Skip to main content

Ultrasonic Characterization of Dynamic Depth-Dependent Biomechanical Properties of Articular Cartilage

  • Chapter
Advanced Bioimaging Technologies in Assessment of the Quality of Bone and Scaffold Materials
  • 2462 Accesses

Abstract

This chapter introduces ultrasonic characterization of dynamic depth-dependent biomechanical properties of articular cartilage. The ultrasound-swelling and ultrasound-elastomicroscopy systems are used, which show potentials for the investigation of the transient deformations of articular cartilage at different depths under dynamic loading. Ultrasound approaches inherently provide non-destructive assessment of articular cartilage. With the miniaturization of the ultrasound probes, these ultrasound techniques can be potentially used together with arthroscopes for in vivo assessment of articular cartilage. Studies suggest that these ultrasound approaches can also be potentially applied for dynamic mechanical assessment of other biological tissues, tissue engineered tissues, biomaterials and non-biomaterials.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Agemura DH, O’Brien WD, Olerud JE, Chun LE, Eyre DE (1990) Ultrasonic propagation properties of articular cartilage at 100 MHz. J Acoust Soc 87A:1786–1791

    Article  Google Scholar 

  • Chen AC, Bae WC, Schinagl RM, Sah RL (2001) Depth-and strain-dependent mechanical and electromechanical properties of full-thickness bovine articular cartilage in confined compression J Biomech 34:112

    Google Scholar 

  • Cohn NA, Emelianov SY, Lubinski MA, O’Donnell M (1997a) An elasticity microscope: Part I. Methods IEEE Trans Ultrason Ferroelectr Freq Control 44:1304–1319

    Article  Google Scholar 

  • Cohn NA, Emelianov SY, O’Donnell M (1997b) An elasticity microscope: Part II. Experimental results IEEE Trans Ultrason Ferroelectr Freq Control 44:1320–1331

    Article  Google Scholar 

  • D’Astous FT, Foster FS (1986) Frequency dependence of ultrasound attenuation and backscatter in breast tissue. Ultrasound Med Biol 12:795–808

    Article  PubMed  CAS  Google Scholar 

  • Dhillon N, Bass EC, Lotz JC (2001) Effect of frozen storage on the creep behavior of human intervertebral discs. Spine 26:883–888

    Article  PubMed  CAS  Google Scholar 

  • Eisenberg SR, Grodzinsky AJ (1985) Swelling of articular cartilage and other connective tissues: electromechanochemical forces. J Orthop Res 3:148–215

    Article  PubMed  CAS  Google Scholar 

  • Fortin M, Soulhat J, Shirazi-Adl A, Hunziker EB, Buschmann MD (2000) Unconfined compression of articular cartilage: nonlinear behavior and comparison with a fibril-reinforced biphasic model. J Biomech Eng 122:189–195

    Article  PubMed  CAS  Google Scholar 

  • Guilak F, Ratcliffe A, Lane N, Rosenwasser MP, Mow VC (1994) Mechanical and biochemical changes in the superficial zone of articular cartilage in canine experimental osteoarthritis. J Orthop Res 12:474–484

    Article  PubMed  CAS  Google Scholar 

  • Guilak F, Ratcliffe A, Mow VC (1995) Chondrocyte deformation and local tissue strain in AC: a confocal microscopy study. J Orthop Res 12:410–422

    Article  Google Scholar 

  • Kempson GE (1980) The mechanical properties of articular cartilage. In: Sokoloff L (ed) The joints and synovial fluid, vol II. Academic Press, New York, pp 177–238

    Google Scholar 

  • Kiefer GN, Sundby K, McAllister D, Shrive NG, Frank CB, Lam T, Schachar NS (1989) The effect of cryopreservation on the biomechanical behavior of bovine articular cartilage. J Orthop Res 7:494–501

