Skip to main content

Heterochromatin and the Phenomenon of Chromosome Banding

  • Chapter
Structure and Function of Eukaryotic Chromosomes

Part of the book series: Results and Problems in Cell Differentiation ((RESULTS,volume 14))

Abstract

DNA-binding, base pair-specific fluorescent dyes impart a longitudinal differentiation in mammalian metaphase chromosomes consisting of specific non-periodical patterns of alternating bright and dull bands of characteristic width. Human prometaphase chromosomes exhibit more than 2000 light and dark bands. A very small band at the limit of light microscope resolution contains about 1250 kb (Holmquist 1986 a).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Appels R (1981) The molecular cytology of wheat-rye hybrids. Int Rev Cytol 80: 93–132

    Article  Google Scholar 

  • Appels R, Peacock WJ (1978) The arrangement and evolution of highly repeated (satellite) DNA sequences with special reference to Drosophila. Int Rev Cytol (Suppl) 8: 69–126

    Article  CAS  Google Scholar 

  • Amason f5 (1974) Comparative chromosome studies in Cetacea. Hereditas 77: 1–36

    Google Scholar 

  • Arnheim N, Krystal M, Schmickel R, Wilson G, Ryder O, Zimmer E (1980) Molecular evidence for genetic exchanges among ribosomal genes on nonhomologous chromosomes in man and apes. Proc Natl Acad Sci USA 77: 7323–7327

    Article  PubMed  CAS  Google Scholar 

  • Arrighi FE, Saunders GF (1973) The relationship between repetitious DNA and constitutive heterochromatin with special reference to man. In: Pfeiffer RA (ed) Modern aspects in cytogenetics: constitutive heterochromatin in man. Schattauer, Stuttgart New York, pp 113–133

    Google Scholar 

  • Barnes SR, James AM, Jamieson G (1985) “he organisation, nucleotide sequence, and chromosomal distribution of satellite DNA from Allium cepa. Chromosoma 92: 185–192

    Google Scholar 

  • Bernardi G, Olofson B, Filipski J, Zerial M Salinas J, Cuny G, Meunier-Rotival M, Rodier F (1985) The mosaic genome of warm-blo >ded vertebrates. Science 228: 953–958

    Article  PubMed  CAS  Google Scholar 

  • Britten RJ, Kohne DE (1968) Repeated sequences in DNA. Science 161:529–540 Brown SW (1966) Heterochromatin. Science 151: 417–425

    Google Scholar 

  • Brutlag DL (1980) Molecular arrangement and evolution of heterochromatic DNA. Annu Rev Genet 14: 121–144

    Article  PubMed  CAS  Google Scholar 

  • Burkholder GD, Comings DE (1972) Do the Giemsa banding patterns of chromosomes change during embryonic development? Exp Cel Res 75: 268–271

    Article  CAS  Google Scholar 

  • Caspersson T, Chapelle A de la, Schröder J, 2 ech L (1972) Quinacrine fluorescene of metaphase chromosomes. Identical patterns in differ;nt tissues. Exp Cell Res 72: 56–59

    Google Scholar 

  • Cavalier-Smith T (1978) Nuclear volume con rol by nucleosceletal DNA, selection for cell volume and cell growth rate, and the solutioi of the DNA C-value paradox. J Cell Sci 34: 247–278

    PubMed  CAS  Google Scholar 

  • Chandley AC (1986) A model for effective paing and recombination at meiosis based on early replicating sites (R-bands) along chromosi Imes. Hum Genet 72: 50–57

    Article  PubMed  CAS  Google Scholar 

  • Charlesworth B, Langley CH, Stephan W (1985) The evolution of restricted recombination and the accumulation of repeated DNA sequet ces. Genetics 112: 947–962

    Google Scholar 

  • Comings DE (1978) Mechanisms of chromosome banding and implications for chromosome structure. Annu Rev Genet 12: 25–46

    Article  PubMed  CAS  Google Scholar 

  • Cooper K W (1959) Cytogenetic analysis of ma or heterochromatic elements (especially Xh and Y) in Drosophila melanogaster, and the thec ry of “heterochromatin”. Chromosoma 10: 535–588

    Article  PubMed  CAS  Google Scholar 

  • Cremer T, Cremer C, Baumann H, Luedtke E- C, Sperling K, Teuber U, Zorn C (1982) Rabl’s model of the interphase chromosome arrant ement tested in Chinese hamster cells by premature chromosome condensation and Laser-I V-microbeam experiments. Hum Genet 60: 46–56

    Article  PubMed  CAS  Google Scholar 

  • Doolittle WF, Sapienza C (1980) Selfish genes, tie phenotype paradigm and genome evolution. Nature (London) 284: 601–603

    Article  CAS  Google Scholar 

  • Dover GA, Flavell RB (1984) Molecular coevolt tion: DNA divergence and the maintenance of function. Cell 38: 622–623

    Google Scholar 

  • Dover GA, Brown S, Coen E, Dallas J, Stracha. i T, Trick M (1982) The dynamics of genome evolution and species differentiation. In: Dc ver GA, Flavell RB (eds) Genome evolution. Academic Press, London, New York, pp 343–372

    Google Scholar 

  • Dyer AF (1963) Allocyclic segments of chromosoi tes and the structural heterozygosity that they reveal. Chromosoma 13: 545–576

    Article  Google Scholar 

  • Friebe B (1979) Chiasmabildung in normalen un 1 mutierten Karyotypen von Vicia faba. Biol Zentralbl 98: 37–53

    Google Scholar 

  • Fry K, Salser W (1977) Nucleotide sequences of 11S-a satellite DNA from kangaroo rat Dipodomys ordii and characterization of similar sequences in other rodents. Cell 12: 1069–1084

    Article  PubMed  CAS  Google Scholar 

  • Ganner E, Evans HJ (1971) The relationships betw:en patterns of DNA replication and of quin- acrine fluorescence in the human chromosome complement. Chromosoma 35: 326–341

    Article  PubMed  CAS  Google Scholar 

  • Gartler SM, Riggs AD (1983) Mammalian X c; iromosome inactivation. Annu Rev Genet 17: 153–190

    Article  Google Scholar 

  • Goldman MA, Holmquist GP, Gray MC, Caston L 4, Nag A (1984) Replication timing of genes and middle repetitive sequences. Science 224: 685–692

    Article  Google Scholar 

  • Greilhuber J (1984) Chromosomal evidence in taxonomy. In: Heywood VH, Moore DM (eds) Current concepts in plant taxonomy. Academic Press, London New York, pp 157–179

    Google Scholar 

  • Greilhuber J, Loidl J (1983) On regularities of C-ba iding patterns, and their possible cause. In: Brandham PE, Bennett MD (eds) Kew Chromo; Conf II. Allen & Unwin, London, p 344

    Google Scholar 

  • Heitz E (1933) Die Herkunft der Chromocentren. Pl rnta 18: 571–636

    Google Scholar 

  • Holmquist G (1979) The mechanism of C-banding: depurination and ß-elimination. Chromo-soma 72: 203–224

    Article  CAS  Google Scholar 

  • Holmquist G ( 1986 a) DNA sequences in G-bands al d R-bands. In: Adolph KW (ed) Chromosome and chromatin structure. CRC Press (in pn ss )

    Google Scholar 

  • Holmquist G (1986b) Role of replication time in the control of tissue specific gene expression. (in press)

    Google Scholar 

  • Holmquist G (1986e) Mobile genetic elements in G-band and R-band DNA. In: Daniel A (ed) The cytogenetics of mammalian autosomal rearrangements. Liss, New York (in press)

    Google Scholar 

  • Holmquist G, Caston LA (1986) Replication time of interspersed repetitive DNA sequences in hamsters. Biochim Biophys Acta (in press)

    Google Scholar 

  • Holmquist G, Gray M, Porter T, Jordan J (1982) Characterization of Giemsa dark and light-band DNA. Cell 31: 121–129

    Article  PubMed  CAS  Google Scholar 

  • Hsu TC (1975) A possible function of constitutive heterochromatin: the bodyguard hypothesis. Genetics (Suppl) 79: 137–150

    Google Scholar 

  • Jablonka E, Goitein R, Marcus M, Cedar H (1985) DNA hypomethylation causes an increase in DNase-I sensitivity and an advance in the time of replication of the entire inactive X chromosome. Chromosoma 93: 152–156

    Article  PubMed  CAS  Google Scholar 

  • John B (1976) Myths and mechanisms of meiosis. Chromosoma 54: 295–325

    Article  PubMed  CAS  Google Scholar 

  • John B, Lewis KR (1965) The meiotic system. Protoplasmatologia (Wien) VI/F/1

    Google Scholar 

  • John B, Miklos GLG (1979) Functional aspects of satellite DNA and heterochromatin. Int Rev Cytol 58: 1–114

    Article  PubMed  CAS  Google Scholar 

  • John B, King M, Schweizer D, Mendelak M (1985) Equilocality of heterochromatin distribution and heterochromatin heterogeneity in acridid grasshoppers. Chromosoma 91: 185–200

    Article  PubMed  CAS  Google Scholar 

  • Jones GH (1978) Giemsa C-banding of rye meiotic chromosomes and the nature of “terminal” chiasmata. Chromosoma 66: 45–57

    Article  Google Scholar 

  • Kerem B-S, Goitein R, Diamond G, Cedar H, Marcus M (1984) Mapping of DNAase I sensitive regions on mitotic chromosomes. Cell 38: 493–499

    Article  PubMed  CAS  Google Scholar 

  • Kiel K von, Hameister H, Somssich IE, Adolph S (1985) Early replication banding reveals a strongly conserved functional pattern in mammalian chromosomes. Chromosoma 93: 69–76

    Article  Google Scholar 

  • King M (1980) C-banding studies on Australian hylid frogs: secondary constriction structure and the concept of euchromatin transformation. Chromosoma 80: 191–217

    Article  Google Scholar 

  • King M, John B (1980) Regularities and restrictions governing C-band variation in Acridoid grasshoppers. Chromosoma 76: 123–150

    Article  Google Scholar 

  • Kroisel PM, Rosenkranz W, Schweizer D (1985) Simultaneous production of R-bands and either replication patterns or sister chromatid differentiation. Hum Gen 71: 333–341

    Article  CAS  Google Scholar 

  • Kurnit DM, Brown FL, Maio JJ (1978) Mammalian repetitive DNA sequences in a stable Robertsonian system: I1. Characterization, in situ hybridization and cross species hybridization of repetitive DNAs in calf, sheep and goat chromosomes. Cytogenet Cell Genet 21: 145–167

    Google Scholar 

  • Latt SA (1973) Microfluorometric detection of deoxyribonucleic acid replication in human metaphase chromosomes. Proc Natl Acad Sci USA 70: 3395–3399

    Article  PubMed  CAS  Google Scholar 

  • Linnert G (1955) Die Struktur der Pachytänchromosomen in Euchromatin and Heterochromatin and ihre Auswirkung auf die Chiasmabildung bei Salvia-Arten. Chromosoma 7: 90–128

    Article  PubMed  CAS  Google Scholar 

  • Loidl J (1979) C-band proximity of chiasmata and absence of terminalisation in Allium flavum (Liliaceae). Chromosoma 73: 45–51

    Article  Google Scholar 

  • Loidl J (1982) Further evidence for a heterochromatin-chiasma correlation in some Allium species. Genetica 60: 31–35

    Article  Google Scholar 

  • Loidl J (1983) Some features of heterochromatin in wild Allium species. Plant Syst Evol 143: 117–131

    Article  Google Scholar 

  • Manuelidis L, Ward DC (1984) Chromosomal and nuclear distribution of the Hindi II 1.9-kb human DNA repeat segment. Chromosoma 91: 28–38

    Article  PubMed  CAS  Google Scholar 

  • Marks GE (1975) The Giemsa-staining centromeres of Nigella damascena. J Cell Sci 18: 19–25

    PubMed  CAS  Google Scholar 

  • Mayr B, Schweizer D, Geber G (1984) NOR activity, heterochromatin differentiation, and the Robertsonian polymorphism in Sus scrota L. J Hered 75: 79–80

    PubMed  CAS  Google Scholar 

  • Mayr B, Schweizer D, Mendelak M, Krutzler J, Schleger W, Kalat M, Auer H (1985) Levels of conservation and variation of heterochromatin and nucleolus organizers in the Bovidae. Can J Genet Cytol 27: 665–682

    PubMed  CAS  Google Scholar 

  • Miklos GLG, John B (1979) Heterochromatin and satellite DNA in man: properties and prospects. Am J Hum Genet 31: 264–280

    PubMed  CAS  Google Scholar 

  • Miklos GLG, Nankivell RN (1976) Telomc ric satellite DNA functions in regulating recombination. Chromosoma 56: 143–167

    Article  PubMed  CAS  Google Scholar 

  • Murer-Orlando M, Richer C-L (1983) Hetlrochromatin heterogeneity in Chinese hamster sex bivalents. Cytogenet Cell Genet 35: 195–199

    Article  PubMed  CAS  Google Scholar 

  • Nagl W (1974) Role of heterochromatin in C, he control of cell cycle duration. Nature (London) 249: 53–54

    Article  CAS  Google Scholar 

  • Orgel LE, Crick FHC (1980) Selfish DNA the ultimate parasite. Nature (London) 284: 604–607

    Article  CAS  Google Scholar 

  • Östergren G (1945) Parasitic nature of extraTragment chromosomes. Bot Not 1945/2:157–163 Paris Conference (1971) 1972. Standardizailion in human cytogenetics. Cytogenetics 11: 317–362

    Google Scholar 

  • Redi CA, Garagna S, Mazzini G, Winking Et (1986) Pericentromeric heterochromatin and A-T contents during Robertsonian fusion in t’lte house mouse. Chromosoma 94: 31–35

    Article  PubMed  CAS  Google Scholar 

  • Riva E, Fox DP, Giraldez R, Santos JL ( 1980 Chiasma frequency and distribution in the presence and absence of supernumerary chroniosome segments in the grasshopper Euchorthippus pulvinatus gallicus. Heredity 53: 101–106

    Article  Google Scholar 

  • Sahar E, Latt SA (1978) Enhancement of bulling patterns in human metaphase chromosomes by energy transfer. Proc Natl Acad Sci U; A 75: 5650–5654

    Article  CAS  Google Scholar 

  • Sahar E, Latt SA (1980) Energy transfer and l nding competition between dyes used to enhance staining differentiation in metaphase chro inosomes. Chromosoma 79: 1–28

    Article  PubMed  CAS  Google Scholar 

  • Sande JH van de, Lin CC, Jorgenson KF (19 77) Reverse banding on chromosomes produced by a guanosine-cytosine specific DNA bin4ting antibiotic: olivomycin. Science 195: 400–402

    Google Scholar 

  • Schempp W (1980) Asynchrony in late replication between homologous autosomes in primary cultures of Chinese hamster fibroblasts. Clromosoma 79: 199–206

    Article  CAS  Google Scholar 

  • Schnedl W, Abraham R, Förster M, Schweizer (1981) Differential fluorescent staining of porcine heterochromatin by chromomycin A3,.’’distamycin A/DAPI and D287/170. Cytogenet Cell Genet 31.249–253

    Google Scholar 

  • Schwarzacher T, Schweizer D (1982) Karyotyle analysis and heterochromatin differentiation with Giemsa C-banding and fluorescent ccounterstaining in Cephalanthera ( Orchidaceae ). Plant Syst Evol 141: 91–113

