Skip to main content
Log in

C-Banding studies on australian hylid frogs: secondary constriction structure and the concept of euchromatin transformation

  • Published:
Chromosoma Aims and scope Submit manuscript

Abstract

A C-banding and silver staining analysis of 12 species of Australian frogs of the genus Litoria, has shown that 6 morphologically distinct classes of secondary constrictions are present. These constrictions are distinguished by the distribution and type of C-banding chromatin and the distribution of silver staining material. Not all of these constrictions are nucleolus organizers. Groups of closely related species often share particular constrictions, although previously unencountered constrictions do occur in some species. It is argued that changes in position of nucleolar organizing constrictions is most easily explained by the amplification of latent nucleolus organizing sites. One of the more unusual features of this group of species is the shared similarity in gross chromosome morphology, contrasted to the extensive C-banding variation at secondary constriction sites. While in some of these cases chromosomal evolution has undoubtedly proceeded by the addition of heterochromatic segments, the predominant mechanism of change appears to involve the large scale transformation of euchromatin to heterochromatin.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Barker, J., Grigg, G.: A field guide to Australian frogs. Rigby: Australia Ltd (1977)

    Google Scholar 

  • Bianchi, N.O., Bianchi, M.S., Vidal-Rioja, L.: Heterochromatin later replication and secondary constrictions in the chromosome complement of Leptodactylus ocellatus. Caryologia (Firenze) 26, 397–403 (1973)

    Google Scholar 

  • Bicudo, H.E.M.C., Richardson, R.H.: Gene regulation in Drosophila mulleri, Drosophila arizonensis and their hybrids: the nucleolar organizer. Proc. nat. Acad. Sci. (Wash.) 74, 3498–3502 (1977)

    Google Scholar 

  • Bogart, J.P.: Karyotypes. In: Evolution in the genus Bufo. Austin: W.F. Blair (ed.). University of Texas Press 1972

    Google Scholar 

  • Bogart, J.P.: Evolution of anuran karyotypes. In: Evolutionary biology of the anurans. (J.L. Vial, ed.) University of Missouri Press 1973

  • De Weese,J.: Chromosomes in Eleutherodaytylus (Anura, Leptodactylidae). Mammal. Chrom. Newsletter 16, 121–123 (1975)

    Google Scholar 

  • Goodpasture, C., Bloom, S.E.: Visualization of nucleolar organizer regions in mammalian chromosomes using silver staining. Chromosoma (Berl.) 53, 37–50 (1975)

    Google Scholar 

  • Gropp, A., Winking, H., Zech, L., Müller, H.: Robertsonian Chromosomal variation and identification of metacentric chromosomes in feral mice. Chromosoma (Berl.) 39, 265–288 (1972)

    Google Scholar 

  • Heppich, S.: Hybridogenesis in Rana esculenta: C-band karyotypes of Rana ribibunda, Rana lessonae and Rana esculenta. Z. Zool. Syst. Evolutionsforsch. 16, 27–39 (1978)

    Google Scholar 

  • Hutchinson, N., Pardue, M.L.: The mitotic chromosomes of Notophthalmus (=triturus) viridescens: localization of C banding regions and DNA sequences complementary to 18 S, 28 S and 5 S ribosomal RNA. Chromosoma (Berl.) 53, 51–69 (1975)

    Google Scholar 

  • John, B., King, M.: Heterochromatin variation in Cryptobothrus chrysophorus. 1. Chromosome differentiation in natural populations. Chromosoma (Berl.) 64, 219–239 (1977)

    Google Scholar 

  • King, M.: The evolution of sex chromosomes in lizards. In: Evolution and reproduction. Proc. 4th Int. Conf. on Reproduction and Evolution, pp. 55–60. Aust. Acad. Sci. 1977

  • King, M., John, B.: Regularities and restrictions governing C-band variation in Acridoid grasshoppers. Chromosoma (Berl.) 76, 123–150 (1980)

    Google Scholar 

  • King, M., King, D.: Chromosomal evolution in the lizard genus varanus (Reptilia). Aust. J. Biol. Sci. 28, 89–108 (1975)

    Google Scholar 

  • King, M., Rofe, R.: Karyotypic variation in the Australian gekko Phyllodactylus marmoratus (Gray) (Gekkomdae: Reptilia). Chromosoma (Berl.) 54, 75–87 (1976)

    Google Scholar 

  • King, M., Tyler, M.J., Davies, M., King, D.: Karyotypic studies on Cyclorana and associated genera of Australian frogs. Aust. J. Zool. 27, 373–393 (1979)

    Google Scholar 

  • Macgregor, H.C., Kezer, J.: The nucleolar organizer of Plethodon C. cinereus (Green). 1. Location of the nucleolar organizer by in situ nucleic acid hybridization. Chromosoma (Berl.) 42, 415–426 (1973)

    Google Scholar 

  • Macgregor, H.C., Mizuno, S.: In situ hybridization of “Nick translated” 3H-ribosomal DNA to chromosomes from salamanders. Chromosoma (Berl.) 54, 15–25 (1976)

    Google Scholar 

  • Macgregor, H.C., Vlad, M., Barnett, E.: An investigation of some problems concerning nucleolus organizers in Salamanders. Chromosoma (Berl.) 59, 283–299 (1977)

    Google Scholar 

  • Menzies, J.I., Tippet, J.: Chromosome numbers of Papuan Hylid frogs and the Karyotype of Litoria infrafrenata (Amphibia Anura, Hylidae). J. Herpetol. 10, 167–173 (1976)

    Google Scholar 

  • Morescalchi, A.: Amphibia. In: Cytotaxonomy and vertebrate evolution. (A.B. Chiarelli and E. Capanna, eds.). pp. 233–348. New York and London: Academic Press 1973

    Google Scholar 

  • Nardi, I., Barsacci-Pilone. G., Batistoni, R., Andronico, F.: Chromosome location of the ribosomal RNA genes in Triturus vulgaris meridionalis (Amphibia, Urodela). 11. Intraspecific variability in number and position of the chromosome loci for 18 S and 28 S ribosomal RNA. Chromosoma (Berl.) 64, 67–84 (1977)

    Google Scholar 

  • Rothfels, K., Freeman, M.: The salivary gland chromosomes of three North American species of Tarinnia (Diptera: Simuliidae). Canad. J. Zool. 44, 937–945 (1966)

    Google Scholar 

  • Rudak, E., Callan, H.G.: Differential staining and chromatin packing of the mitotic chromosomes of the newt Triturus cristatus. Chromosoma (Berl.) 56, 349–362 (1976)

    Google Scholar 

  • Schmid, M.: Chromosome banding in Amphibia. 1. Constitutive heterochromatin and nucleolus organizer regions in Bufo and Hyla. Chromosoma (Berl.) 66, 361–388 (1978a)

    Google Scholar 

  • Schmid, M.: Chromosome banding in Amphibia. 11. Constitutive heterochromatin and nucleolus organizer regions in Ranidae, Microhylidae, Rhacophoridae. Chromosoma (Berl.) 68, 131–148 (1978b)

    Google Scholar 

  • Shaw, D.D.: The supernumerary segment system of Stethophyma. 1. Structural basis. Chromosoma (Berl.) 30, 326–343 (1970)

    Google Scholar 

  • Singh, L., Purdom, I.F., Jones, K.W.: Satellite DNA and the evolution of sex chromosomes. Chromosoma (Berl.) 59, 43–62 (1976)

    Google Scholar 

  • Stephenson, E.M., Stephenson, N.G.: Karyotypes of two Australian hylids. Chromosoma (Berl.) 30, 38–50 (1970)

    Google Scholar 

  • Tyler, M.J., Davies, M.: Species groups within the Australopapuan hylid frog genus Litoria tschudi. Aust. J. Zool., Suppl. series, 63 (1978)

  • Varley, J.M., Morgan, G.T.: Silver staining of the lampbrush chromosomes of Triturus cristatus carnifex. Chromosoma (Berl.) 67, 233–244 (1978)

    Google Scholar 

  • Ward, O.G.: Dimorphic nucleolar organizer regions in the frog Rana blairi. Canad. J. Cytol. 19, 51–57 (1977)

    Google Scholar 

  • White, M.J.D.: Animal cytology and evolution, 3rd edit. London: Cambridge University Press 1973

    Google Scholar 

  • White, M.J.D.: Chromosome repatterning: regularities and restrictions. Genetics 79, 63–72 (1975)

    Google Scholar 

  • Wilson, A.C., Sarich, V.M., Maxson, L.R.: The importance of gene rearrangement in evolution: evidence from studies on rates of chromosomal, protein, and anatomical evolution. Proc. nat. Acad. Sci. (Wash.) 71, 3028–3030 (1974)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

King, M. C-Banding studies on australian hylid frogs: secondary constriction structure and the concept of euchromatin transformation. Chromosoma 80, 191–217 (1980). https://doi.org/10.1007/BF00286300

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00286300

Keywords

Navigation