Skip to main content
Log in

Measurement of the layered compressive properties of trypsintreated articular cartilage: An ultrasound investigation

  • Published:
Medical and Biological Engineering and Computing Aims and scope Submit manuscript

Abstract

An ultrasound-compression system has been developed for the study of the layered biomechanical properties of articular cartilage. Cartilage specimens harvested from the bovine patella groove, with and without trypsin digestion, were tested using this system. It was noted that a large ultrasound reflection can be detected in the interface of the trypsin digestion front. This ultrasound reflection signal was used to differentiate the deformations of different portions of the cartilage throughout its depth when a load was applied. The equilibrium compression moduli of the digested, undigested and entire portions of articular cartilage were measured. The modulus of the cartilage without any digestion was 660±230kPa. After 1h digestion with 1 mg ml−1 trypsin solution, the thickness of the digested portion was 0.50±0.06 mm, and the modulus of the entire cartilage layer changed to 125±42 kPa. The moduli of the digested and undigested portions were 58±24 kPa and 470±31 kPa, respectively. Similar results were obtained for the cartilage with trypsin digestion for 2 h.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Adam, C., Eckstein, F., Milz, S., andPutz, R. (1998): ‘The distribution of cartilage thickness within the joints of the lower limb of elderly individuals’,J. Anatomy,193, pp. 203–214

    Article  Google Scholar 

  • Adler, R. S., Dedrick, D. K., Laing, T. J., Chiang, E. H., Meyer, C. R., Bland, P. H., andRubin, J. M. (1992): ‘Quantitative assessment of cartilage surface roughness on osteoarthritis using high frequency ultrasound’,Ultrasound Med. Biol.,18, pp. 51–58

    Article  Google Scholar 

  • Agemura, D. H., O'Brien, W. D., Olerud, J. E., Chun, L. E., andEyre, D. E. (1990): ‘Ultrasonic propagation properties of articular cartilage at 100 MHz’,J. Acoustic Soc. Am.,87, pp. 1786–1791

    Google Scholar 

  • Armstrong, C. G., andMow, V. C. (1982): ‘Variations in the intrinsic mechanical properties of human articular cartilage with age, degeneration, and water content’,J. Bone Joint Surg.,64-A, pp. 88–94

    Google Scholar 

  • Athanasiou, K. A., Rosenwasser, M. P., Buckwalter, J. A., andMow, V. C. (1989): ‘Interspecies comparisons of in situ biomechanical properties of knee joint cartilage’,Trans. Orthop. Res. Soc.,14, p. 149

    Google Scholar 

  • Bai, J., Fan, Y., Li, X., andLi, X., (1999): ‘Tracing echo segment selection method for strain reconstruction’,Ultrasonics,37, pp. 51–57

    Google Scholar 

  • Berkenblit, S. I., Frank, E. H., Salant, E. P., andGrodzinsky, A. J. (1994): ‘Nondestructive detection of cartilage degeneration using electromechanical surface spectroscopy’,J. Biomech. Eng.,116, pp. 384–392

    Google Scholar 

  • Brandt, K. D. (1974): ‘Enhanced extractability of articular cartilage proteoglycans in osteoarthrosis’,Biochem. J.,143, pp. 475–478

    Google Scholar 

  • Buckwalter, J. A., andMankin, H. J. (1997): ‘Articular cartilage: Part II. Degeneration and osteoarthrosis, repair, regeneration, and transplantation’,J. Bone Joint Surg.,79-A, pp. 612–632

    Google Scholar 

  • Cherin, E., Saied, A., Laugier, P., Netter, P., andBerger, G. (1998): ‘Evaluation of acoustical parameter sensitivity to agerelated and osteoarthritic changes in articular cartilage using 50 MHz ultrasound’,Ultrasound Med. Biol.,24, pp. 341–354

    Article  Google Scholar 

  • Cohn, N. A., Emelianov, S. Y., Lubinski, M. A., andO'Donnell, M. (1997a): ‘An elasticity microscope. Part I: Methods’,IEEE Trans. Ultrason. Ferroelect. Freq. Control,44, pp. 1304–1319

    Google Scholar 

  • Cohn, N. A., Emelianov, S. Y., andO'Donnell, M. (1997b): ‘An elasticity microscope. Part II: Experimental results’,IEEE Trans. Ultrason. Ferroelectr. Freq. Control.,44, pp. 1320–1331

    Google Scholar 

  • Ding, C. X., andBai, J. (1998): ‘Peak position estimation algorithms for cross-correlation function in elastography’, Proc. IEEE EMBS 20th Annual Conf., Hong Kong, pp. 866–868

  • Drogendijk, A. C., andMow, V.C. (1982): ‘Mapping of composition and biphasic material properties of cartilage over the patello-femoral groove’, Trans 25th Annual Meeting of ORS,4, p. 142

    Google Scholar 

  • Fortin, M., Buschmann, M. D., Bertrand, M. J., Foster, F. S., andOphir, J. (2000): ‘Cross-correlation of ultrasound A-line to obtain dynamic displacement profiles within poroelastic materials undergoing stress-relaxation’. Proc. SPIE on Medical imaging 2000: Ultrasonic Imaging and Signal Processing,3982, pp. 286–294

    Google Scholar 

  • Guilak, F., Ratcliffe, A., Lane, N., Rosenwasser, M. P., andMow, V. C. (1994): Mechanical and biochemical changes in the superficial zone of articular cartilage in canine experimental osteoarthritis’,J. Orthop. Res.,12, pp. 474–484

    Article  Google Scholar 

  • Jurvelin, J. S., Rasanen, T., Kolmonen, P., andLyyra, T. (1995): ‘Comparison of optical, needle probe and ultrasonic techniques for measurement of articular cartilage thickness’,J. Biomech.,28, pp. 231–235

    Article  Google Scholar 

  • Kallel, F., Ophir, J., Magee, K., andKrouskop, T. (1998): ‘Elastographic imaging of low-contrast elastic modulus distributions in tissue’,Ultrasound Med. Biol.,24, pp. 409–425

    Google Scholar 

  • Kempson, G. E. (1980): ‘The mechanical properties of articular cartilage’ inSokoloff, L. (Ed.): “The joints and synovial fluid, vol. II’ (Academic Press, New York, 1980), pp. 177–238

    Google Scholar 

  • Kim, H. K. W., Babyn, P. S., Harasiewicz, K. A., Gahunia, H. K., Pritzker, F. P. H. andFoster, F. S. (1995): ‘Imaging of immature articular cartilage using ultrasound backscatter microscopy at 50 MHz’,J. Orthop. Res.,13, pp. 963–970

    Article  Google Scholar 

  • Leung, C. T., Qin, L., Mak, A. F. T., Choy, W. T., andChan, K. M. (1998): ‘Correlation of imaging semi-quantification with biochemical assessment of proteoglycans content in trysinized articular cartilage,’ Proc. IEEE EMBS 20th Annual Conf., Hong Kong, pp. 2463–2466

  • Lyyra, T., Arokoski, J. P. A., Oksala, N., Vihko, A., Hyttinen, M., Jurvelin, J. S., andKiviranta, I. (1999): ‘Experimental validation of arthroscopic cartilage stiffness measurement using enzymatically degraded cartilage samples,’Phys. Med. Biol.,44, pp. 525–535

    Article  Google Scholar 

  • Mankin, H. J., Mow, V. C., Buckwalter, J. A., Iannotti, J. P., andRatcliffe, A. (1994): ‘Form and function of articular cartilage’ inSimnon, S. R. (Ed.): Orthopaedic basic science’ (American Academy of Orthopaedic Surgeons, 1994)

  • Mann, R. W., Shepherd, D. E. T. andSeedhom, B. B. (1999): “Discussion on: A technique for measuring the compressive modulus of articular cartilage under physiological loading rates with preliminary results’,Proc. Inst. Mech. Eng. H. J. Eng. Med.,213, pp. 291–292

    Google Scholar 

  • Mann, R. W., Shepherd, D. E. T., andSeedhom, B. B. (2001): Discussion on: A technique for measuring the compressive modulus of articular cartilage under physiological loading rates with preliminary results’,Proc. Inst. Mech. Eng. H. J. Eng. Med.,215, pp. 123–124

    Google Scholar 

  • Modest, V. E., Murphy, M. C., andMann, R. W. (1989): ‘Optical verification of a technique forin situ ultrasonic measurement of articular cartilage thickness’,J. Biomech.,22, pp. 171–176

    Article  Google Scholar 

  • Mow, V. C., andLai, W. M. (1980): ‘Recent developments in synovial joint biomechanics’,SIAM Review,22, pp. 275–317

    Article  MathSciNet  Google Scholar 

  • Mow, V. C., Zhu, W., andRatcliffe, A. (1991): ‘Structure and function of articular cartilage and meniscus’ inMow, V. C., andHayes, W. C. (Eds). ‘Basic orthopaedic biomechanics’ (Raven Press, New York, 1991) pp. 143–198

    Google Scholar 

  • Muir, I. H. M. (1980): ‘The chemistry of the ground substance of joint cartilage’ inSokoloff, L. (Ed.), ‘The joints and synovial fluid, vol. II’ (Academic Press, New York, 1980), pp. 27–94

    Google Scholar 

  • Myers, S. L., Dines, K., Brandt, D. A., Brandt, K. D., andAlvrecht, M. E. (1995): ‘Experimental assessment by high frequency ultrasound of articular cartilage thickness and osteoarthritic changes,’J. Rheumatol.,22, pp. 109–116

    Google Scholar 

  • Ophir, J., Cespedes, I., Ponnekanti, N., Yazdi, Y., andLi, X. (1991). ‘Elastography: a quantitative method for imaging the elasticity of biological tissues’,Ultrasonic Imag.,13, pp. 111–134

    Google Scholar 

  • Roth, V., andMow, V. C. (1980): ‘The intrinsic tensile behavior of the matrix of bovine articular cartilage and its variation with age’,J. Bone Joint Surg.,62A, pp. 1102–1117

    Google Scholar 

  • Rushfeldt, P. D., Mann, R. W. andHarris, W. H. (1981): ‘Improved techniques for measuring in vitro the geometry and pressure distribution in the human acetabulum. I. Ultrasonic measurement of acetabular surface, sphericity and cartilage thickness’,J. Biomech.,14, pp. 253–260

    Google Scholar 

  • Saied, A. Cherin, E., Gaucher, H., Laugier, P., Gillet, P., Floouet, J., Netter, P., andBerger, G. (1997): ‘Assessment of articular cartilage and subchondral bone: subtle and progressive changes in experimental osteoarthritis using 50 MHz echographyin vitro’,J. Bone Mineral Res.,12, pp. 1378–1387

    Google Scholar 

  • Schinagl, R. M., Ting, M. K., Price, J. H., andSah, R. L. (1996): Video microscopy to quantitate the inhomogeneous equilibrium strain within articular cartilage during confined compression’,Ann. Biomed. Eng.,24, pp. 500–512

    Google Scholar 

  • Schinagl, R. M. Gurskis, D., Chen, A. C. andSah, R. L. (1997): ‘Depth-dependent confined compression modulus of full-thickness bovine articular cartilage’,J. Orthopaed. Res.,15, pp. 499–506

    Google Scholar 

  • Senzig, D. A., Forster, F. K., andOlerud, J. E. (1992). ‘Ultrasonic attenuation in articular cartilage’,J. Acoustic Soc. Am.,92, pp. 676–681

    Google Scholar 

  • Setton, L. A., Zhu, W., andMow, V. C. (1993): ‘The biphasic poroviscoelastic behavior of articular cartilage: Role of the surface zone in governing the compressive behavior’,J. Biomech.,26, pp. 581–592

    Article  Google Scholar 

  • Skovoroda, A. R., Lubinski, M. A., Emelianov, S. Y., andO'Donnell, M. (1999): ‘Reconstructive elasticity imaging for large deformations’,IEEE Trans. Ultrason. Ferroelectr. Freq. Control,46, pp. 523–535

    Article  Google Scholar 

  • Suh, J. K., Youn, I., Kyung, H. S., Petrie, R., andFu, F. H. (1999): “Determination of the mechanical properties of articular cartilage using a high frequency ultrasonic indentation technique’, ASME 1999 Bioengineering Conference,BED-42, pp. 65–66

    Google Scholar 

  • Tepic, S., Macirowski, T., andMann, W. R. (1983): ‘Mechanical properties of articular cartilage elucidated by osmotic loading and ultrasound’. Proc. Natl. Acad. Sci. USA,Biophys.,80, pp. 3331–3333

    Google Scholar 

  • Toyras, J., Rieppo, J., Nieminen, M. T., Helminen, H. J., andJurvelin, J. S. (1999): ‘Characterization of enzymatically induced degradation of articular cartilage using high frequency ultrasound’,Phys. Med. Biol.,44, pp. 2723–2733

    Google Scholar 

  • Woo, S. L. Y., Akeson, W. H., andJemmot, G. F. (1976): ‘Measurements of nonhomogeneous, directional mechanical properties of articular cartilage in tension’,J. Biomech.,9, p. 785

    Article  Google Scholar 

  • Yao, J. Q., andSeedhom, B. B. (1999): ‘Ultrasonic measurement of the thickness of human articular cartilage in situ’,Rheumatology,38, pp. 1269–1271

    Article  Google Scholar 

  • Zheng, Y. P., andMak, A. F. T. (1996): ‘An ultrasound indentation system for biomechanical properties assessment of soft tissuesin vivo’,IEEE Trans. Biomed. Eng.,43, pp. 912–918

    Google Scholar 

  • Zheng, Y.P., Mak, A.F.T., Qin, L., andDing, C. X. (1998): ‘Ultrasound elastography of articular cartilage: A preliminary study’. Proc. 20th Annual Int. Conf. of IEEE EMBS, Hong Kong, pp. 1940–1942

  • Zheng, Y. P., andMak, A. F. T. (1999): ‘Effective elastic properties for lower limb soft tissues from manual indentation experiment’,IEEE Trans. Rehab. Eng.,7, pp. 257–267

    Google Scholar 

  • Zheng, Y. P., Mak, A. F. T., andLue, B. K. (1999): ‘Objective assessment of limb tissue elasticity: development of a manual indentation procedure’,J. Rehab. Res. Dev.,36, pp. 71–85

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Y. P. Zheng.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zheng, Y.P., Ding, C.X., Bai, J. et al. Measurement of the layered compressive properties of trypsintreated articular cartilage: An ultrasound investigation. Med. Biol. Eng. Comput. 39, 534–541 (2001). https://doi.org/10.1007/BF02345143

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02345143

Keywords

Navigation