    Google Scholar 

  • Schwarzacher T, Mayr B, Schweizer D (1984) Heterochromatin and nucleolus-organizer-region behaviour at male pachytene of Sus scrofa 4mestica. Chromosoma 91: 12–19

    Article  PubMed  CAS  Google Scholar 

  • Schweizer D (1976) Reverse fluorescent chromosome banding with chromomycin and DAPI. Chromosoma 58: 307–324

    Article  PubMed  CAS  Google Scholar 

  • Schweizer D (1977) R-banding produced by DNa,e I digestion of chromomycin-stained chromosomes. Chromosoma 64: 117–124

    Article  PubMed  CAS  Google Scholar 

  • Schweizer D (1980) Simultaneous fluorescent staining of R bands and specific heterochromatic regions (DA-DAPI bands) in human chromosomes. Cytogenet Cell Genet 27: 190–193

    Article  PubMed  CAS  Google Scholar 

  • Schweizer D (1981) Counterstain-enhanced chror iosome banding. Hum Genet 57: 1–14

    PubMed  CAS  Google Scholar 

  • Schweizer D, Ehrendorfer F (1983) Evolution of C’-band patterns in Asteraceae — Anthemideae. Biol Zentralbl 102: 637–655

    Google Scholar 

  • Schweizer D, Loidl J (1986) A model for heteroc(iromatin dispersion and the evolution of C-band patterns. Chromosomes Today 9 (in pre is)

    Google Scholar 

  • Sims SH, Macgregor HC, Pellatt PS, Homer HA 01984) Chromosome 1 in crested and marbled newts (Triturus). An extraordinary case of hetl,romorphism and independent chromosome evolution. Chromosoma 89: 169–185

    Google Scholar 

  • Singer MF (1982) Highly repeated sequences in malmmalian genomes. Int Rev Cytol 76: 67–112

    Article  PubMed  CAS  Google Scholar 

  • Southern DI (1967) Pseudo-multiple formation as a consequence of prolonged non-homologous chromosome association in Metrioptera brachy ftera. Chromosoma 21: 272–284

    Article  PubMed  CAS  Google Scholar 

  • Sumner AT, Buckland RA (1976) Relative DNA dontents of somatic nuclei of ox, sheep and goat. Chromosoma 57: 171–175

    Article  PubMed  CAS  Google Scholar 

  • Torre J de la, López-Fernandez C, Nichols R, Gosedvez J (1986) Heterochromatin readjusting chiasma distribution in two species of the genus `s4rcyptera: the effect among individuals and populations. Heredity 56: 177–184

    Article  Google Scholar 

  • Viegas-Péquignot E, Derbin C, Malfoy B, Taillandi:r E, Leng M, Dutrillaux B (1983) Z-DNA immunoreactivity in fixed metaphase chromosomes of primates. Proc Natl Acad Sci USA 80: 5890–5894

    Google Scholar 

  • Walker PMB, Flamm WG, McLaren A (1969) Highly repetitive DNA in rodents. In: Lima-deFaria A (ed) Handbook of molecular cytology. Elsevier/North-Holland, Amsterdam New York, pp 52–66

    Google Scholar 

  • White MJD (1973) Animal cytology and evolution, 3rd edn. Cambridge Univ Press, Cambridge

    Google Scholar 

  • Yunis JJ (1976) High resolution of human chromosomes. Science 191: 1268–1270

    Article  PubMed  CAS  Google Scholar 

  • Yunis JJ, Yasmineh WG (1971) Heterochromatin, satellite DNA, and cell function. Science 174: 1200–1209

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1987 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Schweizer, D., Loidl, J., Hamilton, B. (1987). Heterochromatin and the Phenomenon of Chromosome Banding. In: Hennig, W. (eds) Structure and Function of Eukaryotic Chromosomes. Results and Problems in Cell Differentiation, vol 14. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-47783-9_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-47783-9_15

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-22438-0

  • Online ISBN: 978-3-540-47783-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics