between plants through common mycorrhizal networks (CMNs). Crit Rev Plant Sci 22:531–567

    Article  Google Scholar 

  • Hedger J (1986) Suillus luteus on the equator. Bull Br Mycol Soc 20:53–54

    Article  Google Scholar 

  • Hernández G, Cuenca G, García A (2000) Behaviour of arbuscular–mycorrhizal fungi on Vigna luteola growth and its effect on the exchangeable (32P) phosphorus of soil. Biol Fertil Soils 31:232–236

    Article  Google Scholar 

  • Ingleby K, Wilson J, Munro RC (2007) Mycorrhizas in agroforestry: spread and sharing of arbuscular mycorrhizal fungi between trees and crops: complementary use of molecular and microscopic approaches. Plant Soil 294:125–136

    Article  CAS  Google Scholar 

  • International culture collection of vesicular arbuscular mycorrhizal fungi — INVAM (2008) http://invam.caf.wvu.edu

  • Janos DP (1980) Mycorrhizae influence tropical succession. Biotropica 12((Suppl.)):56–64

    Article  Google Scholar 

  • Janos DP (1996) Mycorrhizas, succession, and the rehabilitation of deforested lands in the humid tropics. In: Frankland JC, Magan N, Gadd GM (eds) Fungi and environmental change. Cambridge University Press, UK, pp 129–162

    Google Scholar 

  • Jayachandran K, Schwab AP, Hetrick BAD (1989) Mycorrhizal mediation of phosphorus availability: synthetic iron chelate effects on phosphorus solubilization. Soil Sci Soc Am J 53:1701–1706

    Article  CAS  Google Scholar 

  • Jefwa JM, Sinclair R, Maghembe JA (2006) Diversity of glomale mycorrhizal fungi in maize/sesbania intercrops and maize monocrop systems in southern Malawi. Agroforestry Syst 67:107–114

    Article  Google Scholar 

  • Johansen A, Jensen ES (1996) Transfer of N and P from intact or decomposing roots of pea to barley interconnected by an arbuscular mycorrhizal fungus. Soil Biol Biochem 28:73–81

    Article  CAS  Google Scholar 

  • Johnson NC (1993) Can fertilization of soil select less mutualistic mycorrhizae? Ecol Appl 3:749–757

    Article  Google Scholar 

  • Johnson NC, Graham JH, Smith FA (1997) Functioning of mycorrhizal associations along the mutualism–parasitism continuum. New Phytol 135:575–585

    Article  Google Scholar 

  • Joner EJ, Jakobsen I (1995) Growth and extracellular phosphatase activity of arbuscular mycorrhizal hyphae as influenced by soil organic matter. Soil Biol Biochem 27:1153–1159

    Article  CAS  Google Scholar 

  • Joner EJ, Van Aarle IM, Vosatka M (2000) Phosphatase activity of extra-radical arbuscular mycorrhizal hyphae. Plant Soil 226:199–210

    Article  CAS  Google Scholar 

  • Kuyper TW, Cardoso IM, Onguene NA, Van Noordwijk M, Van Noordwijk M (2004) Managing mycorrhiza in tropical multispecies agroecosystems. In: Van Noordwijk M, Cadish G, Ong CK (eds) Below-ground interactions in tropical agroecosystems. CABI, Wallingford, pp 243–261

    Google Scholar 

  • Lal R (2005) Soil carbon sequestration in natural and managed tropical forest ecosystems. J Sustain Forest 21:1–30

    Article  Google Scholar 

  • Landis FC, Fraser LH (2008) A new model of carbon and phosphorus transfers in arbuscular mycorrhizas. New Phytol 177:466–479

    PubMed  CAS  Google Scholar 

  • Langley JA, Hungate BA (2003) Mycorrhizal controls on belowground litter quality. Ecology 84:2302–2312

    Article  Google Scholar 

  • Langley JA, Chapman SK, Hungate BA (2006) Ectomycorrhizal colonization slows root decomposition: the post-mortem fungal legacy. Ecol Lett 9:955–959

    Article  PubMed  Google Scholar 

  • Leake J, Johnson D, Donnelly D, Muche G, Boddy L, Read D (2004) Networks of power and influence: the role of mycorrhizal mycelium in controlling plant communities and agroecosystem functioning. Can J Bot 82:1016–1045

    Article  Google Scholar 

  • Lendzemo VW, Kuyper TW (2001) Effects of arbuscular mycorrhizal fungi on damage by Striga hermonthica on two contrasting cultivars of sorghum, Sorghum bicolor. Agric Ecosyst Environ 87:29–35

    Article  Google Scholar 

  • Lendzemo VW, Kuyper TW, Kropff MJ, Van Ast A (2005) Field inoculation with arbuscular mycorrhizal fungi reduces Striga hermonthica performance on cereal crops and has the potential to contribute to integrated Striga management. Field Crops Res 91:51–61

    Article  Google Scholar 

  • Lendzemo VW, Kuyper TW, Matusova R, Bouwmeester HJ, Van Ast A (2007) Colonization by arbuscular mycorrhiza fungi of sorghum leads to reduced germination and subsequent attachment and emergence of Striga hermonthica. Plant Sign Behav 2:58–62

    Google Scholar 

  • Lesueur D, Sarr A (2008) Effects of single and dual inoculation with selected microsymbionts (rhizobia and arbuscular mycorrhizal fungi) on field growth and nitrogen fixation of Calliandra calothyrsus Meissn. Agroforestry Syst 73:37–45

    Article  Google Scholar 

  • Lovelock CE, Wright SF, Clark DA, Ruess RW (2004) Soil stocks of glomalin produced by arbuscular mycorrhizal fungi across a tropical rain forest landscape. J Ecol 92:278–287

    Article  CAS  Google Scholar 

  • Mäder P, Fliessbach A, Dubois D, Gunst L, Fried P, Niggli U (2002) Soil fertility and biodiversity in organic farming. Science 196:1694–1697

    Article  Google Scholar 

  • Muleta D, Assefa F, Nemomissa S, Granhall U (2008) Distribution of arbuscular mycorrhizal fungi spores in soils of smallholder agroforestry and monocultural coffee systems in southwestern Ethiopia. Biol Fertil Soils 44:653–659

    Article  Google Scholar 

  • Muthukumar T, Udaiyan K, Rajeshkannan V (2001) Response of neem (Azadirachta indica A. Juss.) to indigenous arbuscular mycorrhizal fungi, phosphate-solubilizing and asymbiotic nitrogen-fixing bacteria under tropical nursery conditions. Biol Fert Soils 34:417–426

    CAS  Google Scholar 

  • Mutuo PK, Cadisch G, Albrecht A, Palm CA, Verchot L (2005) Potential of agroforestry for carbon sequestration and mitigation of greenhouse gas emissions from soils in the tropics. Nutr Cycl Agroecosyst 71:43–54

    Article  CAS  Google Scholar 

  • Newsham KK, Fitter AH, Watkinson AR (1995) Multifunctionality and biodiversity in arbuscular mycorrhizas. Trends Ecol Evol 10:407–411

    Article  Google Scholar 

  • Nichols KA, Wright SF (2005) Comparison of glomalin and humic acid in eight native US soils. Soil Sci 170:985–997

    Article  CAS  Google Scholar 

  • Novais RF, Smyth TJ (1999) Fósforo em solo e planta em condições tropicais. MG, Universidad Federal de Viçosa, Viçosa

    Google Scholar 

  • Olsson PA, Thingstrup I, Jakobsen I, Baath F (1999) Estimation of the biomass of arbuscular mycorrhizal fungi in a linseed field. Soil Biol Biochem 31:1879–1887

    Article  CAS  Google Scholar 

  • O’Neill EG (1994) Responses of soil biota to elevated atmospheric carbon dioxide. Plant Soil 165:55–65

    Article  Google Scholar 

  • Pande M, Tarafdar JC (2004) Arbuscular mycorrhizal fungal diversity in neem-based agroforestry systems in Rajasthan. Appl Soil Ecol 26:233–241

    Article  Google Scholar 

  • Perotto S, Brewin NJ, Bonfante P (1994) Colonization of pea roots by the mycorrhizal fungus Glomus versiforme and by Rhizobium bacteria: immunological comparison using monoclonal antibodies as probes for plant cell surface components. Mol Plant Microbe Interact 7:91–98

    Google Scholar 

  • Pfeffer PE, Douds DD Jr, Bucking H, Schwartz DP, Shachar-Hill Y (2004) The fungus does not transfer carbon to or between roots in an arbuscular mycorrhizal symbiosis. New Phytol 163:617–627

    Article  Google Scholar 

  • Pozo MJ, Azcón-Aguilar C (2007) Unraveling mycorrhiza-induced resistance. Curr Opin Plant Biol 10:393–398

    Article  PubMed  CAS  Google Scholar 

  • Rao AV, Giller KE (1993) Nitrogen fixation and its transfer from Leucaena to grass using 15N. For Ecol Manage 61:221–227

    Article  Google Scholar 

  • Rillig MC, Mummey DL (2006) Mycorrhizas and soil structure. New Phytol 171:41–53

    Article  PubMed  CAS  Google Scholar 

  • Rillig MC, Wright SF, Nichols KA, Schmidt WF, Torn MS (2001) Large contribution of arbuscular mycorrhizal fungi to soil carbon pools in tropical forest soils. Plant Soil 233:167–177

    Article  CAS  Google Scholar 

  • Rillig MC, Wright SF, Eviner VT (2002) The role of arbuscular mycorrhizal fungi and glomalin in soil aggregation: comparing effects of five plant species. Plant Soil 238:325–333

    Article  CAS  Google Scholar 

  • Rodrigues LA, Martins MA, Salomão MSMB (2003a) Uso de micorrizas e rizóbios em cultivo consorciado de eucalipto e sesbânia. I – Crescimento, absorção e transferência de nitrogênio entre plantas. Rev Bras Cienc Solo 27:583–591

    Google Scholar 

  • Rodrigues LA, Martins MA, Salomão MSMB (2003b) Uso de micorrizas e rizóbios em cultivo consorciado de eucalipto e sesbânia. II — absorção e eficiência de utilização de fósforo e frações fosfatadas. Rev Bras Cienc Solo 27:593–599

    Google Scholar 

  • Ruddiman WF (2003) The anthropogenic greenhouse era began thousands of years ago. Clim Change 61:261–293

    Article  CAS  Google Scholar 

  • Rufyikiri GS, Declerck S, Dufey JE, Delvaux B (2000) Arbuscular mycorrhizal fungi might alleviate aluminium toxicity in banana plants. New Phytol 148:343–352

    Article  CAS  Google Scholar 

  • Ryan MH, Graham JH (2002) Is there a role for arbuscular mycorrhizal fungi in production agriculture? Plant Soil 244:263–271

    Article  CAS  Google Scholar 

  • Santiago GM, Garcia Q, Scotti MR (2002) Effect of post-planting inoculation with Bradyrhizobium sp and mycorrhizal fungi on the growth of Brazilian rosewood, Dalbergia nigra Allem. ex Benth., in two tropical soils. New Forests 24:15–25

    Article  Google Scholar 

  • Satter MA, Hanafi MM, Mahmud TMM, Azizah H (2006) Influence of arbuscular mycorrhiza and phosphate rock on uptake of major nutrients by Acacia mangium seedlings on degraded soil. Biol Fertil Soils 42:345–349

    Article  Google Scholar 

  • Schnepf A, Roose T (2006) Modelling the contribution of arbuscular mycorrhizal fungi to plant phosphate uptake. New Phytol 171:669–682

    PubMed  CAS  Google Scholar 

  • Selosse MA, Richard F, He X, Simard SW (2006) Mycorrhizal networks: des liaisons dangereuses? Trends Ecol Evol 21:621–628

    Article  PubMed  Google Scholar 

  • Shibata R, Yano K (2003) Phosphorus acquisition from non-labile sources in peanut and pigeonpea with mycorrhizal interaction. Appl Soil Ecol 24:133–141

    Article  Google Scholar 

  • Sierra J, Nygren P (2006) Transfer of N fixed by a legume tree to the associated grass in a tropical silvopastoral system. Soil Biol Biochem 38:1893–1903

    Article  CAS  Google Scholar 

  • Silva S, Siqueira JO, Soares CRFS (2006) Fungos micorrízicos no crescimento e na extração de metais pesados pela braquiária em solo contaminado. Pesqui Agropecu Bras 41:1749–1757

    Google Scholar 

  • Silveira APD, Cardoso EJBN (2004) Arbuscular mycorrhiza and kinetic parameters of phosphorus absorption by bean plants. Sci Agric 61:203–209

    Article  Google Scholar 

  • Silveira APD, Gomes VFF (2007) Micorrizas em plantas frutíferas tropicais. In: Silveira APD, Freitas SS (eds) Microbiota do solo e qualidade ambiental. Instituto Agronômico, Campinas, pp 57–77

    Google Scholar 

  • Simard SW, Durall DM (2004) Mycorrhizal networks: a review of their extent, function, and importance. Can J Bot 82:1140–1165

    Article  CAS  Google Scholar 

  • Siqueira LC (2008) Levantamento florístico e etnobotânico do estrato arbóreo em sistemas naturais e agroflorestais, Araponga. Magister Scientiae dissertation, Universidade Federal de Viçosa, Viçosa, Minas Gerais

    Google Scholar 

  • Siqueira JO, Saggin O Jr (2001) Dependency on arbuscular mycorrhizal fungi and responsiveness of some Brazilian native woody species. Mycorrhiza 11:245–255

    Article  CAS  Google Scholar 

  • Siqueira JO, Carneiro MAC, Curi N, Rosado SCS, Davide AC (1998) Mycorrhizal colonization and mycotrophic growth of native woody species as related to successional groups in Southeastern Brazil. For Ecol Manage 107:241–252

    Article  Google Scholar 

  • Siqueira JO, Soares CRFS, Santos JGD, Schneider J, Carneiro MAC (2007) Micorrizas e degradação do solo: caracterização, efeitos e ação recuperadora. In: Ceretta CA, Silva LS, Reichert JM (eds) Tópicos em ciência do solo, vol 5. Sociedade Brasileira de Ciência do Solo, Viçosa, pp 219–305

    Google Scholar 

  • Smith SE, Read DJ (2008) Mycorrhizal Symbiosis, 3rd edn. Academic, London

    Google Scholar 

  • Snoeck D, Zapata F, Domenach A-M (2000) Isotopic evidence of the transfer of nitrogen fixed by legumes to coffee trees. Biotechnol Agron Soc Environ 4:95–100

    CAS  Google Scholar 

  • Souza HN (2006) Sistematização da experiência participativa com sistemas agroflorestais: rumo à sustentabilidade da agricultura familiar na Zona da Mata mineira. Magister Scientiae dissertation, Universidade Federal de Viçosa, Viçosa

    Google Scholar 

  • Souza FA, Lima da Silva IC, Berbara RLL (2008) Fungos micorrízicos arbusculares: Muito mais diversos do que se imaginava. In: Moreira FMS, Siqueira JO, Brussaard L (eds) Biodiversidade do solo em ecossistemas brasileiros. Editora UFLA, Lavras, pp 483–536

    Google Scholar 

  • Staddon PL, Bronk-Ramsey C, Ostle N, Ineson P, Fitter AH (2003) Rapid turnover of hyphae of mycorrhizal fungi determined by AMS microanalysis of 14C. Science 300:1138–1140

    Article  PubMed  CAS  Google Scholar 

  • Stürmer SL, Siqueira JO (2008) Diversidade de fungos micorrízicos arbusculares em ecossistemas brasileiros. In: Moreira FMS, Siqueira JO, Brussaard L (eds) Biodiversidade do solo em ecossistemas brasileiros. Editora UFLA, Lavras, pp 537–583

    Google Scholar 

  • Tavares RC (2007) Efeito da inoculação com fungo micorrízico arbuscular e da adubação orgânica no desenvolvimento de mudas de sabiá (Mimosa caesalpiniaefolia Benth.), sob estresse salino. Magister Scientiae dissertation, Universidade Federal do Ceará, Fortaleza

    Google Scholar 

  • Ticconi CA, Abel S (2004) Short on phosphate: plant surveillance and countermeasures. Trends Plant Sci 9:548–555

    Article  PubMed  CAS  Google Scholar 

  • Tilman D et al (2001) Forecasting agriculturally driven global environmental change. Science 292:281–284

    Article  PubMed  CAS  Google Scholar 

  • Treseder KK, Turner KM (2007) Glomalin in ecosystems. Soil Sci Soc Am J 71:1257–1266

    Article  CAS  Google Scholar 

  • Urcelay C, Diaz S (2003) The mycorrhizal dependence of subordinates determines the effect of arbuscular mycorrhizal fungi on plant diversity. Ecol Lett 6:388–391

    Article  Google Scholar 

  • Van der Heijden MGA (2004) Arbuscular mycorrhizal fungi as support systems for seedling establishment in grassland. Ecol Lett 7:293–303

    Article  Google Scholar 

  • Van der Heijden MGA et al (1998) Mycorrhizal fungal diversity determines plant biodiversity, ecosystem variability and productivity. Nature 396:69–72

    Article  CAS  Google Scholar 

  • Van Noordwijk M, Cadish G (2002) Access and excess problems in plant nutrition. Plant Soil 247:25–40

    Article  Google Scholar 

  • Van Noordwijk M, Ong CK (1999) Can the ecosystem mimic hypotheses be applied to farms in African savannahs? Agroforest Syst 45:131–158

    Article  Google Scholar 

  • Vance CP, Uhde-Stone C, Allan DL (2003) Phosphorus acquisition and use: critical adaptations by plants for securing a nonrenewable resource. New Phytol 157:423–447

    Article  CAS  Google Scholar 

  • Weber J et al (2005) Co-inoculation of Acacia mangium with Glomus intraradices and Bradyrhizobium sp. in aeroponic culture. Biol Fertil Soils 41:233–239

    Article  Google Scholar 

  • Williams M, Yanai RD (1996) Multi-dimensional sensitivity analysis and ecological implications of a nutrient uptake model. Plant Soil 180:311–324

    Article  CAS  Google Scholar 

  • Wright SF, Upadhyaya A (1998) A survey of soils for aggregate stability and glomalin, a glycoprotein produced by hyphae of arbuscular mycorrhizal fungi. Plant Soil 198:97–107

    Article  CAS  Google Scholar 

  • Young A (1997) Agroforestry for soil management, 2nd edn. ICRAF and CAB International, Wallingford

    Google Scholar 

  • Zangaro W, Nisizaki SMA, Domingos JCB, Nakano EM (2002) Micorriza arbuscular em espécies arbóreas nativas da bacia do rio Tibagi, Paraná. Cerne 8:77–87

    Google Scholar 

  • Zangaro W, Nisizaki SMA, Domingos JCB, Nakano EM (2003) Mycorrhizal response and successional status in 80 woody species from south Brazil. J Trop Ecol 19:315–324

    Article  Google Scholar 

  • Zhu YG, Miller RM (2003) Carbon cycling by arbuscular mycorrhizal fungi in soil-plant systems. Trends Plant Sci 8:407–409

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank the farmers and the Center of Alternative Technology of the Zona da Mata, Minas Gerais, partners in most of the research in agroforestry systems developed by the Brazilian authors. We also thank the Brazilian sponsors FAPEMIG (Fundação de Amparo à Pesquisa do Estado de Minas Gerais) for financial support, CAPES (Coordenação de Aperfeiçoamento de Pessoal de Nível Superior) and CNPq (Conselho Nacional de Desenvolvimento Científico e Tecnológico) for scholarships to the first and second authors and also for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Irene Maria Cardoso .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

de Carvalho, A.M.X., de Castro Tavares, R., Cardoso, I.M., Kuyper, T.W. (2010). Mycorrhizal Associations in Agroforestry Systems. In: Dion, P. (eds) Soil Biology and Agriculture in the Tropics. Soil Biology, vol 21. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-05076-3_9

Download citation

Publish with us

Policies and ethics