    Article  PubMed  CAS  Google Scholar 

  • Kim HK, Babyn PS, Harasiewicz KA, Foster FS (1995) Imaging of immature articular cartilage using ultrasound backscatter microscopy at 50 MHz. J Orthop Res 13:963–970

    Article  PubMed  CAS  Google Scholar 

  • Kwan MK, Hacker SA, Woo SLY, Wayne JS (1992) The effect of storage on the biomechanical behavior of articular cartilage: a large strain study. J Biomech Eng T ASME 114:149–153

    CAS  Google Scholar 

  • Lai WM, Hou JS, Mow VC (1991) A triphasic theory for the swelling and deformation behaviors of articular cartilage. J Biomech Eng 113:245–258

    PubMed  CAS  Google Scholar 

  • Mankin HJ, Mow VC, Buckwalter JA, Iannotti JP, Ratcliffe A (1994) Form and function of articular cartilage. In: Simnon SR (ed) Orthopaedic basic science. American Academy of Orthopedic Surgeons, Rosemont, Illinois, pp 2–44

    Google Scholar 

  • Maroudas A (1976) Balance between swelling pressure and collagen tension in normal and degenerate cartilage. Nature 260:808–809

    Article  PubMed  CAS  Google Scholar 

  • Maroudas A, Mizrahi J, Katz EP, Wachtel EJ, Soudry M (1986) Physicochemical properties and functional behavior of normal and osteoarthritic human cartilage. In: Kuettner KE, Schleyerbach R, Hascall VC (eds) Articular cartilage biochemistry. Raven Press, New York, pp 311–329

    Google Scholar 

  • Mow VC, Schoonbeck JM (1984) Contribution of Donnan osmotic pressure towards the biphasic compressive modulus of articular cartilage. In: Trans 30th Annual Orthop Res Soc, Altanta, Georgia, pp 262

    Google Scholar 

  • Mow VC, Kuei SC, Lai WM, Armstrong CG (1980) Biphasic creep and stress relaxation of articular cartilage in compression: theory and experiment. J Biomech Eng 102:73–84

    Article  PubMed  CAS  Google Scholar 

  • Mow VC, Zhu W, Ratcliffe A (1991) Structure and function of articular cartilage and meniscus. In: Mow VC, Hayes WC (eds) Basic othopaedic biomechanics. Raven Press, New York, pp 143–198

    Google Scholar 

  • Myers ER, Lai WM, Mow VC (1984) A continuum theory and an experiment for the ion-induced swelling behavior of articular cartilage. J Biomech Eng 106:151–158

    PubMed  CAS  Google Scholar 

  • Narmoneva DA, Wang JY, Setton LA (1999) Nonuniform swelling-induced residual strains in articular cartilage. J Biomech 32:401–408

    Article  PubMed  CAS  Google Scholar 

  • Ophir J, Cespedes I, Ponnekanti H, Yazdi Y, Li X (1991) Elastography: a quantitative method for imaging the elasticity of biological tissues. Ultrason Imaging 13:111–134

    Article  PubMed  CAS  Google Scholar 

  • Ophir J, Alam SK, Garra B, Kallel F, Konofagou E, Krouskop T, Varghese T (1999) Elastography: ultrasonic estimation and imaging of the elastic properties of tissues. Proc Inst Mech Eng 213:203–233

    CAS  Google Scholar 

  • Patil SG, Zheng YP, Wu JY, Shi J (2004) Measurement of depth-dependency and anisotropy of ultrasound speed of bovine articular cartilage in vitro. Ultrasound Med Biol 30:953–963

    Article  PubMed  CAS  Google Scholar 

  • Roth V, Mow VC (1980) The intrinsic tensile behavior of the matrix of bovine articular cartilage and its variation with age. J Bone Joint Surg 62:1102–1117

    PubMed  CAS  Google Scholar 

  • Schinagl RM, Ting MK, Price JH, Sah RL (1996) Video microscopy to quantitate the inhomogeneous equilibrium strain within articular cartilage during confined compression. Ann Biomed Eng 24:500–512

    Article  PubMed  CAS  Google Scholar 

  • Schinagl RM, Gurskis D, Chen AC, Sah RL (1997) Depth-dependent confined compression modulus of full-thickness bovine articular cartilage. J Orthop Res 15:499–506

    Article  PubMed  CAS  Google Scholar 

  • Setton LA, Zhu W, Mow VC (1993) The biphasic poroviscoelastic behavior of articular cartilage: role of the surface zone in governing the compressive behavior. J Biomech 26:581–592

    Article  PubMed  CAS  Google Scholar 

  • Setton LA, Tohyama H, Mow VC (1998) Swelling and curling behaviors of articular cartilage. J Biomech Eng 120:355–361

    PubMed  CAS  Google Scholar 

  • Suh JKF, Youn I, Fu FH (2001) An in situ calibration of an ultrasound transducer: a potential application for an ultrasonic indentation test of articular cartilage. J Biomech 34:1347–1353

    Article  PubMed  CAS  Google Scholar 

  • Wang Q, Zheng YP (2005) Non-contact evaluation of osmosis-induced shrinkage and swelling behavior of crticular cartilage in situ using high-frequency ultrasound. Instrum Sci Technol 34:317–334

    Article  CAS  Google Scholar 

  • Wang CCB, Hung CT, Mow VC (2001) An analysis of the effects of depth-dependent aggregate modulus on articular cartilage stress-relaxation behavior in compression. J Biomech 34:75–84

    Article  PubMed  CAS  Google Scholar 

  • Woo SLY, Akeson WH, Jemmott GF (1976) Measurements of nonhomogeneous, directional mechanical properties of articular cartilage in tension. J Biomech 9: 785

    Article  PubMed  CAS  Google Scholar 

  • Zheng YP, Ding CX, Bai J, Mak AFT, Qin L (2001) Measurement of the layered compressive properties of trypsin-treated articular cartilage: an ultrasound investigation. Med Biol Eng Comput 39:534–541

    Article  PubMed  CAS  Google Scholar 

  • Zheng YP, Mak AFT, Lau KP, Qin L (2002) An ultrasonic measurement for in vitro depth-dependent equilibrium strains of articular cartilage in compression. Phys Med Biol 7:3165–3180

    Article  Google Scholar 

  • Zheng YP, Shi J, Qin L, Patil SG, Mow VC, Zhou KY (2004a) Dynamic depth-dependent osmotic swelling and solute diffusion in articular cartilage monitored using real-time ultrasound. Ultrasound Med Biol 30:841–849

    Article  PubMed  CAS  Google Scholar 

  • Zheng YP, Bridal L, Shi J, Saied A, Lu MH, Jaffre B, Mak AFT, Laugier P (2004b) High resolution ultrasound elastomicroscopy imaging of soft tissues: system development and feasibility. Phys Med Biol 49:3925–3938

    Article  PubMed  CAS  Google Scholar 

  • Zheng YP, Niu HJ, Mak AFT, Huang YP (2005a) Ultrasonic measurement of depth-dependent transient behaviors of articular cartilage under compression. J Biomech 38:1830–1837

    Article  PubMed  CAS  Google Scholar 

  • Zheng YP, Wang Q, Niu HJ (in press) Extraction of mechanical properties of articular cartilage from osmotic swelling behavior monitored using high-frequency ultrasound. J Biomech Eng

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Zheng, YP., Wang, Q. (2007). Ultrasonic Characterization of Dynamic Depth-Dependent Biomechanical Properties of Articular Cartilage. In: Qin, L., Genant, H.K., Griffith, J.F., Leung, K.S. (eds) Advanced Bioimaging Technologies in Assessment of the Quality of Bone and Scaffold Materials. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-45456-4_42

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-45456-4_42

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-45454-0

  • Online ISBN: 978-3-540-45456-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics