Skip to main content

Modern CT and MR Applications

  • Chapter
Principles of Metabolic Surgery
  • 1145 Accesses

Abstract

Besides being used to diagnose a variety of diseases in adipose patients that can, but need not necessarily, be related to obesity, modern imaging modalities give rise to certain applications that are of special interest in obesity research. Both computed tomography (CT) and magnetic resonance imaging (MRI) provide three-dimensional data of the human body wherein the image contrast is related to the molecular composition of the observed tissues. This fundamental property renders cross-sectional imaging an advantageous way to study the body composition. The abnormalities in body composition in obesity, their detrimental effects on health, and their changes following bariatric surgery are of great importance. The following section presents an overview about a modern classification system for adipose tissue distribution derived mostly from findings in CT or MRI, provides some insight into the technical aspects of adipose tissue quantification, and addresses the observed changes in obesity and after surgery.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  1. Shuldiner AR, Yang R, Gong DW (2001) Resistin, obesity and insulin resistance - the emerging role of the adipocyte as an endocrine organ. N Engl J Med 345:1345–1346

    Article  PubMed  CAS  Google Scholar 

  2. Shen W, Wang Z, Punyanita M, et al (2003) Adipose tissue quantification by imaging methods: a proposed classification. Obes Res 11:5–16

    Article  PubMed  Google Scholar 

  3. Snyder WS, Cook MJ, Nasset ES, Karhausen RL, Howells GP, Tipton IH (1975) Report of the Task Group on Reference Man. In: Press UP, ed. ICRP Publication 23. Oxford, pp 40–45

    Google Scholar 

  4. Tothill P, Han TS, Avenell A, McNeill G, Reid DM (1996) Comparisons between fat measurements by dual-energy X-ray absorptiometry, underwater weighing and magnetic resonance imaging in healthy women. Eur J Clin Nutr 50:747–752

    PubMed  CAS  Google Scholar 

  5. Kelley DE, Thaete FL, Troost F, Huwe T, Goodpaster BH (2000) Subdivisions of subcutaneous abdominal adipose tissue and insulin resistance. Am J Physiol Endocrinol Metab 278:E941–948

    PubMed  CAS  Google Scholar 

  6. Marchington JM, Mattacks CA, Pond CM (1989) Adipose tissue in the mammalian heart and pericardium: structure, foetal development and biochemical properties. Comp Biochem Physiol B 94:225–232

    PubMed  CAS  Google Scholar 

  7. Bjorntorp P (1990) „Portal“ adipose tissue as a generator of risk factors for cardiovascular disease and diabetes. Arteriosclerosis 10:493–496

    Article  PubMed  CAS  Google Scholar 

  8. Jackson AS, Stanforth PR, Gagnon J, et al (2002) The effect of sex, age and race on estimating percentage body fat from body mass index: The Heritage Family Study. Int J Obes Relat Metab Disord 26:789–796

    Article  PubMed  CAS  Google Scholar 

  9. Snijder MB, van Dam RM, Visser M, Seidell JC (2006) What aspects of body fat are particularly hazardous and how do we measure them? Int J Epidemiol 35:83–92

    Article  PubMed  CAS  Google Scholar 

  10. Haacke EM, Brown RW, Thompson MR, Venkatesan R (1999) Magnetic resonance imaging: physical principles and sequence design. J. Wiley & Sons, New York

    Google Scholar 

  11. Frahm J, Haase A, Hanicke W, Matthaei D, Bomsdorf H, Helzel T (1985) Chemical shift selective MR imaging using a whole-body magnet. Radiology 156:441–444

    PubMed  CAS  Google Scholar 

  12. Dixon WT (1984) Simple proton spectroscopic imaging. Radiology 153:189–194

    PubMed  CAS  Google Scholar 

  13. Glover GH (1991) Multipoint Dixon technique for water and fat proton and susceptibility imaging. J Magn Reson Imaging 1:521–530

    Article  PubMed  CAS  Google Scholar 

  14. Sommer G, Fautz HP, Ludwig U, Hennig J (2006) Multicontrast sequences with continuous table motion: a novel acquisition technique for extended field of view imaging. Magn Reson Med 55:918–922

    Article  PubMed  Google Scholar 

  15. Bydder GM, Young IR (1985) MR imaging: clinical use of the inversion recovery sequence. J Comput Assist Tomogr 9:659–675

    Article  PubMed  CAS  Google Scholar 

  16. Paul D, Hennig J, Zaitsev M (2006) Intrinsic fat suppression in TIDE balanced steady-state free precession imaging. Magn Reson Med 56:1328–1335

    Article  PubMed  Google Scholar 

  17. Shen W, Chen J (2008) Application of imaging and other noninvasive techniques in determining adipose tissue mass. Methods Mol Biol 456:39–54

    Article  PubMed  Google Scholar 

  18. Ohshima S, Yamamoto S, Yamaji T, et al (2008) Development of an automated 3D segmentation program for volume quantification of body fat distribution using CT. Nippon Hoshasen Gijutsu Gakkai Zasshi 64:1177–1181

    Article  Google Scholar 

  19. Positano V, Cusi K, Santarelli MF, et al (2008) Automatic correction of intensity inhomogeneities improves unsupervised assessment of abdominal fat by MRI. J Magn Reson Imaging 28:403–410

    Article  PubMed  Google Scholar 

  20. Bonekamp S, Ghosh P, Crawford S, et al (2008) Quantitative comparison and evaluation of software packages for assessment of abdominal adipose tissue distribution by magnetic resonance imaging. Int J Obes (Lond) 32:100–111

    Article  CAS  Google Scholar 

  21. Sumner AE, Farmer NM, Tulloch-Reid MK, et al (2002) Sex differences in visceral adipose tissue volume among African Americans. Am J Clin Nutr 76:975–979

    PubMed  CAS  Google Scholar 

  22. Shen W, Punyanitya M, Wang Z, et al (2004) Visceral adipose tissue: relations between single-slice areas and total volume. Am J Clin Nutr 80:271–278

    PubMed  CAS  Google Scholar 

  23. Shen W, Punyanitya M, Chen J, et al (2007) Visceral adipose tissue: relationships between single slice areas at different locations and obesity-related health risks. Int J Obes (Lond) 31:763–769

    CAS  Google Scholar 

  24. Olbers T, Bjorkman S, Lindroos A, et al (2006) Body composition, dietary intake, and energy expenditure after laparoscopic Rouxen- Y gastric bypass and laparoscopic vertical banded gastroplasty: a randomized clinical trial. Ann Surg 244:715–722

    Article  PubMed  Google Scholar 

  25. Unger RH (2003) Minireview: weapons of lean body mass destruction: the role of ectopic lipids in the metabolic syndrome. Endocrinology 144:5159–5165

    Article  PubMed  CAS  Google Scholar 

  26. Choi SS, Diehl AM (2008) Hepatic triglyceride synthesis and nonalcoholic fatty liver disease. Curr Opin Lipidol 19:295–300 27.

    Article  PubMed  CAS  Google Scholar 

  27. Angulo P (2002) Nonalcoholic fatty liver disease. N Engl J Med 346:1221–1231

    Article  PubMed  CAS  Google Scholar 

  28. Pagano G, Pacini G, Musso G, et al (2002) Nonalcoholic steatohepatitis, insulin resistance, and metabolic syndrome: further evidence for an etiologic association. Hepatology 35:367–372

    Article  PubMed  CAS  Google Scholar 

  29. Mehta SR, Thomas EL, Bell JD, Johnston DG, Taylor-Robinson SD (2008) Non-invasive means of measuring hepatic fat content. World J Gastroenterol 14:3476–3483

    Article  PubMed  Google Scholar 

  30. Needleman L, Kurtz AB, Rifkin MD, Cooper HS, Pasto ME, Goldberg BB (1986) Sonography of diffuse benign liver disease: accuracy of pattern recognition and grading. AJR Am J Roentgenol 146:1011–1015

    PubMed  CAS  Google Scholar 

  31. Mottin CC, Moretto M, Padoin AV, et al (2004) The role of ultrasound in the diagnosis of hepatic steatosis in morbidly obese patients. Obes Surg 14:635–637

    Article  PubMed  Google Scholar 

  32. Fishbein M, Castro F, Cheruku S, et al (2005) Hepatic MRI for fat quantitation: its relationship to fat morphology, diagnosis, and ultrasound. J Clin Gastroenterol 39:619–625

    Article  PubMed  Google Scholar 

  33. Park SH, Kim PN, Kim KW, et al (2006) Macrovesicular hepatic steatosis in living liver donors: use of CT for quantitative and qualitative assessment. Radiology 239:105–112

    Article  PubMed  Google Scholar 

  34. Longo R, Pollesello P, Ricci C, et al (1995) Proton MR spectroscopy in quantitative in vivo determination of fat content in human liver steatosis. J Magn Reson Imaging 5:281–285

    Article  PubMed  CAS  Google Scholar 

  35. Browning JD, Szczepaniak LS, Dobbins R, et al (2004) Prevalence of hepatic steatosis in an urban population in the United States: impact of ethnicity. Hepatology 40:1387–1395

    Article  PubMed  Google Scholar 

  36. Barker KB, Palekar NA, Bowers SP, Goldberg JE, Pulcini JP, Harrison SA (2006) Non-alcoholic steatohepatitis: effect of Roux-en-Y gastric bypass surgery. Am J Gastroenterol 101:368–373

    Article  PubMed  Google Scholar 

  37. Frige F, Laneri M, Veronelli A, et al (2009) Bariatric surgery in obesity: changes of glucose and lipid metabolism correlate with changes of fat mass. Nutr Metab Cardiovasc Dis 19:198–204

    Article  PubMed  CAS  Google Scholar 

  38. Klein S, Mittendorfer B, Eagon JC, et al(2006) Gastric bypass surgery improves metabolic and hepatic abnormalities associated with nonalcoholic fatty liver disease. Gastroenterology 130:1564–1572

    Article  PubMed  CAS  Google Scholar 

  39. Nugent C, Bai C, Elariny H, et al (2008) Metabolic syndrome after laparoscopic bariatric surgery. Obes Surg 18:1278–1286

    Article  PubMed  Google Scholar 

  40. Phillips ML, Boase S, Wahlroos S, et al (2008) Associates of change in liver fat content in the morbidly obese after laparoscopic gastric banding surgery. Diabetes Obes Metab 10:661–667

    Article  PubMed  CAS  Google Scholar 

  41. Dube J, Goodpaster BH (2006) Assessment of intramuscular triglycerides: contribution to metabolic abnormalities. Curr Opin Clin Nutr Metab Care 9:553–559

    Article  PubMed  CAS  Google Scholar 

  42. Bruce CR, Thrush AB, Mertz VA, et al (2006) Endurance training in obese humans improves glucose tolerance and mitochondrial fatty acid oxidation and alters muscle lipid content. Am J Physiol Endocrinol Metab 291:E99–E107

    Article  PubMed  CAS  Google Scholar 

  43. Larson-Meyer DE, Smith SR, Heilbronn LK, Kelley DE, Ravussin E, Newcomer BR (2006) Muscle-associated triglyceride measured by computed tomography and magnetic resonance spectroscopy. Obesity (Silver Spring) 14:73–87

    Article  CAS  Google Scholar 

  44. Boesch C, Slotboom J, Hoppeler H, Kreis R (1997) In vivo determination of intra-myocellular lipids in human muscle by means of localized 1H-MR-spectroscopy. Magn Reson Med 37:484–493

    Article  PubMed  CAS  Google Scholar 

  45. Torriani M, Thomas BJ, Halpern EF, Jensen ME, Rosenthal DI, Palmer WE (2005) Intramyocellular lipid quantification: repeatability with 1H MR spectroscopy. Radiology 236:609–614

    Article  PubMed  Google Scholar 

  46. Shulman GI (2004) Unraveling the cellular mechanism of insulin resistance in humans: new insights from magnetic resonance spectroscopy. Physiology (Bethesda) 19:183–190

    Article  CAS  Google Scholar 

  47. Schick F, Machann J, Brechtel K, et al (2002) MRI of muscular fat. Magn Reson Med 47:720–727

    Article  PubMed  Google Scholar 

  48. McGavock JM, Victor RG, Unger RH, Szczepaniak LS (2006) Adiposity of the heart, revisited. Ann Intern Med 144:517–524

    PubMed  CAS  Google Scholar 

  49. Szczepaniak LS, Dobbins RL, Metzger GJ, et al (2003) Myocardial triglycerides and systolic function in humans: in vivo evaluation by localized proton spectroscopy and cardiac imaging. Magn Reson Med 49:417–423

    Article  PubMed  CAS  Google Scholar 

  50. Lamb HJ, Smit JW, van der Meer RW, et al (2008) Metabolic MRI of myocardial and hepatic triglyceride content in response to nutritional interventions. Curr Opin Clin Nutr Metab Care 11:573–579

    Article  PubMed  CAS  Google Scholar 

  51. Ikonomidis I, Mazarakis A, Papadopoulos C, et al (2007) Weight loss after bariatric surgery improves aortic elastic properties and left ventricular function in individuals with morbid obesity: a 3-year follow-up study. J Hypertens 25:439–447

    Article  PubMed  CAS  Google Scholar 

  52. Favretti F, Segato G, De Marchi F, et al (2002) An adjustable silicone gastric band for laparoscopic treatment of morbid obesity - technique and results. Surg Technol Int 10:109–114

    PubMed  Google Scholar 

  53. Forsell P (1996) Pouch volume, stoma diameter and weight loss in Swedish adjustable gastric banding (SAGB). Obes Surg 6:468–473

    Article  PubMed  Google Scholar 

  54. Madan AK, Harper JL, Tichansky DS (2008) Techniques of laparoscopic gastric bypass: on-line survey of American Society for Bariatric Surgery practicing surgeons. Surg Obes Relat Dis 4:166–172; discussion 172–163

    Google Scholar 

  55. Roberts K, Duffy A, Kaufman J, Burrell M, Dziura J, Bell R (2007) Size matters: gastric pouch size correlates with weight loss after laparoscopic Roux-en-Y gastric bypass. Surg Endosc 21:1397–1402

    Article  PubMed  CAS  Google Scholar 

  56. Schwartz RW, Strodel WE, Simpson WS, Griffen WO, jr (1988) Gastric bypass revision: lessons learned from 920 cases. Surgery 104:806–812

    PubMed  CAS  Google Scholar 

  57. Johnston D, Dachtler J, Sue-Ling HM, King RF, Martin G (2003) The Magenstrasse and Mill operation for morbid obesity. Obes Surg 13:10–16

    Article  PubMed  Google Scholar 

  58. Flanagan L (1996) Measurement of functional pouch volume following the gastric bypass procedure. Obes Surg 6:38–43

    Article  PubMed  Google Scholar 

  59. Forsell P, Hellers G, Laveskog U, Westman L (1996) Validation of pouch size measurement following the Swedish adjustable gastric banding using endoscopy, MRI and barium swallow. Obes Surg 6:463–467

    Article  PubMed  Google Scholar 

  60. Nishie A, Brown B, Barloon T, Kuehn D, Samuel I (2007) Comparison of size of proximal gastric pouch and short-term weight loss following routine upper gastrointestinal contrast study after laparoscopic Roux-en-Y gastric bypass. Obes Surg 17:1183–1188

    Article  PubMed  Google Scholar 

  61. Madan AK, Tichansky DS, Phillips JC (2007) Does pouch size matter? Obes Surg 17:317–320

    Article  PubMed  Google Scholar 

  62. Karcz WK, Kuesters S, Marjanovic G, et al 3D-MSCT (2009) Gastric pouch volumetry in bariatric surgery - preliminary clinical results. Obes Surg 19:508–516

    Google Scholar 

  63. Goetze O, Steingoetter A, Menne D, et al (2007) The effect of macronutrients on gastric volume responses and gastric emptying in humans: A magnetic resonance imaging study. Am J Physiol Gastrointest Liver Physiol 292:G11–17

    Article  PubMed  CAS  Google Scholar 

  64. Kwiatek MA, Steingoetter A, Pal A, et al (2006) Quantification of distal antral contractile motility in healthy human stomach with magnetic resonance imaging. J Magn Reson Imaging 24:1101–1109

    Article  PubMed  Google Scholar 

  65. Treier R, Steingoetter A, Goetze O, et al (2008) Fast and optimized T1 mapping technique for the noninvasive quantification of gastric secretion. J Magn Reson Imaging 28:96–102

    Article  PubMed  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Baumann, T., Kotter, E. (2012). Modern CT and MR Applications. In: Karcz, W.K., Thomusch, O. (eds) Principles of Metabolic Surgery. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-02411-5_25

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-02411-5_25

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-02410-8

  • Online ISBN: 978-3-642-02411-5

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics