Advertisement

Active Vision in Blowflies: Strategies and Mechanisms of Spatial Orientation

  • Martin EgelhaafEmail author
  • Roland Kern
  • Jens P. Lindemann
  • Elke Braun
  • Bart Geurten
Chapter

Abstract

With its miniature brain blowflies are able to control highly aerobatic flight manoeuvres and, in this regard, outperform any man-made autonomous flying system. To accomplish this extraordinary performance, flies shape actively by the specific succession of characteristic movements the dynamics of the image sequences on their eyes (‘optic flow’): They shift their gaze only from time to time by saccadic turns of body and head and keep it fixed between these saccades. Utilising the intervals of stable vision between saccades, an ensemble of motion-sensitive visual interneurons extracts from the optic flow information about different aspects of the self-motion of the animal and the spatial layout of the environment. This is possible in a computationally parsimonious way because the retinal image flow evoked by translational self-motion contains information about the spatial layout of the environment. Detection of environmental objects is even facilitated by adaptation mechanisms in the visual motion pathway. The consistency of our experimentally established hypotheses is tested by modelling the blowfly motion vision system and using this model to control the locomotion of a ‘Cyberfly’ moving in virtual environments. This CyberFly is currently being integrated in a robotic platform steering in three dimensions with a dynamics similar to that of blowflies.

Keywords

Optic Flow Flight Manoeuvre Elementary Motion Detector Optic Flow Information Optic Flow Pattern 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Baird, E., Srinivasan, M.V., Zhang. S., Cowling, A.: Visual control of flight speed in honeybees. The Journal of Experimental Biology 208, 3895–3905 (2005)CrossRefGoogle Scholar
  2. 2.
    Boeddeker, N., Egelhaaf, M.: Steering a virtual blowfly: Simulation of visual pursuit. Proceedings of the Royal Society of London B 270, 1971–1978 (2003)Google Scholar
  3. 3.
    Boeddeker, N., Kern, R., Egelhaaf, M.: Chasing a dummy target: Smooth pursuit and velocity control in male blowflies. Proceedings of the Royal Society of London B 270, 393–399 (2003)Google Scholar
  4. 4.
    Boeddeker, N., Lindemann, J.P., Egelhaaf, M., Zeil, J.: Responses of blowfly motion-sensitive neurons to reconstructed optic flow along outdoor flight paths. Journal of Comparative Physiology A 25, 1143–1155 (2005)CrossRefGoogle Scholar
  5. 5.
    Borst, A., Egelhaaf, M.: Principles of visual motion detection. Trends in Neurosciences 12, 297–306 (1989)CrossRefGoogle Scholar
  6. 6.
    Borst, A., Egelhaaf, M.: Detecting visual motion: Theory and models. In: F.A. Miles, J. Wallman (eds.) Visual motion and its role in the stabilization of gaze. Amsterdam: Elsevier (1993)Google Scholar
  7. 7.
    Borst, A., Haag, J.: Neural networks in the cockpit of the fly. Journal of Comparative Physiology A 188, 419–437 (2002)CrossRefGoogle Scholar
  8. 8.
    Dahmen, H.J., Franz, M.O., Krapp, H.G.: Extracting ego-motion from optic flow: limits of accuracy and neuronal filters. In: J.M. Zanker, J. Zeil (eds.) Computational, neural and ecological constraints of visual motion processing. Berlin, Heidelberg, New York, Springer (2000)Google Scholar
  9. 9.
    Douglass, J.K., Strausfeld, N.J.: Pathways in dipteran insects for early visual motion processing. In: J.M. Zanker, J. Zeil (eds.) Motion vision: computational, neural, and ecological constraints. Berlin, Heidelberg, New York, Springer; 67–81 (2001)Google Scholar
  10. 10.
    Egelhaaf, M.: The neural computation of visual motion. In: E. Warrant, D.-E. Nilsson (eds.) Invertebrate vision. Cambridge, UK, Cambridge University Press (2006)Google Scholar
  11. 11.
    Egelhaaf, M., Borst, A.: Motion computation and visual orientation in flies. Comparative Biochemistry and Physiology 104A, 659–673 (1993)Google Scholar
  12. 12.
    Egelhaaf, M., Borst, A.: Movement detection in arthropods. In: J. Wallman, F.A. Miles (eds.) Visual motion and its role in the stabilization of gaze. Amsterdam, London, New York, Elsevier, pp. 53–77 (1993)Google Scholar
  13. 13.
    Egelhaaf, M., Kern, R., Kurtz, R., Krapp, H.G., Kretzberg, J., Warzecha, A.-K: Neural encoding of behaviourally relevant motion information in the fly. Trends in Neurosciences 25, 96–102 (2002)CrossRefGoogle Scholar
  14. 14.
    Esch, H.E., Burns, J.M.: Distance estimation by foraging honeybees. The Journal of Experimental Biology 199, 155–162 (1996)Google Scholar
  15. 15.
    Esch, H.E. Zhang, S., Srinivasan, M.V., Tautz, J.: Honeybee dances communicate distances measured by optic flow. Nature 411, 581–583 (2001)CrossRefGoogle Scholar
  16. 16.
    Farina, W.M., Varjú, D., Zhou, Y: The regulation of distance to dummy flowers during hovering flight in the hawk moth Macroglossum stellatarum. Journal of Comparative Physiology 174, 239–247 (1994)Google Scholar
  17. 17.
    Farrow, K., Borst, A., Haag, J.: Sharing Receptive Fields with Your Neighbors: Tuning the Vertical System Cells to Wide Field Motion. Journal of Neuroscience 25, 3985–3993 (2005)CrossRefGoogle Scholar
  18. 18.
    Franceschini, N., Pichon, J.M., Blanes, C.: From insect vision to robot vision. Philosophical Transactions of the Royal Society of London. Series B 337, 283–294 (1992)CrossRefGoogle Scholar
  19. 19.
    Franz, M.O., Mallot, H.A.: Biomimetic robot navigation. Robots and Autonomous Systems, 133–153 (2000)Google Scholar
  20. 20.
    Frye, M.A., Dickinson, M.H.: Closing the loop between neurobiology and flight behavior in Drosophila. Current Opinion in Neurobiology 14, 729–736 (2004)CrossRefGoogle Scholar
  21. 21.
    Frye, M.A., Dickinson, M.H.: Visual edge orientation shapes free-flight behavior in Drosophila. Fly 1, 153–154 (2007)Google Scholar
  22. 22.
    Hausen, K.: Motion sensitive interneurons in the optomotor system of the fly. I. The Horizontal Cells: Structure and signals. Biological Cybernetics 45, 143–156 (1982)CrossRefGoogle Scholar
  23. 23.
    Hausen, K.: Motion sensitive interneurons in the optomotor system of the fly. II. The Horizontal Cells: Receptive field organization and response characteristics. Biological Cybernetics 46, 67–79 (1982)CrossRefGoogle Scholar
  24. 24.
    Hausen, K., Egelhaaf, M.: Neural mechanisms of visual course control in insects. In: D. Stavenga, R.C. Hardie (eds.) Facets of vision. Berlin, Heidelberg, New York, Springer; 391–424 (1989)Google Scholar
  25. 25.
    Hengstenberg, R.: Common visual response properties of giant vertical cells in the lobula plate of the blowfly Calliphora. Journal of Comparative Physiology 149, 179–193 (1982)CrossRefGoogle Scholar
  26. 26.
    Hengstenberg, R., Hausen, K., Hengstenberg, B.: The number and structure of giant vertical cells (VS) in the Lobula plate of the blowfly, Calliphora erythrocephala. Journal of Comparative Physiology 149, 163–177 (1982)CrossRefGoogle Scholar
  27. 27.
    Hrncir, M., Jarau, S., Zucchi, R., Barth, F.G.: A stingless bee (Melipona seminigra) uses optic flow to estimate flight distances. Journal of Comparative Physiology Series A 189, 761–768 (2003)CrossRefGoogle Scholar
  28. 28.
    Jain, A.K., Dubes, R.C.: Algorithms for clustering data. Prentice-Hall (1988)Google Scholar
  29. 29.
    Juusola, M., French, A.S., Uusitalo, R.O., Weckström, M.: Information processing by graded-potential transmission through tonically active synapses. Trends in Neurosciences 19, 292–297 (1996)CrossRefGoogle Scholar
  30. 30.
    Karmeier, K., van Hateren, J.H., Kern, R., Egelhaaf, M.: Encoding of naturalistic optic flow by a population of blowfly motion sensitive neurons. Journal of Neurophysiology 96, 1602–1614 (2006)CrossRefGoogle Scholar
  31. 31.
    Kern, R., van Hateren, J.H., Egelhaaf, M.: Representation of behaviourally relevant information by blowfly motion-sensitive visual interneurons requires precise compensatory head movements. Jounal of Experimental Biology 209, 1251–1260 (2006)CrossRefGoogle Scholar
  32. 32.
    Kern, R., van Hateren, J.H., Michaelis, C., Lindemann, J.P., Egelhaaf, M.: Function of a fly motion-sensitive neuron matches eye movements during free flight. PLOS Biology 3, 1130–1138 (2005)CrossRefGoogle Scholar
  33. 33.
    Kern, R., Varjú, D.: Visual position stabilization in the hummingbird hawk moth, Macroglossum stellatarum L.: I. Behavioural analysis. Journal of Comparative Physiology Series A 182, 225–237 (1998)CrossRefGoogle Scholar
  34. 34.
    Kimmerle, B., Srinivasan, M.V., Egelhaaf, M.: Object detection by relative motion in freely flying flies. Naturwiss 83, 380–381 (1996)CrossRefGoogle Scholar
  35. 35.
    Koenderink, J.J.: Optic Flow. Vision Research 26, 161–180 (1986)CrossRefGoogle Scholar
  36. 36.
    Köhler, T., Röchter, F., Lindemann, J.P., Möller, R.: Bio-inspired motion detection in an FPGA-based smart camera module Bioinspiration & Biomimimetics 4 (1:015008), 2009 doi: 10.1088/1748-3182/4/1/015008Google Scholar
  37. 37.
    Kral, K., Poteser, M.: Motion parallax as a source of distance information in locusts and mantids. Journal of Insect Behavior 10, 145–163 (1997)CrossRefGoogle Scholar
  38. 38.
    Krapp, H.G.: Neuronal matched filters for optic flow processing in flying insects. In: M. Lappe (ed.) Neuronal processing of optic flow. San Diego, San Francisco, New York, Academic Press, pp. 93–120 (2000)Google Scholar
  39. 39.
    Krapp, H.G., Hengstenberg, B., Hengstenberg, R.: Dendritic structure and receptive-field organization of optic flow processing interneurons in the fly. Journal of Neurophysiology 79, 1902–1917 (1998)Google Scholar
  40. 40.
    Krapp, H.G., Hengstenberg, R., Egelhaaf, M.: Binocular contribution to optic flow processing in the fly visual system. Journal of Neurophysiology 85, 724–734 (2001)Google Scholar
  41. 41.
    Land, M.F., Eckert, H.: Maps of the acute zones of fly eyes. Journal of Comparative Physiology Series A 156, 525–538 (1985)CrossRefGoogle Scholar
  42. 42.
    Lappe, M. Ed: Neuronal processing of optic flow. San Diego, San Francisco, New York, Academic Press (2000)Google Scholar
  43. 43.
    Laughlin, S.B: Matched filtering by a photoreceptor membrane. Vision Research 36, 1529–1541 (1996)CrossRefGoogle Scholar
  44. 44.
    Lehrer, M.: Small-scale navigation in the honeybee: Active acquisition of visual information about the goal. The Journal of Experimental Biology 199, 253–261 (1996)Google Scholar
  45. 45.
    Lehrer, M., Srinivasan, M.V., Zhang S.W., Horridge, G.A.: Motion cues provide the bee’s visual world with a third dimension. Nature 332, 356–357 (1988)CrossRefGoogle Scholar
  46. 46.
    Liang, P., Kern, R., Egelhaaf, M.: Motion adaptation facilitates object detection in three-dimensional environment. Journal of Neuroscience 29, 11328–1332 (2008)Google Scholar
  47. 47.
    Lindemann, J.P., Kern, R., Michaelis, C., Meyer, P., van Hateren, J.H., Egelhaaf, M.: FliMax, a novel stimulus device for panoramic and highspeed presentation of behaviourally generated optic flow. Vision Research 43, 779–791 (2003)CrossRefGoogle Scholar
  48. 48.
    Lindemann, J.P., Kern, R., van Hateren, J.H., Ritter, H., Egelhaaf, M.: On the computations analysing natural optic flow: Quantitative model analysis of the blowfly motion vision pathway. Journal of Neuroscience 25, 6435–6448 (2005)CrossRefGoogle Scholar
  49. 49.
    Lindemann, J.P., Weiss, H., Möller, R., Egelhaaf, M.: Saccadic flight strategy facilitates collision avoidance: Closed-loop performance of a cyberfly. Biological Cybernetics 98, 213–227 (2007)CrossRefGoogle Scholar
  50. 50.
    Longuet-Higgins, H.C., Prazdny, K.: The interpretation of a moving retinal image. Proceedings of the Royal Society of London. Series B 208, 385–397 (1980)Google Scholar
  51. 51.
    Neumann, T.R.: Biomimetic spherical vision. Universität Tübingen; 2004.Google Scholar
  52. 52.
    Petrowitz, R., Dahmen, H.J., Egelhaaf, M., Krapp, H.G.: Arrangement of optical axes and the spatial resolution in the compound eye of the female blowfly Calliphora. Journal of Comparative Physiology Series A 186, 737–746 (2000)CrossRefGoogle Scholar
  53. 53.
    Pfaff, M., Varjú, D.: Mechanisms of visual distance perception in the hawk moth Macroglossum stellatarum. Zoology Jb Physiology 95, 315–321 (1991)Google Scholar
  54. 54.
    Prazdny, K.: Ego-Motion and Relative Depth Map from Optical-Flow. Biological Cybernetics 36, 87–102 (1980)zbMATHCrossRefMathSciNetGoogle Scholar
  55. 55.
    Reiser, M.B., Dickinson, M.H.: A test bed for insect-inspired robotic control. Philosophical Transactions of the Royal Society of London. Series A 361, 2267–2285 (2003)CrossRefMathSciNetGoogle Scholar
  56. 56.
    Schack, T.: The cognitive architecture of movement. International Journal of Sport & Exercise Psychology 2, 403–438 (2004)Google Scholar
  57. 57.
    Schilstra, C., van Hateren, J.H.: Stabilizing gaze in flying blowflies. Nature 395, 654 (1998)CrossRefGoogle Scholar
  58. 58.
    Schilstra, C., van Hateren, J.H.: Blowfly flight and optic flow. I. Thorax kinematics and flight dynamics. The Journal of Experimental Biology 202, 1481–1490 (1999)Google Scholar
  59. 59.
    Sobey, P.J.: Active navigation with a monocular robot. Biological Cybernetics 71, 433–440 (1994)CrossRefGoogle Scholar
  60. 60.
    Srinivasan, M.V., Lehrer, M., Kirchner, W.H., Zhang, S.W.: Range perception through apparent image speed in freely flying honeybees. Visual Neuroscience 6, 519–535 (1991)CrossRefGoogle Scholar
  61. 61.
    Srinivasan, M.V., Lehrer, M., Zhang, S.W., Horridge, G.A.: How honeybees measure their distance from objects of unknown size. Journal of Comparative Physiology Series A 165, 605–613 (1989)CrossRefGoogle Scholar
  62. 62.
    Srinivasan, M.V., Zhang, S., Altwein, M., Tautz, J.: Honeybee navigation: Nature and calibration of the “odometer”. Science 287, 851–853 (2000)CrossRefGoogle Scholar
  63. 63.
    Srinivasan, M.V., Zhang, S.W., Lehrer, M., Collett, T.S.: Honeybee navigation en route to the goal: Visual flight control and odometry. The Journal of Experimental Biology 199, 237–244 (1996)Google Scholar
  64. 64.
    Strausfeld, N.J., Douglass, J.K, Campbell, H.R., Higgins, C.M.: Parallel processing in the optic lobes of flies and the occurrence of motion computing circuits. In: E. Warrant, D.-E. Nilsson (eds.) Invertebrate vision, pp. 349–398 Cambridge, Cambridge University Press (2006)Google Scholar
  65. 65.
    Tammero, L. F., Dickinson, M.H.: The influence of visual landscape on the free flight behavior of the fruit fly Drosophila melanogaster. The Journal of Experimental Biology 205, 327–343 (2002)Google Scholar
  66. 66.
    Tautz, J., Zhang, S., Spaethe, J., Brockmann, A., Si, A., Srinivasan, M.: Honeybee odometry: performance in varying natural terrain. PLOS Biology 2, 915–923 (2004)CrossRefGoogle Scholar
  67. 67.
    Thoroughman, K.A., Shadmehr, R.: Learning of action through adaptive combination of motor primitives. Nature 407, 742–747 (2000)CrossRefGoogle Scholar
  68. 68.
    Thurau, C., Bauckhage, C., Sagerer, G.: Synthesizing movements for computer game characters, pp. 179–1863175 Heidelberg, Springer (2004)Google Scholar
  69. 69.
    van Hateren, J.H.: Processing of natural time series of intensities by the visual system of the blowfly. Vision Research 37, 3407–3416 (1997)CrossRefGoogle Scholar
  70. 70.
    van Hateren, J.H., Schilstra, C.: Blowfly flight and optic flow. II. Head movements during flight. The Journal of Experimental Biology 202, 1491–1500 (1999)Google Scholar
  71. 71.
    Webb, B., Harrison, R.R., Willis, M.A.: Sensorimotor control of navigation in arthropod artifical systems. Arthropod Structure & Development 33, 301–329 (2004)CrossRefGoogle Scholar
  72. 72.
    Zeil, J.: Orientation flights of solitary wasps (Cerceris, Sphecidae, Hymenoptera). I. Description of flights. Journal of Comparative Physiology Series A 172, 189–205 (1993)CrossRefGoogle Scholar
  73. 73.
    Zeil, J.: Orientation flights of solitary wasps (Cerceris; Sphecidae; Hymenoptera). II. Similarities between orientation and return flights and the use of motion parallax. Journal of Comparative Physiology Series A 172, 207–222 (1993)CrossRefGoogle Scholar
  74. 74.
    Zeil, J., Kelber, A., Voss, R.: Structure and function of learning flights in bees and wasps. The Journal of Experimental Biology 199, 245–252 (1997)Google Scholar
  75. 75.
    Zufferey, J.-C., Floreano, D,: Fly-Inspired Visual Steering of an Ultralight Indoor Aircraft. IEEE Transactions on Robotics 22, 137–146 (2006)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Martin Egelhaaf
    • 1
    Email author
  • Roland Kern
    • 2
  • Jens P. Lindemann
    • 1
  • Elke Braun
    • 1
  • Bart Geurten
    • 1
  1. 1.Department of Neurobiology & Center of Excellence “Cognitive Interaction Technology”Bielefeld UniversityBielefeldGermany
  2. 2.Autonomous Systems LabETHZZürichSwitzerland

Personalised recommendations